Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of microRNAs in cancers of the upper gastrointestinal tract

Abstract

Cancers of the oesophagus, gastro-oesophageal junction and stomach (upper gastrointestinal tract cancers; UGICs) pose a major health risk around the world. Collectively, the 5-year survival rate has remained <15%, and therapeutic improvements have been very slow and small. Novel molecules for early diagnosis, prognosis and therapy are, therefore, urgently needed. The role that microRNA (miRNA) molecules have in UGICs are worth pursuing to this end. miRNAs are small noncoding RNA molecules that regulate 60% of coding genes in humans and, therefore, are pivotal in mediating and regulating many physiologic processes. miRNAs are deregulated in many disease states, particularly in cancer, making them important targets. Here, we review the growing body of evidence regarding the alterations of miRNAs in UGICs. By suppressing translation and/or promoting degradation of mRNAs, miRNAs can contribute to carcinogenesis and progression of UGICs. In-depth studies of miRNAs in UGICs might yield novel insights and potential novel therapeutic strategies.

Key Points

  • Cancers of the oesophagus, gastro-oesophageal junction and stomach (UGICs) are common worldwide, and outcomes for patients with these cancers have remained dismal

  • miRNAs are noncoding, single-stranded RNAs 22 nucleotides in length; they comprise a novel class of gene regulators that negatively regulate their targets

  • Many miRNA that act as oncogenes, tumour suppressors and important modulators in the process of invasion and metastasis of UGICs have been identified

  • Increased activity of oncogenic miRNAs leads to inhibition of tumour suppressor genes, facilitating cell proliferation and tumour progression; decreased activity of tumour-suppressor miRNAs leads to increased oncogene translation, contributing to tumour progression

  • Certain miRNAs are involved in the regulation of metastasis as well as in modulation of chemoresistance in UGICs

  • Circulating miRNAs provide potential biomarkers for early diagnosis and prognosis in patients with UGICs; further research could lead to exploitation of miRNAs as therapeutic or diagnostic targets for these cancers

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miRNAs, targets and functions in oesophageal cancers.
Figure 2: miRNAs, targets and functions in gastric cancer.

Similar content being viewed by others

References

  1. Brown, L. M., Devesa, S. S. & Chow, W. H. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J. Natl Cancer Inst 100, 1184–1187 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel, R., Naishadham, D. & Jemal, A Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    PubMed  Google Scholar 

  3. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  4. Croce, C. M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10, 704–714 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, W. K. K. et al. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 29, 5761–5771 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, C. et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med. 17, 211–215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iorio, M. V. & Croce, C. M. microRNA involvement in human cancer. Carcinogenesis 33, 1126–1133 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iorio, M. V. & Croce, C. M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 4, 143–159 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Moretti, F., Thermann, R. & Hentze, M. W. Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame. RNA 16, 2493–2502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eiring, A. M. et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140, 652–665 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garzon, R., Marcucci, G. & Croce, C. M. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov. 9, 775–789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lopez-Camarillo, C. et al. MetastamiRs: non-coding microRNAs driving cancer invasion and metastasis. Int. J. Mol. Sci. 13, 1347–1379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hurst, D. R., Edmonds, M. D. & Welch, D. R. Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res. 69, 7495–7498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haussecker, D. & Kay, M. A. miR-122 continues to blaze the trail for microRNA therapeutics. Mol. Ther. 18, 240–242 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ichikawa, D., Komatsu, S., Konishi, H. & Otsuji, E. Circulating microRNA in digestive tract cancers. Gastroenterology 142, 1074–1078 (2012).

    Article  PubMed  Google Scholar 

  19. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Nana-Sinkam, P. & Croce, C. M. MicroRNAs in diagnosis and prognosis in cancer: what does the future hold? Pharmacogenomics 11, 667–669 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Song, J. H. & Meltzer, S. J. MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology 143, 35–47 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, T. et al. MicroRNA-1322 regulates ECRG2 allele specifically and acts as a potential biomarker in patients with esophageal squamous cell carcinoma. Mol. Carcinog. http://dx.doi.org/10.1002/mc.21880

  23. Kan, T. et al. The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology 136, 1689–1700 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Luthra, R. et al. MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene 27, 6667–6678 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Maru, D. M. et al. MicroRNA-196a is a potential marker of progression during Barrett's metaplasia-dysplasia-invasive adenocarcinoma sequence in esophagus. Am. J. Pathol. 174, 1940–1948 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fassan, M. et al. PDCD4 nuclear loss inversely correlates with miR-21 levels in colon carcinogenesis. Virchows Arch. 458, 413–419 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Mathe, E. A. et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin. Cancer Res. 15, 6192–6200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fassan, M. et al. MicroRNA expression profiling in human Barrett's carcinogenesis. Int. J. Cancer 129, 1661–1670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leidner, R. S. et al. The microRNAs, MiR-31 and MiR-375, as candidate markers in Barrett's esophageal carcinogenesis. Genes Chromosomes Cancer 51, 473–479 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith, C. M. et al. miR-200 family expression is downregulated upon neoplastic progression of Barrett's esophagus. World J. Gastroenterol. 17, 1036–1044 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Feber, A. et al. MicroRNA expression profiles of esophageal cancer. J. Thorac. Cardiovasc. Surg. 135, 255–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Luzna, P. et al. Changes of microRNAs-192, 196a and 203 correlate with Barrett's esophagus diagnosis and its progression compared to normal healthy individuals. Diagn. Pathol. 6, 114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wijnhoven, B. P. et al. MicroRNA profiling of Barrett's oesophagus and oesophageal adenocarcinoma. Br. J. Surg. 97, 853–861 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, H. et al. MicroRNA expression signatures in Barrett's esophagus and esophageal adenocarcinoma. Clin. Cancer Res. 15, 5744–5752 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Akagi, I. et al. Relationship between altered expression levels of MIR21, MIR143, MIR145, and MIR205 and clinicopathologic features of esophageal squamous cell carcinoma. Dis. Esophagus 24, 523–530 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Ma, W. J. et al. Role of microRNA-21 and effect on PTEN in Kazakh's esophageal squamous cell carcinoma. Mol. Biol. Rep. 38, 3253–3260 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Hiyoshi, Y. et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin. Cancer Res. 15, 1915–1922 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Xu, X. et al. MicroRNA-25 promotes cell migration and invasion in esophageal squamous cell carcinoma. Biochem. Biophys. Res. Commun. 421, 640–645 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Z. L. et al. microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. J. Biol. Chem. 286, 10725–10734 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Tian, Y. et al. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J. Biol. Chem. 285, 7986–7994 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, K. H. et al. MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp. Cell Res. 315, 2529–2538 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Kurashige, J. et al. Overexpression of microRNA-223 regulates the ubiquitin ligase FBXW7 in oesophageal squamous cell carcinoma. Br. J. Cancer 106, 182–188 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, T. et al. The oncogenetic role of microRNA-31 as a potential biomarker in oesophageal squamous cell carcinoma. Clin. Sci. (Lond.) 121, 437–447 (2011).

    Article  CAS  Google Scholar 

  44. Hong, L. et al. The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann. Surg. 251, 1056–1063 (2010).

    Article  PubMed  Google Scholar 

  45. Ogawa, R. et al. Expression profiling of micro-RNAs in human esophageal squamous cell carcinoma using RT-PCR. Med. Mol. Morphol. 42, 102–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, M. et al. TNF-alpha is a novel target of miR-19a. Int. J. Oncol. 38, 1013–1022 (2011).

    CAS  PubMed  Google Scholar 

  47. Hamano, R. et al. Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway. Clin. Cancer Res. 17, 3029–3038 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Wu, Y. et al. A miR-200b/200c/429-binding site polymorphism in the 3′ untranslated region of the AP-2alpha gene is associated with cisplatin resistance. PLoS ONE 6, e29043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kong, K. L. et al. MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut 61, 33–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Komatsu, S. et al. Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br. J. Cancer 105, 104–111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, X., Lin, R. & Li, J. Epigenetic silencing of microRNA-375 regulates PDK1 expression in esophageal cancer. Dig. Dis. Sci. 56, 2849–2856 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Suzuki, S. et al. CD47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. Oncol. Rep. 28, 465–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Kano, M. et al. miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int. J. Cancer 127, 2804–2814 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Matsushima, K. et al. MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells. J. Transl. Med. 9, 30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Matsushima, K., Isomoto, H., Kohno, S. & Nakao, K. MicroRNAs and esophageal squamous cell carcinoma. Digestion 82, 138–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Li, J. et al. Transcriptional activation of microRNA-34a by NF-kappa B in human esophageal cancer cells. BMC Mol. Biol. 13, 4 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, X. et al. CpG island methylation status of miRNAs in esophageal squamous cell carcinoma. Int. J. Cancer 130, 1607–1613 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, Q. et al. Role of microRNA let-7 and effect to HMGA2 in esophageal squamous cell carcinoma. Mol. Biol. Rep. 39, 1239–1246 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Ding, D. P. et al. miR-29c induces cell cycle arrest in esophageal squamous cell carcinoma by modulating cyclin E expression. Carcinogenesis 32, 1025–1032 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Tsuchiya, S. et al. MicroRNA-210 regulates cancer cell proliferation through targeting fibroblast growth factor receptor-like 1 (FGFRL1). J. Biol. Chem. 286, 420–428 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Li, S. et al. miR-223 regulates migration and invasion by targeting Artemin in human esophageal carcinoma. J. Biomed. Sci. 18, 24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, R. et al. The cluster of miR-143 and miR-145 affects the risk for esophageal squamous cell carcinoma through co-regulating fascin homolog 1. PLoS ONE 7, e33987 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, X. et al. MicroRNA-181a promotes gastric cancer by negatively regulating tumor suppressor KLF6. Tumour Biol. 33, 1589–1597 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, B. G. et al. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol. Rep. 27, 1019–1026 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cao, Z., Yoon, J. H., Nam, S. W., Lee, J. Y. & Park, W. S. PDCD4 expression inversely correlated with miR-21 levels in gastric cancers. J. Cancer Res. Clin. Oncol. 138, 611–619 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Yamanaka, S. et al. MicroRNA-21 inhibits Serpini1, a gene with novel tumour suppressive effects in gastric cancer. Dig. Liver Dis. 44, 589–596 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsai, K. W. et al. Aberrant expression of miR-196a in gastric cancers and correlation with recurrence. Genes Chromosomes Cancer 51, 394–401 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Tsai, K. W. et al. Epigenetic regulation of miR-196b expression in gastric cancer. Genes Chromosomes Cancer 49, 969–980 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Xiao, B. et al. Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncol. Rep. 27, 559–566 (2012).

    CAS  PubMed  Google Scholar 

  70. Shi, X., Su, S., Long, J., Mei, B. & Chen, Y. MicroRNA-191 targets N-deacetylase/N-sulfotransferase 1 and promotes cell growth in human gastric carcinoma cell line MGC803. Acta Biochim. Biophys. Sin. (Shanghai) 43, 849–856 (2011).

    Article  CAS  Google Scholar 

  71. Lo, S. S. et al. Overexpression of miR-370 and downregulation of its novel target TGFbeta-RII contribute to the progression of gastric carcinoma. Oncogene 31, 226–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Otsubo, T. et al. MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS ONE 6, e16617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, L., Jiang, M., Yuan, W. & Tang, H. Prognostic value of miR-93 overexpression in resectable gastric adenocarcinomas. Acta Gastroenterol. Belg. 75, 22–27 (2012).

    PubMed  Google Scholar 

  74. Li, N. et al. Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett. 586, 722–728 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Yi, C. et al. MiR-663, a microRNA targeting p21(WAF1/CIP1), promotes the proliferation and tumorigenesis of nasopharyngeal carcinoma. Oncogene 31, 4421–4433 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Ahn, S. M. et al. Smad3 regulates E-cadherin via miRNA-200 pathway. Oncogene 31, 3051–3059 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, M. et al. Circulating miR-17-5p and miR-20a: molecular markers for gastric cancer. Mol. Med. Rep. 5, 1514–1520 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Inoue, T., Iinuma, H., Ogawa, E., Inaba, T. & Fukushima, R. Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol. Rep. 27, 1759–1764 (2012).

    PubMed  Google Scholar 

  79. Chen, L. et al. MicroRNA-181b targets cAMP responsive element binding protein 1 in gastric adenocarcinomas. IUBMB Life 64, 628–635 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Kong, W. Q. et al. MicroRNA-182 targets cAMP-responsive element-binding protein 1 and suppresses cell growth in human gastric adenocarcinoma. FEBS J. 279, 1252–1260 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Carvalho, J. et al. Lack of microRNA-101 causes E-cadherin functional deregulation through EZH2 up-regulation in intestinal gastric cancer. J. Pathol. 228, 31–44 (2012).

    CAS  PubMed  Google Scholar 

  82. Xia, J. et al. miR-124 inhibits cell proliferation in gastric cancer through down-regulation of SPHK1. J. Pathol. 227, 470–480 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Li, C. et al. MicroRNA-409-3p regulates cell proliferation and apoptosis by targeting PHF10 in gastric cancer. Cancer Lett. 320, 189–197 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Sun, T., Wang, C., Xing, J. & Wu, D. miR-429 modulates the expression of c-myc in human gastric carcinoma cells. Eur. J. Cancer 47, 2552–2559 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Vaira, V. et al. miR-296 regulation of a cell polarity-cell plasticity module controls tumor progression. Oncogene 31, 27–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Ding, L. et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 20, 784–793 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Tsukamoto, Y. et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res. 70, 2339–2349 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Oh, H. K. et al. Genomic loss of miR-486 regulates tumor progression and the OLFM4 antiapoptotic factor in gastric cancer. Clin. Cancer Res. 17, 2657–2667 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Yang, Q. et al. Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis 32, 713–722 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Golestaneh, A. F. et al. miRNAs expressed differently in cancer stem cells and cancer cells of human gastric cancer cell line MKN-45. Cell Biochem. Funct. 30, 411–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Zhu, Y., Zhong, Z. & Liu, Z. Lentiviral vector-mediated upregulation of let-7a inhibits gastric carcinoma cell growth in vitro and in vivo. Scand. J. Gastroenterol. 46, 53–59 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, Q. et al. miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. Dig. Dis. Sci. 56, 2009–2016 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Bou Kheir, T. et al. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol. Cancer 10, 29 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cui, Y. et al. MiR-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS ONE 6, e25872 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kogo, R., Mimori, K., Tanaka, F., Komune, S. & Mori, M. Clinical significance of miR-146a in gastric cancer cases. Clin. Cancer Res. 17, 4277–4284 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Kim, K. et al. Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics 6, 740–751 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Guo, X. B. et al. Down-regulation of miR-622 in gastric cancer promotes cellular invasion and tumor metastasis by targeting ING1 gene. World J. Gastroenterol. 17, 1895–1902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Feng, L., Xie, Y., Zhang, H. & Wu, Y. miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med. Oncol. 29, 856–863 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Zhu, W. et al. miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med. Oncol. 29, 384–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Li, Z. et al. miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3. Cancer Lett. 323, 41–47 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Zhu, W. et al. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother. Pharmacol. 69, 723–731 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Kim, C. H. et al. miRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med. Genom. 4, 79 (2011).

    Article  CAS  Google Scholar 

  103. Geiger, T. R. & Peeper, D. S. Metastasis mechanisms. Biochim. Biophys. Acta 1796, 293–308 (2009).

    CAS  PubMed  Google Scholar 

  104. Feber, A. et al. MicroRNA prognostic signature for nodal metastases and survival in esophageal adenocarcinoma. Ann. Thorac. Surg. 91, 1523–1530 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Liao, Y. L. et al. Transcriptional regulation of miR-196b by ETS2 in gastric cancer cells. Carcinogenesis 33, 760–769 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, Z., Zhu, J., Cao, H., Ren, H. & Fang, X. miR-10b promotes cell invasion through RhoC-AKT signaling pathway by targeting HOXD10 in gastric cancer. Int. J. Oncol. 40, 1553–1560 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, Z., Liu, S., Shi, R. & Zhao, G. miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet. 204, 486–491 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Zhao, X. et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene http://dx.doi.org/10.1038/onc.2012.156.

  109. Gao, P. et al. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene http://dx.doi.org/10.1038/onc.2012.61

  110. Zheng, B. et al. MicroRNA-409 suppresses tumour cell invasion and metastasis by directly targeting radixin in gastric cancers. Oncogene http://dx.doi.org/10.1038/onc.2011.581

  111. Xu, Y. et al. MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene 31, 1398–1407 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Zheng, B. et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin. Cancer Res. 17, 7574–7583 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Liang, S. et al. MicroRNA let-7f inhibits tumor invasion and metastasis by targeting MYH9 in human gastric cancer. PLoS ONE 6, e18409 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Hossain, A., Kuo, M. T. & Saunders, G. F. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol. Cell. Biol. 26, 8191–8201 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Pramanik, D. et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer Ther. 10, 1470–1480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ma, L. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat. Biotechnol. 28, 341–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Seki, N. A commentary on MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J. Hum. Genet. 56, 339–340 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Hummel, R. et al. Chemotherapy-induced modification of microRNA expression in esophageal cancer. Oncol. Rep. 26, 1011–1017 (2011).

    CAS  PubMed  Google Scholar 

  121. Hummel, R. et al. Mir-148a improves response to chemotherapy in sensitive and resistant oesophageal adenocarcinoma and squamous cell carcinoma cells. J. Gastrointest. Surg. 15, 429–438 (2011).

    Article  PubMed  Google Scholar 

  122. Song, M. Y. et al. Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS ONE 7, e33608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Konishi, H. et al. Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre- and post-operative plasma. Br. J. Cancer 106, 740–747 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu, H. et al. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 316, 196–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Liu, R. et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur. J. Cancer 47, 784–791 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Mori, Y. et al. MicroRNA-21 induces cell proliferation and invasion in esophageal squamous cell carcinoma. Mol. Med. Rep. 2, 235–239 (2009).

    CAS  PubMed  Google Scholar 

  127. Zheng, Y. et al. MicroRNA-21 is a new marker of circulating tumor cells in gastric cancer patients. Cancer Biomark. 10, 71–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Hashiguchi, Y. et al. Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int. J. Oncol. 40, 1477–1482 (2012).

    CAS  PubMed  Google Scholar 

  129. Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Yu, F. et al. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29, 4194–4204 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Godlewski, J. et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 68, 9125–9130 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Ecker, J. R. et al. Genomics: ENCODE explained. Nature 489, 52–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Birney, E. The making of ENCODE: Lessons for big-data projects. Nature 489, 49–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Schadt, E. & Chang, R. Genetics. A GPS for navigating DNA. Science 337, 1179–1180 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Pennisi, E. Genomics. ENCODE project writes eulogy for junk DNA. Science 337, 1159–1161 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Yuan, Y. et al. MicroRNA-203 inhibits cell proliferation by repressing ΔNp63 expression in human esophageal squamous cell carcinoma. BMC Cancer 11, 57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, X. et al. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol. Cancer Res. 9, 824–833 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Dallas, Park, Smith, and Cantu family funds; the Kevin Fund; the Sultan Fund; the River Creek Foundation; and the Aaron and Martha Schecter Private Foundation. This work was also supported by the Multidisciplinary Research Program at The University of Texas MD Anderson Cancer Center and by the National Institutes of Health through MD Anderson Cancer Center Support Grants CA016672 and CA138671 (J.Ajani).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Jaffer A. Ajani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S., Ajani, J. The role of microRNAs in cancers of the upper gastrointestinal tract. Nat Rev Gastroenterol Hepatol 10, 109–118 (2013). https://doi.org/10.1038/nrgastro.2012.210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.210

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer