Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New vision in video capsule endoscopy: current status and future directions

This article has been updated

Abstract

Now, more than 10 years after the approval of video capsule endoscopy (VCE), the technology has become an essential component in the management of several clinical conditions. Currently, two capsules are approved in the USA for visualizing the small bowel mucosa, one capsule is authorized for oesophageal assessment and several others are in use or under evaluation worldwide. New investigations have focused on optical improvements, advances in intestinal cleansing and risk reduction strategies to optimize VCE methodologies in clinical care. Established indications diagnosed using VCE include unexplained gastrointestinal bleeding, small bowel Crohn's disease (in adults and children >10 years old), localization of small bowel tumours and a broad range of miscellaneous abnormalities. Investigations are ongoing to determine the utility of VCE in colon cancer screening, assessment of oesophageal disorders and diagnosis of coeliac disease. Active research is in progress into ways to improve the efficacy of VCE recording interpretation, prolong imaging time and further enhance optics and imaging methods. To expand the potential utility of VCE, novel devices that can manoeuvre within or insufflate the gut lumen, tag or biopsy suspect lesions, or target drug delivery to specific sites are in development. To facilitate these advances, consortia have been organized to promote innovative VCE technologies.

Key Points

  • Over 10 years after approval, video capsule endoscopy (VCE) remains the first-line diagnostic tool for visualizing small bowel mucosa; two capsules are FDA-approved, with other devices pending approval or in use worldwide

  • A capsule is available for detection of oesophageal mucosal abnormalities, but its limited accuracy and inability to biopsy or perform therapeutic techniques diminishes its usefulness when compared with upper endoscopy

  • Colon capsules can be used as an alternative to colonoscopy for cancer screening (although not approved in the USA), but lack the sensitivity, specificity and therapeutic advantages of colonoscopy

  • Established indications for small bowel VCE include evaluation of obscure gastrointestinal bleeding, small bowel Crohn's disease, small bowel tumours, polyposis syndromes and other mucosal abnormalities

  • Current improvements in VCE safety incorporate recommendations for patency capsule testing; enhancements in optics and imaging methods include technologies to highlight vascular lesions

  • Novel devices with possible future VCE applications are in development and include capacities for external manoeuvrability, tissue and optical biopsy, localization and tagging, and site-specific drug delivery

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example FICE images of a small bowel adenoma.
Figure 2: Enhanced characterization of mucosal vascularity using white-light illumination.
Figure 3: Example FICE images of vascular and mucosal contrast of a small bowel angioectasia.
Figure 4: Prototype capsules with novel capabilities.

Similar content being viewed by others

Change history

  • 17 May 2012

    In the version of this article initially published online the author details for reference number 1 were incorrect and should have been attributed to Liao, Z., Gao, R., Xu, C. & Li, Z. S. The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Liao, Z., Gao, R., Xu, C. & Li, Z. S. Indications and detection, completion, and retention rates of small-bowel capsule endoscopy: a systematic review. Gastrointest. Endosc. 71, 280–286 (2010).

    Article  PubMed  Google Scholar 

  2. Moglia, A., Menciassi, A., Dario, P. & Cuschieri, A. Capsule endoscopy: progress update and challenges ahead. Nat. Rev. Gastroenterol. Hepatol. 6, 353–362 (2009).

    Article  PubMed  Google Scholar 

  3. Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Waterman, M. & Eliakim, R. Capsule enteroscopy of the small intestine. Abdom. Imaging 34, 452–458 (2009).

    Article  PubMed  Google Scholar 

  5. Cave, D. R. et al. A multicenter randomized comparison of the Endocapsule and the Pillcam SB. Gastrointest. Endosc. 68, 487–494 (2008).

    Article  PubMed  Google Scholar 

  6. Kiesslich, R., Goetz, M., Hoffman, A. & Galle, P. R. New imaging techniques and opportunities in endoscopy. Nat. Rev. Gastroenterol. Hepatol. 8, 547–553 (2011).

    Article  PubMed  Google Scholar 

  7. Pohl, J. et al. Computed virtural chromoendoscopy for classification of small colorectal lesions: a prospective comparative study. Am. J. Gastroenterol. 103, 562–569 (2008).

    Article  PubMed  Google Scholar 

  8. Imagawa, H. et al. Improved visibility of lesions of the small intestine via capsule endoscopy with computed virtual chromoendoscopy. Clin. Endosc. 73, 299–306 (2011).

    Google Scholar 

  9. Aihara, H., Ikeda, K. & Tajiri, H. Image-enhanced capsule endoscopy based on the diagnosis of vascularity when using a new type of capsule. Gastrointest. Endosc. 73, 1274–1279 (2011).

    Article  PubMed  Google Scholar 

  10. D'Halluin, P. N. et al. Does the “suspected blood indicator” improve the detection of bleeding lesions by capsule endoscopy? Gastrointest. Endosc. 61, 243–249 (2005).

    Article  PubMed  Google Scholar 

  11. Park, S. C. et al. Effect of bowel preparation with polyethylene glycol on quality of capsule endoscopy. Dig. Dis. Sci. 56, 1769–1775 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Nouda, S. et al. Usefulness of polyethylene glycol solution with dimethylpolysiloxanes for bowel preparation before capsule endoscopy. J. Gastroenterol. Hepatol. 25, 70–74 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Wei, W. et al. Purgative bowel cleansing combined with simethicone improves capsule endoscopy imaging. Am. J. Gastroenterol. 103, 77–82 (2008).

    Article  PubMed  Google Scholar 

  14. Rokkas, T., Papaxoinis, K., Triantafyllou, K., Pistiolas, D. & Ladas, S. D. Does purgative preparation influence the diagnostic yield of small bowel video capsule endoscopy? A meta-analysis. Am. J. Gastroenterol. 104, 219–227 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Van Weyenberg, S. J., De Leest, H. T. & Mulder, C. J. Description of a novel grading system to assess the quality of bowel preparation in video capsule endoscopy. Endoscopy 43, 406–411 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, M. M. et al. Factors associated with incomplete small bowel capsule endoscopy studies. World J. Gastroenterol. 16, 5329–5333 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Westerhof, J., Weersma, R. K. & Koornstra, J. J. Risk factors for incomplete small-bowel capsule endoscopy. Gastrointest. Endosc. 69, 74–80 (2009).

    Article  PubMed  Google Scholar 

  18. Scaglione, G. et al. Age and video capsule endoscopy in obscure gastrointestinal bleeding: a prospective study on hospitalized patients. Dig. Dis. Sci. 56, 1188–1193 (2011).

    Article  PubMed  Google Scholar 

  19. Girelli, C. M., Maiero, S., Porta, P. & Cannizzaro, R. Small bowel capsule endoscopy performance in octogenarians: a case-control study. J. Gerontol. Biol. Sci. Med. Sci. 66, 68–73 (2011).

    Article  Google Scholar 

  20. Almeida, N. et al. The effect of metoclopramide in capsule enteroscopy. Dig. Dis. Sci. 55, 153–157 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Hooks, S. B., Rutland, T. J. & Di Palma, J. A. Lubiprostone neither decreases gastric and small-bowel transit nor improves visualization of small bowel for capsule endoscopy: a double-blind, placebo-controlled study. Gastrointest. Endosc. 70, 942–946 (2009).

    Article  PubMed  Google Scholar 

  22. Endo, H. et al. Ingesting 500 ml of polyethylene glycol solution during capsule endoscopy improves the image quality and completion rate to the cecum. Dig. Dis. Sci. 53, 3201–3205 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Apostolopoulos, P. et al. Clinical trial: effectiveness of chewing-gum in accelerating capsule endoscopy transit time—a prospective randomized, controlled pilot study. Aliment. Pharmacol. Ther. 28, 405–411 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Gao, Y. J. et al. Endoscopic capsule placement improves the completion rate of small-bowel capsule endoscopy and increases the diagnostic yield. Gastrointest. Endosc. 72, 103–108 (2010).

    Article  PubMed  Google Scholar 

  25. Cheifetz, A. S. & Lewis, B. S. Capsule endoscopy retention: is it a complication? J. Clin. Gastroenterol. 40, 688–691 (2006).

    Article  PubMed  Google Scholar 

  26. Herrerias, J. M. et al. Agile patency system eliminates risk of capsule retention in patients with known intestinal strictures who undergo capsule endoscopy. Gastrointest. Endosc. 67, 902–909 (2008).

    Article  PubMed  Google Scholar 

  27. Postgate, A. J., Burling, D., Gupta, A., Fitzpatrick, A. & Fraser, C. Safety, reliability and limitations of the GIVEN patency capsule in patients at risk of capsule retention: a 3-year technical review. Dig. Dis. Sci. 53, 2732–2738 (2008).

    Article  PubMed  Google Scholar 

  28. Van Turenhout, S. T. et al. Diagnostic yield of capsule endoscopy in a tertiary hospital in patients with obscure gastrointestinal bleeding. J. Gastrointest. Liver Dis. 19, 141–145 (2010).

    Google Scholar 

  29. Bandorski, D., Irnich, W., Bruck, M., Kramer, W. & Jakobs, R. Do endoscopy capsules interfere with implantable cardioverter-defibrillators? Endoscopy 41, 457–461 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Bandorski, D. et al. Capsule endoscopy in patients with cardiac pacemakers and implantable cardioverter-defibrillators—a retrospective multicenter investigation. J. Gastrointest. Liver Dis. 20, 33–37 (2011).

    Google Scholar 

  31. Dirks, M. H., Costea, F. & Seidman, E. G. Successful videocapsule endoscopy in patients with an abdominal cardiac pacemaker. Endoscopy 40, 73–75 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Delvaux, M., Fassler, I. & Gay, G. Clinical usefulness of the endoscopic video capsule as the initial intestinal investigation in patients with obscure digestive bleeding: validation of a diagnostic strategy based on the patient outcome after 12 months. Endoscopy 36, 1067–1073 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Vlachogiannakos, J. et al. Bleeding lesions within reach of conventional endoscopy in capsule endoscopy examinations for obscure gastrointestinal bleeding: is repeating endoscopy economically feasible? Dig. Dis. Sci. 56, 1763–1768 (2011).

    Article  PubMed  Google Scholar 

  34. Hara, A. K., Walker, F. B., Silva, A. C. & Leighton, J. A. Preliminary estimate of triphasic CT enterography performance in hemodynamically stable patients with suspected gastrointestinal bleeding. Am. J. Roentgenol. 193, 1252–1260 (2009).

    Article  Google Scholar 

  35. Milano, A. et al. A prospective evaluation of iron deficiency anemia in the GI endoscopy setting: role of standard endoscopy, videocapsule endoscopy, and CT-enteroclysis. Gastrointest. Endosc. 73, 1002–1008 (2011).

    Article  PubMed  Google Scholar 

  36. Pasha, S. F. et al. Double-balloon enteroscopy and capsule endoscopy have comparable diagnostic yield in small-bowel disease: a meta-analysis. Clin. Gastroenterol. Hepatol. 6, 671–676 (2008).

    Article  PubMed  Google Scholar 

  37. Teshima, C. W., Kuipers, E. J., van Zanten, S. V. & Mensink, P. B. Double balloon enteroscopy and capsule endoscopy for obscure gastrointestinal bleeding: an updated meta-analysis. J. Gastroenterol. Hepatol. 26, 796–801 (2001).

    Article  Google Scholar 

  38. Saperas, E. et al. Capsule endoscopy versus computed tomographic or standard angiography for the diagnosis of obscure gastrointestinal bleeding. Am. J. Gastroenterol. 102, 731–737 (2007).

    Article  PubMed  Google Scholar 

  39. Raju, G. S., Gerson, L., Das, A. & Lewis, B. American Gastroenterological Association (AGA) Institute technical review on obscure gastrointestinal bleeding. Gastroenterology 133, 1697–1717 (2007).

    Article  PubMed  Google Scholar 

  40. Decker, G. A. et al. The role of endoscopy in the management of obscure GI bleeding. Gastrointest. Endosc. 72, 471–479 (2010).

    Article  PubMed  Google Scholar 

  41. DeBenedet, A. T., Saini, S. D., Takami, M. & Fisher, L. R. Do clinical characteristics predict the presence of small bowel angioectasias on capsule endoscopy? Dig. Dis. Sci. 56, 1776–1781 (2011).

    Article  PubMed  Google Scholar 

  42. Sidhu, R., Brunt, L. K., Morley, S. R., Sanders, D. S. & McAlindon, M. E. Undisclosed use of nonsteroidal anti-inflammatory drugs may underlie small-bowel injury observed by capsule endoscopy. Clin. Gastroenterol. Hepatol. 8, 992–995 (2010).

    Article  PubMed  Google Scholar 

  43. Maiden, L. Capsule endoscopic diagnosis of nonsteroidal anti-inflammatory drug-induced enteropathy. J. Gastroenterol. 44 (Suppl. 19), 64–71 (2009).

    Article  PubMed  Google Scholar 

  44. Pennazio, M. et al. Outcome of patients with obscure gastrointestinal bleeding after capsule endoscopy: report of 100 consecutive cases. Gastroenterology 126, 643–653 (2004).

    Article  PubMed  Google Scholar 

  45. Sidhu, R., Sanders, D. S., Kapur, K., Leeds, J. S. & McAlindon, M. E. Factors predicting the diagnostic yield and intervention in obscure gastrointestinal bleeding investigators using capsule endoscopy. J. Gastrointest. Liver Dis. 18, 273–278 (2009).

    Google Scholar 

  46. Matsumura, T. et al. Negative capsule endoscopy for obscure gastrointestinal bleeding is closely associated with the use of low-dose aspirin. Scand. J. Gastroenterol. 46, 621–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Lai, L. H. et al. Long-term follow-up of patients with obscure gastrointestinal bleeding after negative capsule endoscopy. Am. J. Gastroenterol. 101, 1224–1228 (2006).

    Article  PubMed  Google Scholar 

  48. Viazis, N. et al. Is there a role for second-look capsule endoscopy in patients with obscure GI bleeding after a nondiagnostic first test? Gastrointest. Endosc. 69, 850–856 (2009).

    Article  PubMed  Google Scholar 

  49. Fisher, L. Provocative Capsule Endoscopy. Presented at the 2010 International Conference on Capsule and Double Balloon Endoscopy.

  50. Li, X., Chen, H., Dai, J., Gao, Y. & Ge, Z. Predictive role of capsule endoscopy on the insertion route of double-balloon endoscopy. Endoscopy 41, 762–766 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Douard, R. et al. Role of intraoperative enteroscopy in the management of obscure gastrointestinal bleeding at the time of video-capsule endoscopy. Am. J. Surg. 198, 6–11 (2009).

    Article  PubMed  Google Scholar 

  52. Kim, S., Kedia, P. S., Jaffe, D. L. & Ahmad, N. A. Impact of capsule endoscopy findings on patient outcomes. Dig. Dis. Sci. 54, 2441–2448 (2009).

    Article  PubMed  Google Scholar 

  53. Laine, L., Sahota, A. & Shah, A. Does capsule endoscopy improve outcomes in obscure gastrointestinal bleeding? Randomized trial versus dedicated small bowel radiography. Gastroenterology 138, 1673–1680 (2010).

    Article  PubMed  Google Scholar 

  54. Petruzziello, C. et al. Wireless capsule endoscopy and proximal small bowel lesions in Crohn's disease. World J. Gastroenterol. 16, 3299–3304 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mehdizadeh, S. et al. Capsule endoscopy in patients with Crohn's disease: diagnostic yield and safety. Gastrointest. Endosc. 71, 121–127 (2010).

    Article  PubMed  Google Scholar 

  56. Mehdizadeh, S. et al. Diagnostic yield of capsule endoscopy in ulcerative colitis and inflammatory bowel disease of unclassified type (IBDU). Endoscopy 40, 30–35 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Tukey, M., Pleskow, D., Legnani, P., Cheifetz, A. S. & Moss, A. C. The utility of capsule endoscopy in patients with suspected Crohn's disease. Am. J. Gastroenterol. 104, 2734–2739 (2009).

    Article  PubMed  Google Scholar 

  58. Solem, C. A. et al. Small-bowel imaging in Crohn's disease: a prospective, blinded, 4-way comparison trial. Gastrointest. Endosc. 68, 255–266 (2008).

    Article  PubMed  Google Scholar 

  59. Jensen, M. D., Nathan, T., Rafaelsen, S. R. & Kjeldsen, J. Diagnostic accuracy of capsule endoscopy for small bowel Crohn's disease is superior to that of MR enterography or CT enterography. Clin. Gastroenterol. Hepatol. 9, 124–129 (2011).

    Article  PubMed  Google Scholar 

  60. Dionisio, P. M. et al. Capsule endoscopy has a significantly higher diagnostic yield in patients with suspected and established small-bowel Crohn's disease: a meta-analysis. Am. J. Gastroenterol. 105, 1240–1248 (2010).

    Article  PubMed  Google Scholar 

  61. Koulaouzidis, A., Douglas, S., Rogers, M. A., Arnott, I. D. & Plevris, J. N. Fecal calprotectin: a selection tool for small bowel capsule endoscopy in suspected IBD with prior negative bi-directional endoscopy. Scand. J. Gastroenterol. 46, 561–566 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Sidhu, R. et al. Faecal lactoferrin, capsule endoscopy and Crohn's disease. Is there a three way relationship? A pilot study. J. Gastrointest. Liver Dis. 19, 257–260 (2010).

    Google Scholar 

  63. Gal, E., Geller, A., Fraser, G., Levi, Z. & Niv, Y. Assessment and validation of the new capsule endoscopy Crohn's disease activity index (CECDAI). Dig. Dis. Sci. 53, 1933–1937 (2008).

    Article  PubMed  Google Scholar 

  64. Gralnek, I. M., Defranchis, R., Seidman, E., Leighton, J. A., Legnani, P. & Lewis, B. S. Development of a capsule endoscopy scoring index for small bowel mucosal inflammatory change. Aliment. Pharmacol. Ther. 27, 146–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Koulaouzidis, A., Douglas, S. & Plevris, J. N. Lewis score correlates more closely with fecal calprotectin than capsule endoscopy Crohn's disease activity index. Dig. Dis. Sci. 57, 987–993 (2012).

    Article  PubMed  Google Scholar 

  66. Lorenzo-Zuniga, V. et al. Impact of capsule endoscopy findings in the management of Crohn's disease. Dig. Dis. Sci. 55, 411–414 (2010).

    Article  PubMed  Google Scholar 

  67. Levesque, B. G. et al. Cost effectiveness of alternative imaging strategies for the diagnosis of small-bowel Crohn's disease. Clin. Gastroenterol. Hepatol. 8, 261–267 (2010).

    Article  PubMed  Google Scholar 

  68. Crook, D. W. et al. Comparison of magnetic resonance enterography and video capsule endoscopy in evaluating small bowel disease. Eur. J. Gastroenterol. Hepatol. 21, 54–65 (2009).

    Article  PubMed  Google Scholar 

  69. Rondonotti, E. et al. Small-bowel neoplasms in patients undergoing video capsule endoscopy: a multicenter European study. Endoscopy 40, 488–495 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Trifan, A., Singeap, A. M., Cojocariu, C., Sfarti, C. & Stanciu, C. Small bowel tumors in patients undergoing capsule endoscopy: a single center experience. J. Gastrointest. Liver Dis. 19, 21–25 (2010).

    Google Scholar 

  71. Prakoso, E., Fulham, M., Thompson, J. F. & Selby, W. S. Capsule endoscopy versus positron emission tomography for detection of small-bowel metastatic melanoma: a pilot study. Gastrointest. Endosc. 73, 750–756 (2011).

    Article  PubMed  Google Scholar 

  72. Katsinelos, P. et al. Wireless capsule endoscopy in detecting small-intestinal polyps in familial adenomatous polyposis. World J. Gastroenterol. 15, 6075–6079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Postgate, A. et al. Feasibility of video capsule endoscopy in the management of children with Peutz–Jeghers syndrome: a blinded comparison with barium enterography for the detection of small bowel polyps. J. Pediatr. Gastroenterol. Nutr. 49, 417–423 (2009).

    Article  PubMed  Google Scholar 

  74. Gupta, A. et al. A prospective study of MR enterography versus capsule endoscopy for the surveillance of adult patients with Peutz-Jeghers syndrome. Am. J. Roentgenol. 195, 108–116 (2010).

    Article  Google Scholar 

  75. Clarke, J. O. et al. How good is capsule endoscopy for detection of periampullary lesions? Results of a tertiary-referral center. Gastrointest. Endosc. 68, 267–272 (2008).

    Article  PubMed  Google Scholar 

  76. Bardan, E., Nadler, M., Chowers, Y., Fidder, H. & Bar-Meir, S. Capsule endoscopy for the evaluation of patients with chronic abdominal pain. Endoscopy 35, 688–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Dupont-Lucas, C. et al. Capsule endoscopy in children: which are the best indications? [French] Arch. Pediatrie 17, 1264–1272 (2010).

    Article  CAS  Google Scholar 

  78. Cohen, S. A. & Klevens, A. I. Use of capsule endoscopy in diagnosis and management of pediatric patients, based on meta-analysis. Clin. Gastroenterol. Hepatol. 9, 490–496 (2011).

    Article  PubMed  Google Scholar 

  79. Di Nardo, G. et al. Usefulness of wireless capsule endoscopy in paediatric inflammatory bowel disease. Dig. Liver Dis. 43, 220–224 (2011).

    Article  PubMed  Google Scholar 

  80. Cohen, S. A. et al. Capsule endoscopy may reclassify pediatric inflammatory bowel disease: a historical analysis. J. Pediatr. Gastroenterol. Nutr. 47, 31–36 (2008).

    Article  PubMed  Google Scholar 

  81. Atay, O. et al. Risk of capsule endoscope retention in pediatric patients: a large single-center experience and review of the literature. J. Pediatr. Gastroenterol. Nutr. 49, 196–201 (2009).

    Article  PubMed  Google Scholar 

  82. Fritscher-Ravens, A. et al. The feasibility of wireless capsule endoscopy in detecting small intestinal pathology in children under the age of 8 years: a multicentre European study. Gut 58, 1467–1472 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Dokoutsidou, H. et al. A study comparing an endoscopy nurse and an endoscopy physician in capsule endoscopy interpretation. Eur. J. Gastroenterol. Hepatol. 23, 166–170 (2011).

    Article  PubMed  Google Scholar 

  84. Westerhof, J., Koornstra, J. J. & Weersma, R. K. Can we reduce capsule endoscopy reading times? Gastrointest. Endosc. 69, 497–502 (2009).

    Article  PubMed  Google Scholar 

  85. Chu, X. et al. Epitomized summarization of wireless capsule endoscopic videos for efficient visualization. Med. Image Comput. Comput. Assist. Interv. 13, 522–529 (2010).

    PubMed  Google Scholar 

  86. Gan, T., Wu, J. C., Rao, N. N., Chen, T. & Liu, B. A feasibility trial of computer-aided diagnosis for enteric lesions in capsule endoscopy. World J. Gastroenterol. 14, 6929–6935 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Graepler, F., Wolter, M., Vonthein, R. & Gregor, M. Accuracy of the size estimation in wireless capsule endoscopy: calibrating the M2A PillCam. Gastrointest. Endosc. 67, 924–931 (2008).

    Article  PubMed  Google Scholar 

  88. Rubin, M. et al. Live view video capsule endoscopy enables risk stratification of patients with acute upper GI bleeding in the emergency room: a pilot study. Dig. Dis. Sci. 56, 786–791 (2011).

    Article  PubMed  Google Scholar 

  89. Bang, S. et al. First clinical trial of the “MiRo” capsule endoscope by using a novel transmission technology: electric field propagation. Gastrointest. Endosc. 69, 253–259 (2009).

    Article  PubMed  Google Scholar 

  90. Liao, Z. et al. Field of applications, diagnostic yields and findings of OMOM capsule endoscopy in 2400 Chinese patients. World J. Gastroenterol. 16, 2669–2676 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. CapsoVision. CapsoVision [online], (2012).

  92. RF System. RF System Lab [online], (2012).

  93. Triantafyllou, K., Papanikolaou, I. S., Papaxoinis, K. & Ladas, S. D. Two cameras detect more lesions in the small-bowel than one. World J. Gastroenterol. 17, 1462–1467 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Xin, W., Yan, G. & Wang, W. Study of a wireless power transmission system for an active capsule endoscope. Int. J. Mod. Robot. 6, 113–122 (2010).

    Google Scholar 

  96. Wu, J. & Li, Y. Low-complexity video compression for capsule endoscope based on compressed sensing theory. Conf. Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. 2009, 3727–3730 (2009).

    Google Scholar 

  97. Liao, Z., Xu, C. & Li, Z. S. Completion rate and diagnostic yield of small-bowel capsule endoscopy: 1 vs. 2 frames per second. Endoscopy 42, 360–364 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Gupta, T. et al. Is Fujinon Intelligent Color Enhancement (FICE) assisted capsule endoscopy (CE) useful for analyzing obscure GI bleeding (OGIB)? Gastroenterology 138, S667–S668 (2010).

    Google Scholar 

  99. Wang, L. et al. Wireless spectroscopic compact photonic explorer for diagnostic optical imaging. Biomed. Microdevices 7, 111–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, H. et al. Biochromoendoscopy: molecular imaging with capsule endoscopy for detection of adenomas in the GI tract. Gastrointest. Endosc. 68, 520–527 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Buscaglia, J. M. et al. Performance characteristics of the suspected blood indicator feature in capsule endoscopy according to indication for study. Clin. Gastroenterol. Hepatol. 6, 298–301 (2008).

    Article  PubMed  Google Scholar 

  102. Pan, G., Yan, G., Song, X. & Qiu, X. BP neural network classification for bleeding detection in wireless capsule endoscopy. J. Med. Eng. Tech. 33, 575–581 (2009).

    Article  CAS  Google Scholar 

  103. Karargyris, A. & Bourbakis, N. Three-dimensional reconstruction of the digestive wall in capsule endoscopy videos using elastic video interpolation. IEEE Trans. Med. Imaging 30, 957–971 (2011).

    Article  PubMed  Google Scholar 

  104. Mackiewicz, M., Berens, J. & Fisher, M. Wireless capsule endoscopy color video segmentation. IEEE Trans. Med. Imaging 27, 1769–1781 (2008).

    Article  PubMed  Google Scholar 

  105. Woo, S. H., Mohy-Ud-Din, Z. & Cho, J. H. Duodenum identification mechanism for capsule endoscopy. IEEE Trans. Biomed. Eng. 58, 905–912 (2011).

    Article  PubMed  Google Scholar 

  106. Clarke, J. O. et al. How good is capsule endoscopy for detection of periampullary lesions? Results of a tertiary-referral center. Gastrointest. Endosc. 68, 267–272 (2008).

    Article  PubMed  Google Scholar 

  107. Selby, W. S. & Prakoso, E. The inability to visualize the ampulla of Vater is an inherent limitation of capsule endoscopy. Eur. J. Gastroenterol. Hepatol. 23, 101–103 (2011).

    Article  PubMed  Google Scholar 

  108. Koulaouzidis, A., Douglas, S. & Plevris, J. N. Identification of the ampulla of Vater during oesophageal capsule endoscopy: two heads and viewing speed make a difference. Eur. J. Gastroenterol. Hepatol. 23, 361 (2011).

    Article  PubMed  Google Scholar 

  109. Pox, C. P. et al. Efficacy of a nationwide screening colonoscopy program for colorectal cancer. Gastroenterology http://dx.doi.org/10.1053/j.gastro.2012.03.022.

  110. Hu, C., Yang, W., Chen, D., Meng, M. Q. & Dai, H. An improved magnetic localization and orientation algorithm for wireless capsule endoscope. Conf. Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. 2008, 2055–2058 (2008).

    Google Scholar 

  111. Carpi, F. & Pappone, C. Stereotaxis Niobe magnetic navigation system for endocardial catheter ablation and gastrointestinal capsule endoscopy. Expert Rev. Med. Devices 6, 487–498 (2009).

    Article  PubMed  Google Scholar 

  112. Rey, J. F. et al. Feasibility of stomach exploration with a guided capsule endoscopy. Endoscopy 42, 541–545 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Valdastri, P. et al. A magnetic internal mechanism for precise orientation of the camera in wireless endoluminal applications. Endoscopy 42, 481–486 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Morita, E. et al. In vivo trial of a driving system for a self-propelling capsule endoscopy using a magnetic field. Gastrointest. Endosc. 72, 836–840 (2010).

    Article  PubMed  Google Scholar 

  115. Ciuti, G. et al. Robotic versus manual control in magnetic steering of an endoscopic capsule. Endoscopy 42, 148–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Menciassi, A., Valdastri, P., Quaglia, C., Buselli, E. & Dario, P. Wireless steering mechanism with magnetic actuation for an endoscopic capsule. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 1204–1207 (2009).

    CAS  PubMed  Google Scholar 

  117. Keller, J. et al. Inspection of the human stomach using remote-controlled capsule endoscopy: a feasibility study in healthy volunteers. Gastrointest. Endosc. 73, 22–28 (2011).

    Article  PubMed  Google Scholar 

  118. Mewes, P. Automatic region-of interest segmentation and pathology detection in magnetically guided capsule endoscopy. Med. Image Comp. Comp Ass. Intervent. MICCAI 14, 141–148 (2011).

    Google Scholar 

  119. Moglia, A., Menciassi, A., Schurr, M. O. & Dario, P. Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomed. Microdevices 9, 235–243 (2007).

    Article  PubMed  Google Scholar 

  120. Quirini, M. et al. Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointest. Endosc. 67, 1153–1158 (2008).

    Article  PubMed  Google Scholar 

  121. Tortora, G. et al. Propeller-based wireless device for active capsular endoscopy in the gastric district. Minim. Invasive Ther. Allied Technol. 18, 280–290 (2009).

    Article  PubMed  Google Scholar 

  122. Carta, R. et al. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosens. Bioelectron. 25, 845–851 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, H. M. et al. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment. Gastrointest. Endosc. 72, 381–387 (2010).

    Article  PubMed  Google Scholar 

  124. Toennies, J. L. et al. Toward tetherless insufflation of the GI tract. Conf. Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. 2010, 1946–1949 (2010).

    Google Scholar 

  125. Chandrappan, J., Ruigi, L., Su, N., Qiang, T. S. & Vaidyanathan, K. Tagging module for lesion localization in capsule endoscopy. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 1890–1893 (2010).

    PubMed  Google Scholar 

  126. Kong, K.-C., Cha, J. & Doyoung, J. A rotational micro biopsy device for the capsule endoscope. International Conference on Intelligent Robots and Systems 3057–3061 (2008).

  127. Park, S. et al. A novel microactuator for microbiopsy in capsular endoscopes. J. Micromech. Microeng. 18, 025032 (2008).

    Article  CAS  Google Scholar 

  128. Valdastri, P. et al. Wireless therapeutic endoscopic capsule: in vivo experiment. Endoscopy 40, 979–982 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Schmidt, C. Capsule endoscopy to screen for colon cancer scores low on sensitivity, high on controversy. J. Natl Cancer Inst. 101, 1444–1445 (2009).

    Article  PubMed  Google Scholar 

  130. Van Gossum, A. et al. Capsule endoscopy versus colonoscopy for the detection of polyps and cancer. N. Engl. J. Med. 361, 264–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Sacher-Huvelin, S. et al. Colon capsule endoscopy vs. colonoscopy in patients at average or increased risk of colorectal cancer. Aliment. Pharmacol. Ther. 32, 1145–1153 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Spada, C. et al. Meta-analysis shows colon capsule endoscopy is effective in detecting colorectal polyps. Clin. Gastroenterol. Hepatol. 8, 516–522 (2010).

    Article  PubMed  Google Scholar 

  133. Spada, C. et al. Second-generation colon capsule endoscopy compared with colonoscopy. Gastrointest. Endosc. 74, 581–589 (2011).

    Article  PubMed  Google Scholar 

  134. Eliakim, R. et al. Prospective multicenter performance evaluation of the second-generation colon capsule compared with colonoscopy. Endoscopy 41, 1026–1031 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Triantafyllou, K. et al. PillCam COLON capsule endoscopy does not always complement incomplete colonoscopy. Gastrointest. Endosc. 69, 572–576 (2009).

    Article  PubMed  Google Scholar 

  136. Sieg, A. Colon capsule endoscopy compared with conventional colonoscopy for the detection of colorectal neoplasms. Expert Rev. Med. Devices 8, 257–261 (2011).

    Article  PubMed  Google Scholar 

  137. Gralnek, I. M. et al. Detecting esophageal disease with second-generation capsule endoscopy: initial evaluation of the PillCam ESO2. Endoscopy 40, 275–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Sharma, P. et al. The diagnostic accuracy of esophageal capsule endoscopy in patients with gastroesophageal reflux disease and Barrett's esophagus: a blinded, prospective study. Am. J. Gastroenterol. 103, 525–532 (2008).

    Article  PubMed  Google Scholar 

  139. Bhardwaj, A., Hollenbeck, C. S., Pooran, N. & Mathew, A. A meta-analysis of the diagnostic accuracy of esophageal capsule endoscopy for Barrett's esophagus in patients with gastroesophageal reflux disease. Am. J. Gastroenterol. 104, 1533–1539 (2009).

    Article  PubMed  Google Scholar 

  140. Ramirez, F. C., Akins, R. & Shaukat, M. Screening of Barrett's esophagus with string-capsule endoscopy: a prospective blinded study of 100 consecutive patients using histology as the criterion standard. Gastrointest. Endosc. 68, 25–31 (2008).

    Article  PubMed  Google Scholar 

  141. Heresbach, D. et al. Diagnostic accuracy of esophageal capsule endoscopy versus conventional upper digestive endoscopy for suspected esophageal squamous cell carcinoma. Endoscopy 42, 93–97 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. de Franchis, R. et al. Esophageal capsule endoscopy for screening and surveillance of esophageal varices in patients with portal hypertension. Hepatology 47, 1595–1603 (2008).

    Article  PubMed  Google Scholar 

  143. Guturu, P. et al. Capsule endoscopy and PillCam ESO for detecting esophageal varices: a meta-analysis. Minerva Gastroenterol. Dietol. 57, 1–11 (2011).

    CAS  PubMed  Google Scholar 

  144. Schreibman, I. et al. Defining the threshold: new data on the ability of capsule endoscopy to discriminate the size of esophageal varices. Dig. Dis. Sci. 56, 220–226 (2011).

    Article  PubMed  Google Scholar 

  145. Lapalus, M. G. et al. Esophageal capsule endoscopy vs. EGD for the evaluation of portal hypertension: a French prospective multicenter comparative study. Am. J. Gastroenterol. 104, 1112–1118 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Muhammad, A. & Pitchumoni, C. S. Newly detected celiac disease by wireless capsule endoscopy in older adults with iron deficiency anemia. J. Clin. Gastroenterol. 42, 980–983 (2008).

    Article  PubMed  Google Scholar 

  147. El-Matary, W., Huynh, H. & Vandermeer, B. Diagnostic characteristics of GIVEN video capsule endoscopy in diagnosis of celiac disease: a meta-analysis. J. Laparoendosc. Adv. Surg. Tech. 19, 815–820 (2009).

    Article  Google Scholar 

  148. Maiden, L., Elliott, T., McLaughlin, S. D. & Ciclitira, P. A blinded pilot comparison of capsule endoscopy and small bowel histology in unresponsive celiac disease. Dig. Dis. Sci. 54, 1280–1283 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Brocchi, E. et al. Endoscopic demonstration of loss of duodenal folds in the diagnosis of celiac disease. N. Engl. J. Med. 319, 741–744 (1988).

    Article  CAS  PubMed  Google Scholar 

  150. Daum, S. et al. Capsule endoscopy in refractory celiac disease. Endoscopy 39, 455–458 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Ogata, H. et al. Clinical impact of a newly developed capsule endoscope: usefulness of a real-time viewer for gastric transit abnormality. J. Gastroenterol. 43, 186–192 (2008).

    Article  PubMed  Google Scholar 

  152. Nakamura, M. et al. Are symptomatic changes in irritable bowel syndrome correlated with the capsule endoscopy transit time? A pilot study using the 5-HT4 receptor agonist mosapride. Hepatogastroenterology 58, 453–458 (2011).

    PubMed  Google Scholar 

  153. Rao, S. S. et al. Evaluation of gastrointestinal transit in clinical practice: position paper of the American and European Neurogastroenterology and Motility Societies. Neurogastroenterol. Motil. 23, 8–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Kuo, B. et al. Comparison of gastric emptying of a nondigestible capsule to a radio-labelled meal in healthy and gastroparetic subjects. Aliment. Pharmacol. Ther. 27, 186–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Rohrmann, C. A. Jr, Ricci, M. T., Krishnamurthy, S. & Schuffler, M. D. Radiologic and histologic differentiation of neuromuscular disorders of the gastrointestinal tract: visceral myopathies, visceral neuropathies, and progressive systemic sclerosis. AJR Am. J. Roentgenol. 143, 933–941 (1984).

    Article  PubMed  Google Scholar 

  156. Malagelada, C. et al. New insight into intestinal motor function via noninvasive endoluminal image analysis. Gastroenterology 135, 1155–1162 (2008).

    Article  PubMed  Google Scholar 

  157. de Iorio, F. et al. Intestinal motor activity, endoluminal motion and transit. Neurogastroenterol. Motil. 21, 1264-e119 (2009).

    Article  PubMed  Google Scholar 

  158. VECTOR. Versatile Endoscopic Capsule for gastrointestinal TumOr Recognition and therapy [online], (2012).

Download references

Acknowledgements

The authors thank Patricia Lai and Vanessa Lawrence for administrative assistance.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Laurel R. Fisher.

Ethics declarations

Competing interests

L. R. Fisher declares that she has acted as a consultant for MiroCam and received grant or research support from Given Imaging. W. Hasler declares that he has acted as a consultant for SmartPill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, L., Hasler, W. New vision in video capsule endoscopy: current status and future directions. Nat Rev Gastroenterol Hepatol 9, 392–405 (2012). https://doi.org/10.1038/nrgastro.2012.88

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.88

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer