Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Placebo effects and their determinants in gastrointestinal disorders

Key Points

  • Placebo response rates in randomized controlled trials in gastroenterology are of similar size, and mediators and moderators are of similar type to those in other medical subspecialties

  • Some trends found in other medical subspecialties—for example, an increase of the placebo response over time and high placebo responses with unbalanced randomization—have been avoided in gastroenterology

  • Experimental gastroenterology has shown that the placebo response (for example, in visceral pain and nausea) follows established rules and mechanisms (learning, expectations)

  • Brain imaging studies have demonstrated that the placebo response is not merely a response bias, but exhibits neurobiological and psychobiological properties along the gut–brain axis

  • With improved doctor–patient communication, it might be possible to boost the efficacy of drug treatment by utilizing the placebo mechanisms in daily practice

Abstract

Placebo effects in clinical trials have sparked an interest in the placebo phenomenon, both in randomized controlled trials (RCTs) and in experimental gastroenterology. RCTs have demonstrated similar short-term and long-term placebo response rates in gastrointestinal compared to other medical diagnoses. Most mediators and moderators of placebo effects in gastrointestinal diseases are also of similar type and size to other medical diagnoses and not specific for gastrointestinal diagnoses. Other characteristics such as an increase in the placebo response over time and the placebo-enhancing effects of unbalanced randomization were not seen, at least in IBS. Experimental placebo and nocebo studies underscore the 'power' of expectancies and conditioning processes in shaping gastrointestinal symptoms not only at the level of self-reports, but also within the brain and along the brain–gut axis. Brain imaging studies have redressed earlier criticism that placebo effects might merely reflect a response bias. These findings raise hope that sophisticated trials and experiments designed to boost positive expectations and minimize negative expectations could pave the way for a practical and ethically sound use of placebo knowledge in daily practice. Rather than focusing on a 'personalized' choice of drugs based on biomarkers or genes, it might be the doctor–patient communication that needs to be tailored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Placebo responses in IBS.
Figure 2: Expectancy and learning as the two best-characterized principle mechanisms that mediate placebo and nocebo effects.

Similar content being viewed by others

References

  1. Enck, P., Bingel, U., Schedlowski, M. & Rief, W. The placebo response in medicine: minimize, maximize or personalize? Nat. Rev. Drug Discov. 12, 191–204 (2013).

    CAS  PubMed  Google Scholar 

  2. Kirsch, I. The placebo effect revisited: lessons learned to date. Complement. Ther. Med. 21, 102–104 (2013).

    PubMed  Google Scholar 

  3. Benedetti, F. Placebo effects: from the neurobiological paradigm to translational implications. Neuron 84, 623–637 (2014).

    CAS  PubMed  Google Scholar 

  4. Price, D. D., Finniss, D. G. & Benedetti, F. A comprehensive review of the placebo effect: recent advances and current thought. Ann. Rev. Psychol. 59, 565–590 (2008).

    Google Scholar 

  5. Beecher, H. K. The powerful placebo. J. Am. Med. Assoc. 159, 1602–1606 (1955).

    CAS  PubMed  Google Scholar 

  6. Gay, L. N. & Carliner, P. E. The prevention and treatment of motion sickness; seasickness. Bull. Johns Hopkins Hosp. 84, 470–490 (1949).

    CAS  PubMed  Google Scholar 

  7. Wolf, S. Effects of suggestion and conditioning on the action of chemical agents in human subjects; the pharmacology of placebos. J. Clin. Invest. 29, 100–109 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolf, S. & Wolff, H. G. Function of the stomach as observed in fistulous human subjects, with special reference to the action of drugs and the effects of vagotomy. Am. J. Med. 3, 127 (1947).

    CAS  PubMed  Google Scholar 

  9. Wolf, S. The pharmacology of placebos. Pharmacol. Rev. 11, 689–704 (1959).

    CAS  PubMed  Google Scholar 

  10. de Craen, A. J., Kaptchuk, T. J., Tijssen, J. G. & Kleijnen, J. Placebos and placebo effects in medicine: historical overview. J. R. Soc. Med. 92, 511–515 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Weihrauch, T. R. & Gauler, T. C. Placebo—efficacy and adverse effects in controlled clinical trials. Arzneimittelforschung. 49, 385–393 (1999).

    CAS  PubMed  Google Scholar 

  12. Weimer, K. & Enck, P. Traditional and innovative experimental and clinical trial designs and their advantages and pitfalls. Handb. Exp. Pharmacol. 225, 237–272 (2014).

    PubMed  Google Scholar 

  13. Krogsboll, L. T., Hrobjartsson, A. & Gotzsche, P. C. Spontaneous improvement in randomised clinical trials: meta-analysis of three-armed trials comparing no treatment, placebo and active intervention. BMC Med. Res. Methodol. 9, 1 (2009).

    PubMed  PubMed Central  Google Scholar 

  14. Klein, K. B. Controlled treatment trials in the irritable bowel syndrome: a critique. Gastroenterology 95, 232–241 (1988).

    CAS  PubMed  Google Scholar 

  15. Arakawa, A., Kaneko, M. & Narukawa, M. An investigation of factors contributing to higher levels of placebo response in clinical trials in neuropathic pain: a systematic review and meta-analysis. Clin. Drug Investig. 35, 67–81 (2015).

    PubMed  Google Scholar 

  16. Capurso, G., Cocomello, L., Benedetto, U., Camma, C. & Delle, F. G. Meta-analysis: the placebo rate of abdominal pain remission in clinical trials of chronic pancreatitis. Pancreas 41, 1125–1131 (2012).

    PubMed  Google Scholar 

  17. Weimer, K., Colloca, L. & Enck, P. Placebo effects in psychiatry: mediators and moderators. Lancet Psychiatry 2, 246–257 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Su, C., Lichtenstein, G. R., Krok, K., Brensinger, C. M. & Lewis, J. D. A meta-analysis of the placebo rates of remission and response in clinical trials of active Crohn's disease. Gastroenterology 126, 1257–1269 (2004).

    PubMed  Google Scholar 

  19. Weimer, K., Colloca, L. & Enck, P. Age and sex as moderators of the placebo response—an evaluation of systematic reviews and meta-analyses across medicine. Gerontology 61, 97–108 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Ilnyckyj, A., Shanahan, F., Anton, P. A., Cheang, M. & Bernstein, C. N. Quantification of the placebo response in ulcerative colitis. Gastroenterology 112, 1854–1858 (1997).

    CAS  PubMed  Google Scholar 

  21. Benedetti, F. Placebo and the new physiology of the doctor-patient relationship. Physiol. Rev. 93, 1207–1246 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. Garud, S., Brown, A., Cheifetz, A., Levitan, E. B. & Kelly, C. P. Meta-analysis of the placebo response in ulcerative colitis. Dig. Dis. Sci. 53, 875–891 (2008).

    PubMed  Google Scholar 

  23. Gallahan, W. C., Case, D. & Bloomfeld, R. S. An analysis of the placebo effect in Crohn's disease over time. Aliment. Pharmacol Ther. 31, 102–107 (2010).

    CAS  PubMed  Google Scholar 

  24. Ford, A. C. & Moayyedi, P. Meta-analysis: factors affecting placebo response rate in the irritable bowel syndrome. Aliment. Pharmacol. Ther. 32, 144–158 (2010).

    CAS  PubMed  Google Scholar 

  25. Pitz, M., Cheang, M. & Bernstein, C. N. Defining the predictors of the placebo response in irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 3, 237–247 (2005).

    PubMed  Google Scholar 

  26. Dorn, S. D. et al. A meta-analysis of the placebo response in complementary and alternative medicine trials of irritable bowel syndrome. Neurogastroenterol. Motil. 19, 630–637 (2007).

    CAS  PubMed  Google Scholar 

  27. Walsh, B. T., Seidman, S. N., Sysko, R. & Gould, M. Placebo response in studies of major depression: variable, substantial, and growing. JAMA 287, 1840–1847 (2002).

    PubMed  Google Scholar 

  28. Kemp, A. S. et al. What is causing the reduced drug-placebo difference in recent schizophrenia clinical trials and what can be done about it? Schizophr. Bull. 36, 504–509 (2010).

    PubMed  Google Scholar 

  29. Patel, S. M. et al. The placebo effect in irritable bowel syndrome trials: a meta-analysis. Neurogastroenterol. Motil. 17, 332–340 (2005).

    CAS  PubMed  Google Scholar 

  30. Talley, N. J. et al. Predictors of the placebo response in functional dyspepsia. Aliment. Pharmacol. Ther. 23, 923–936 (2006).

    CAS  PubMed  Google Scholar 

  31. Enck, P., Vinson, B., Malfertheiner, P., Zipfel, S. & Klosterhalfen, S. The placebo response in functional dyspepsia—reanalysis of trial data. Neurogastroenterol. Motil. 21, 370–377 (2009).

    CAS  PubMed  Google Scholar 

  32. de Craen, A. J. et al. Placebo effect in the treatment of duodenal ulcer. Br. J. Clin. Pharmacol. 48, 853–860 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cremonini, F. et al. Meta-analysis: the effects of placebo treatment on gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 32, 29–42 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Diener, H. C., Dowson, A. J., Ferrari, M., Nappi, G. & Tfelt-Hansen, P. Unbalanced randomization influences placebo response: scientific versus ethical issues around the use of placebo in migraine trials. Cephalalgia 19, 699–700 (1999).

    CAS  PubMed  Google Scholar 

  35. Papakostas, G. I. & Fava, M. Does the probability of receiving placebo influence clinical trial outcome? A meta-regression of double-blind, randomized clinical trials in MDD. Eur. Neuropsychopharmacol. 19, 34–40 (2009).

    CAS  PubMed  Google Scholar 

  36. Woods, S. W., Gueorguieva, R. V., Baker, C. B. & Makuch, R. W. Control group bias in randomized atypical antipsychotic medication trials for schizophrenia. Arch. Gen. Psychiatry 62, 961–970 (2005).

    PubMed  Google Scholar 

  37. Yildiz, A., Vieta, E., Tohen, M. & Baldessarini, R. J. Factors modifying drug and placebo responses in randomized trials for bipolar mania. Int. J. Neuropsychopharmacol. 14, 863–875 (2011).

    CAS  PubMed  Google Scholar 

  38. Bridge, J. A., Birmaher, B., Iyengar, S., Barbe, R. P. & Brent, D. A. Placebo response in randomized controlled trials of antidepressants for pediatric major depressive disorder. Am. J. Psychiatry 166, 42–49 (2009).

    PubMed  Google Scholar 

  39. Enck, P., Horing, B., Weimer, K. & Klosterhalfen, S. Placebo responses and placebo effects in functional bowel disorders. Eur. J. Gastroenterol. Hepatol. 24, 1–8 (2012).

    PubMed  Google Scholar 

  40. Longstreth, G. F. et al. Functional bowel disorders. Gastroenterology 130, 1480–1491 (2006).

    PubMed  Google Scholar 

  41. US Department of Health and Human Services, Food and Drug Administration and Center for Drug Evaluation and Research. Guidance for industry. Irritable bowel syndrome—clinical evaluation of drugs for treatment. FDA [online], (2012).

  42. European Medicine Agency. Guideline on the evaluation of medicinal products for the treatment of irritable bowel syndrome. European Medicines Agency [online], (2013).

  43. Spiller, R. C. Problems and challenges in the design of irritable bowel syndrome clinical trials: experience from published trials. Am. J. Med. 107, 91S–97S (1999).

    CAS  PubMed  Google Scholar 

  44. Chey, W. D. et al. Long-term safety and efficacy of alosetron in women with severe diarrhea-predominant irritable bowel syndrome. Am. J. Gastroenterol. 99, 2195–2203 (2004).

    CAS  PubMed  Google Scholar 

  45. Potkin, S. et al. Placebo response trajectories in short-term and long-term antipsychotic trials in schizophrenia. Schizophr. Res. 132, 108–113 (2011).

    PubMed  Google Scholar 

  46. McRae, C. et al. Effects of perceived treatment on quality of life and medical outcomes in a double-blind placebo surgery trial. Arch. Gen. Psychiatry 61, 412–420 (2004).

    PubMed  Google Scholar 

  47. Moseley, J. B. et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N. Engl. J. Med. 347, 81–88 (2002).

    PubMed  Google Scholar 

  48. Quessy, S. N. & Rowbotham, M. C. Placebo response in neuropathic pain trials. Pain 138, 479–483 (2008).

    PubMed  Google Scholar 

  49. Khan, A., Redding, N. & Brown, W. A. The persistence of the placebo response in antidepressant clinical trials. J. Psychiatr. Res. 42, 791–796 (2008).

    PubMed  Google Scholar 

  50. Tack, J. et al. A randomised controlled trial assessing the efficacy and safety of repeated tegaserod therapy in women with irritable bowel syndrome with constipation. Gut 54, 1707–1713 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rao, S. et al. A 12-week, randomized, controlled trial with a 4-week randomized withdrawal period to evaluate the efficacy and safety of linaclotide in irritable bowel syndrome with constipation. Am. J. Gastroenterol. 107, 1714–1724 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shah, E., Triantafyllou, K., Hana, A. A. & Pimentel, M. Adverse events appear to unblind clinical trials in irritable bowel syndrome. Neurogastroenterol. Motil. 26, 482–488 (2014).

    CAS  PubMed  Google Scholar 

  53. Schoenfeld, P. et al. Safety and tolerability of rifaximin for the treatment of irritable bowel syndrome without constipation: a pooled analysis of randomised, double-blind, placebo-controlled trials. Aliment. Pharmacol. Ther. 39, 1161–1168 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, S. E., Kubomoto, S., Chua, K., Amichai, M. M. & Pimentel, M. “Pre-cebo”: an unrecognized issue in the interpretation of adequate relief during irritable bowel syndrome drug trials. J. Clin. Gastroenterol. 46, 686–690 (2012).

    PubMed  Google Scholar 

  55. Lipset, C. H. Engage with research participants about social media. Nat. Med. 20, 231 (2014).

    CAS  PubMed  Google Scholar 

  56. Renna, S. et al. Meta-analysis of the placebo rates of clinical relapse and severe endoscopic recurrence in postoperative Crohn's disease. Gastroenterology 135, 1500–1509 (2008).

    CAS  PubMed  Google Scholar 

  57. Yuan, Y. H., Wang, C., Yuan, Y. & Hunt, R. H. Meta-analysis: incidence of endoscopic gastric and duodenal ulcers in placebo arms of randomized placebo-controlled NSAID trials. Aliment. Pharmacol. Ther. 30, 197–209 (2009).

    PubMed  Google Scholar 

  58. Quinn, V. F. & Colagiuri, B. Placebo interventions for nausea: a systematic review. Ann. Behav. Med. 49, 449–462 (2014).

    Google Scholar 

  59. Klosterhalfen, S. et al. Latent inhibition of rotation chair-induced nausea in healthy male and female volunteers. Psychosom. Med. 67, 335–340 (2005).

    PubMed  Google Scholar 

  60. Stockhorst, U., Hall, G., Enck, P. & Klosterhalfen, S. Effects of overshadowing on conditioned and unconditioned nausea in a rotation paradigm with humans. Exp. Brain Res. 232, 2651–2664 (2014).

    PubMed  Google Scholar 

  61. Stockhorst, U. et al. Effects of overshadowing on conditioned nausea in cancer patients: an experimental study. Physiol. Behav. 64, 743–753 (1998).

    CAS  PubMed  Google Scholar 

  62. Geiger, F. & Wolfgram, L. Overshadowing as prevention of anticipatory nausea and vomiting in pediatric cancer patients: study protocol for a randomized controlled trial. Trials 14, 103 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Levine, M. E., Stern, R. M. & Koch, K. L. The effects of manipulating expectations through placebo and nocebo administration on gastric tachyarrhythmia and motion-induced nausea. Psychosom. Med. 68, 478–486 (2006).

    PubMed  Google Scholar 

  64. Klosterhalfen, S. et al. Gender and the nocebo response following conditioning and expectancy. J. Psychosom. Res. 66, 323–328 (2009).

    PubMed  Google Scholar 

  65. Weimer, K. et al. Effects of ginger and expectations on symptoms of nausea in a balanced placebo design. PLoS ONE 7, e49031 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Eden, D. & Zuk, Y. Seasickness as a self-fulfilling prophecy: raising self-efficacy to boost performance at sea. J. Appl. Psychol. 80, 628–635 (1995).

    CAS  PubMed  Google Scholar 

  67. Tyler, D. B. The influence of a placebo, body position and medication on motion sickness. Am. J. Physiol. 146, 458–466 (1946).

    CAS  PubMed  Google Scholar 

  68. Williamson, M. J., Thomas, M. J. & Stern, R. M. The contribution of expectations to motion sickness symptoms and gastric activity. J. Psychosom. Res. 56, 721–726 (2004).

    PubMed  Google Scholar 

  69. Horing, B. et al. Reduction of motion sickness with an enhanced placebo instruction: an experimental study with healthy participants. Psychosom. Med. 75, 497–504 (2013).

    PubMed  Google Scholar 

  70. Klosterhalfen, S. et al. Pavlovian conditioning of taste aversion using a motion sickness paradigm. Psychosom. Med. 62, 671–677 (2000).

    CAS  PubMed  Google Scholar 

  71. Meissner, K. Effects of placebo interventions on gastric motility and general autonomic activity. J. Psychosom. Res. 66, 391–398 (2009).

    PubMed  Google Scholar 

  72. Napadow, V. et al. The brain circuitry underlying the temporal evolution of nausea in humans. Cereb. Cortex 23, 806–813 (2013).

    PubMed  Google Scholar 

  73. Farmer, A. D. et al. Visually induced nausea causes characteristic changes in cerebral, autonomic and endocrine function in humans. J. Physiol. 539, 1183–1196 (2015).

    Google Scholar 

  74. Colagiuri, B. & Zachariae, R. Patient expectancy and post-chemotherapy nausea: a meta-analysis. Ann. Behav. Med. 40, 3–14 (2010).

    PubMed  Google Scholar 

  75. Roscoe, J. A. et al. An exploratory study on the effects of an expectancy manipulation on chemotherapy-related nausea. J. Pain Symptom Manage. 40, 379–390 (2010).

    PubMed  PubMed Central  Google Scholar 

  76. Shelke, A. R. et al. Effect of a nausea expectancy manipulation on chemotherapy-induced nausea: a university of Rochester cancer center community clinical oncology program study. J. Pain Symptom Manage. 35, 381–387 (2008).

    PubMed  PubMed Central  Google Scholar 

  77. Roscoe, J. A. et al. Insight in the prediction of chemotherapy-induced nausea. Support. Care Cancer 18, 869–876 (2010).

    PubMed  Google Scholar 

  78. Disbrow, E. A., Bennett, H. L. & Owings, J. T. Effect of preoperative suggestion on postoperative gastrointestinal motility. West J. Med. 158, 488–492 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Vase, L., Robinson, M. E., Verne, G. N. & Price, D. D. The contributions of suggestion, desire, and expectation to placebo effects in irritable bowel syndrome patients. An empirical investigation. Pain 105, 17–25 (2003).

    PubMed  Google Scholar 

  80. Vase, L., Robinson, M. E., Verne, G. N. & Price, D. D. Increased placebo analgesia over time in irritable bowel syndrome (IBS) patients is associated with desire and expectation but not endogenous opioid mechanisms. Pain 115, 338–347 (2005).

    PubMed  Google Scholar 

  81. Price, D. D., Craggs, J., Verne, G. N., Perlstein, W. M. & Robinson, M. E. Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable bowel syndrome patients. Pain 127, 63–72 (2007).

    PubMed  Google Scholar 

  82. Kaptchuk, T. J. et al. Placebos without deception: a randomized controlled trial in irritable bowel syndrome. PLoS ONE 5, e15591 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaptchuk, T. J. et al. Components of placebo effect: randomised controlled trial in patients with irritable bowel syndrome. BMJ 336, 999–1003 (2008).

    PubMed  PubMed Central  Google Scholar 

  84. Lieberman, M. D. et al. The neural correlates of placebo effects: a disruption account. Neuroimage 22, 447–455 (2004).

    PubMed  Google Scholar 

  85. Craggs, J. G., Price, D. D., Verne, G. N., Perlstein, W. M. & Robinson, M. M. Functional brain interactions that serve cognitive-affective processing during pain and placebo analgesia. Neuroimage 38, 720–729 (2007).

    PubMed  PubMed Central  Google Scholar 

  86. Craggs, J. G., Price, D. D., Perlstein, W. M., Verne, G. N. & Robinson, M. E. The dynamic mechanisms of placebo induced analgesia: Evidence of sustained and transient regional involvement. Pain 139, 660–669 (2008).

    PubMed  PubMed Central  Google Scholar 

  87. Lu, H. C. et al. Neuronal correlates in the modulation of placebo analgesia in experimentally-induced esophageal pain: a 3T-fMRI study. Pain 148, 75–83 (2010).

    PubMed  Google Scholar 

  88. Schmid, J. et al. Neural mechanisms mediating positive and negative treatment expectations in visceral pain: A functional magnetic resonance imaging study on placebo and nocebo effects in healthy volunteers. Pain 154, 2372–2380 (2013).

    PubMed  Google Scholar 

  89. Elsenbruch, S. et al. Neural mechanisms mediating the effects of expectation in visceral placebo analgesia: an fMRI study in healthy placebo responders and nonresponders. Pain 153, 382–390 (2012).

    PubMed  Google Scholar 

  90. Elsenbruch, S. et al. How positive and negative expectations shape the experience of visceral pain: an experimental pilot study in healthy women. Neurogastroenterol. Motil. 24, 914–e460 (2012).

    CAS  PubMed  Google Scholar 

  91. Colloca, L., Klinger, R., Flor, H. & Bingel, U. Placebo analgesia: psychological and neurobiological mechanisms. Pain 154, 511–514 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. Amanzio, M., Benedetti, F., Porro, C. A., Palermo, S. & Cauda, F. Activation likelihood estimation meta-analysis of brain correlates of placebo analgesia in human experimental pain. Hum. Brain Mapp. 34, 738–752 (2013).

    PubMed  Google Scholar 

  93. Schmid, J. et al. Placebo analgesia in patients with functional and organic abdominal pain: a fMRI study in IBS, UC and healthy volunteers. Gut 64, 418–427 (2015).

    PubMed  Google Scholar 

  94. Lee, H. F. et al. Enhanced affect/cognition-related brain responses during visceral placebo analgesia in irritable bowel syndrome patients. Pain 153, 1301–1310 (2012).

    PubMed  Google Scholar 

  95. Berman, S. M. et al. Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J. Neurosci. 28, 349–359 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wilder-Smith, C. H. The balancing act: endogenous modulation of pain in functional gastrointestinal disorders. Gut 60, 1589–1599 (2011).

    PubMed  Google Scholar 

  97. Wilder-Smith, C. H. & Robert-Yap, J. Abnormal endogenous pain modulation and somatic and visceral hypersensitivity in female patients with irritable bowel syndrome. World J. Gastroenterol. 13, 3699–3704 (2007).

    PubMed  PubMed Central  Google Scholar 

  98. Wilder-Smith, C. H., Schindler, D., Lovblad, K., Redmond, S. M. & Nirkko, A. Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut 53, 1595–1601 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Piche, M., Arsenault, M., Poitras, P., Rainville, P. & Bouin, M. Widespread hypersensitivity is related to altered pain inhibition processes in irritable bowel syndrome. Pain 148, 49–58 (2010).

    PubMed  Google Scholar 

  100. Eickhoff, S. B. et al. Segregation of visceral and somatosensory afferents: an fMRI and cytoarchitectonic mapping study. Neuroimage 31, 1004–1014 (2006).

    PubMed  Google Scholar 

  101. Dunckley, P. et al. Attentional modulation of visceral and somatic pain. Neurogastroenterol. Motil. 19, 569–577 (2007).

    CAS  PubMed  Google Scholar 

  102. Dunckley, P. et al. Cortical processing of visceral and somatic stimulation: differentiating pain intensity from unpleasantness. Neuroscience 133, 533–542 (2005).

    CAS  PubMed  Google Scholar 

  103. Aziz, Q. et al. Cortical processing of human somatic and visceral sensation. J. Neurosci. 20, 2657–2663 (2000).

    CAS  PubMed  Google Scholar 

  104. Dunckley, P. et al. A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J. Neurosci. 25, 7333–7341 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kong, J. & Benedetti, F. Placebo and nocebo effects: an introduction to psychological and biological mechanisms. Handb. Exp. Pharmacol. 225, 3–15 (2014).

    PubMed  Google Scholar 

  106. Kessner, S., Sprenger, C., Wrobel, N., Wiech, K. & Bingel, U. Effect of oxytocin on placebo analgesia: a randomized study. JAMA 310, 1733–1735 (2013).

    CAS  PubMed  Google Scholar 

  107. Enck, P. & Klosterhalfen, S. The story of O—is oxytocin the mediator of the placebo response? Neurogastroenterol. Motil. 21, 347–350 (2009).

    CAS  PubMed  Google Scholar 

  108. Benedetti, F., Amanzio, M., Rosato, R. & Blanchard, C. Nonopioid placebo analgesia is mediated by CB1 cannabinoid receptors. Nat. Med. 17, 1228–1230 (2011).

    CAS  PubMed  Google Scholar 

  109. Fricchione, G. & Stefano, G. B. Placebo neural systems: nitric oxide, morphine and the dopamine brain reward and motivation circuitries. Med. Sci. Monit. 11, MS54–MS65 (2005).

    CAS  PubMed  Google Scholar 

  110. Scott, D. J. et al. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55, 325–336 (2007).

    CAS  PubMed  Google Scholar 

  111. Scott, D. J. et al. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch. Gen. Psychiatry 65, 220–231 (2008).

    PubMed  Google Scholar 

  112. Buchel, C., Geuter, S., Sprenger, C. & Eippert, F. Placebo analgesia: a predictive coding perspective. Neuron 81, 1223–1239 (2014).

    PubMed  Google Scholar 

  113. Horing, B., Kugel, H., Brenner, V., Zipfel, S. & Enck, P. Perception and pain thresholds for cutaneous heat and cold, and rectal distension: associations and disassociations. Neurogastroenterol. Motil. 25, e791–e802 (2013).

    CAS  PubMed  Google Scholar 

  114. Klinger, R., Colloca, L., Bingel, U. & Flor, H. Placebo analgesia: clinical applications. Pain 155, 1055–1058 (2014).

    PubMed  Google Scholar 

  115. Lu, C. L. & Chang, F. Y. Placebo effect in patients with irritable bowel syndrome. J. Gastroenterol. Hepatol. 26 Suppl. 3, 116–118 (2011).

    PubMed  Google Scholar 

  116. Benninga, M. A. & Mayer, E. A. The power of placebo in pediatric functional gastrointestinal disease. Gastroenterology 137, 1207–1210 (2009).

    PubMed  Google Scholar 

  117. Weimer, K. et al. Placebo effects in children: a review. Pediatr. Res. 74, 96–102 (2013).

    PubMed  Google Scholar 

  118. Rutherford, B. R. et al. Deconstructing pediatric depression trials: an analysis of the effects of expectancy and therapeutic contact. J. Am. Acad. Child Adolesc. Psychiatry 50, 782–795 (2011).

    PubMed  PubMed Central  Google Scholar 

  119. Grelotti, D. J. & Kaptchuk, T. J. Placebo by proxy. BMJ 343, d4345 (2011).

    PubMed  PubMed Central  Google Scholar 

  120. Horing, B., Weimer, K., Muth, E. R. & Enck, P. Prediction of placebo responses: a systematic review of the literature. Front. Psychol. 5, 1079 (2014).

    PubMed  PubMed Central  Google Scholar 

  121. Hrobjartsson, A., Kaptchuk, T. J. & Miller, F. G. Placebo effect studies are susceptible to response bias and to other types of biases. J. Clin. Epidemiol. 64, 1223–1229 (2011).

    PubMed  PubMed Central  Google Scholar 

  122. Horing, B., Weimer, K., Muth, E. R. & Enck, P. Prediction of symptom change in placebo versus no-treatment group in experimentally Induced motion sickness. Appl. Psychophysiol. Biofeedback http://dx.doi.org/10.1007/s10484-015-9284-y

  123. Reynaert, C., Janne, P., Vause, M., Zdanowicz, N. & Lejeune, D. Clinical trials of antidepressants: the hidden face: where locus of control appears to play a key role in depression outcome. Psychopharmacology (Berl) 119, 449–454 (1995).

    CAS  Google Scholar 

  124. Breckenridge, R. L. & Dodd, M. O. Locus of control and alcohol placebo effects on performance in a driving simulator. Percept. Mot. Skills 72, 751–756 (1991).

    CAS  PubMed  Google Scholar 

  125. Kokkotou, E. et al. Serum correlates of the placebo effect in irritable bowel syndrome. Neurogastroenterol. Motil. 22, 285–e81 (2010).

    CAS  PubMed  Google Scholar 

  126. Hall, K. T. et al. Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome. PLoS ONE 7, e48135 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Leuchter, A. F., McCracken, J. T., Hunter, A. M., Cook, I. A. & Alpert, J. E. Monoamine oxidase a and catechol-o-methyltransferase functional polymorphisms and the placebo response in major depressive disorder. J. Clin. Psychopharmacol. 29, 372–377 (2009).

    CAS  PubMed  Google Scholar 

  128. Wendt, L. et al. Catechol-O-methyltransferase Val158Met polymorphism is associated with somatosensory amplification and nocebo responses. PLoS ONE 9, e107665 (2014).

    PubMed  PubMed Central  Google Scholar 

  129. Froehlich, T. E. et al. Pharmacogenetic predictors of methylphenidate dose-response in attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 50, 1129–1139 (2011).

    PubMed  PubMed Central  Google Scholar 

  130. Ober, K. et al. Plasma noradrenaline and state anxiety levels predict placebo response in learned immunosuppression. Clin. Pharmacol. Ther. 91, 220–226 (2012).

    CAS  PubMed  Google Scholar 

  131. Kennedy, W. P. The nocebo reaction. Med. World 95, 203–205 (1961).

    CAS  PubMed  Google Scholar 

  132. Hauser, W., Bartram, C., Bartram-Wunn, E. & Tolle, T. Adverse events attributable to nocebo in randomized controlled drug trials in fibromyalgia syndrome and painful diabetic peripheral neuropathy: systematic review. Clin. J. Pain 28, 437–451 (2012).

    PubMed  Google Scholar 

  133. Hauser, W., Hansen, E. & Enck, P. Nocebo phenomena in medicine: their relevance in everyday clinical practice. Dtsch. Arztebl. Int. 109, 459–465 (2012).

    PubMed  PubMed Central  Google Scholar 

  134. Amanzio, M., Corazzini, L. L., Vase, L. & Benedetti, F. A systematic review of adverse events in placebo groups of anti-migraine clinical trials. Pain 146, 261–269 (2009).

    CAS  PubMed  Google Scholar 

  135. Tan, K., Petrie, K. J., Faasse, K., Bolland, M. J. & Grey, A. Unhelpful information about adverse drug reactions. BMJ 349, g5019 (2014).

    PubMed  Google Scholar 

  136. Bingel, U. & The Placebo Competence Team. Avoiding nocebo effects to optimize treatment outcome. JAMA 312, 693–694 (2014).

    CAS  PubMed  Google Scholar 

  137. Elsenbruch, S. How positive and negative expectations shape the experience of visceral pain. Handb. Exp. Pharmacol. 225, 97–119 (2014).

    PubMed  Google Scholar 

  138. Benedetti, F., Lanotte, M., Lopiano, L. & Colloca, L. When words are painful: unraveling the mechanisms of the nocebo effect. Neuroscience 147, 260–271 (2007).

    CAS  PubMed  Google Scholar 

  139. Carlino, E., Frisaldi, E. & Benedetti, F. Pain and the context. Nat. Rev. Rheumatol. 10, 348–355 (2014).

    CAS  PubMed  Google Scholar 

  140. Petersen, G. L. et al. The magnitude of nocebo effects in pain: a meta-analysis. Pain 155, 1426–1434 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. Stockhorst, U., Enck, P. & Klosterhalfen, S. Role of classical conditioning in learning gastrointestinal symptoms. World J. Gastroenterol. 13, 3430–3437 (2007).

    PubMed  PubMed Central  Google Scholar 

  142. Stockhorst, U. et al. Anticipatory symptoms and anticipatory immune responses in pediatric cancer patients receiving chemotherapy: features of a classically conditioned response? Brain Behav. Immun. 14, 198–218 (2000).

    CAS  PubMed  Google Scholar 

  143. Colagiuri, B. et al. Does assessing patients' expectancies about chemotherapy side effects influence their occurrence? J. Pain Symptom. Manage. 46, 275–281 (2013).

    PubMed  Google Scholar 

  144. Feinle-Bisset, C., Meier, B., Fried, M. & Beglinger, C. Role of cognitive factors in symptom induction following high and low fat meals in patients with functional dyspepsia. Gut 52, 1414–1418 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Feinle-Bisset, C. & Azpiroz, F. Dietary and lifestyle factors in functional dyspepsia. Nat. Rev. Gastroenterol. Hepatol. 10, 150–157 (2013).

    CAS  PubMed  Google Scholar 

  146. Hayes, P., Corish, C., O'Mahony, E. & Quigley, E. M. A dietary survey of patients with irritable bowel syndrome. J. Hum. Nutr. Diet. 27 Suppl. 2, 36–47 (2014).

    PubMed  Google Scholar 

  147. Monsbakken, K. W., Vandvik, P. O. & Farup, P. G. Perceived food intolerance in subjects with irritable bowel syndrome— etiology, prevalence and consequences. Eur. J. Clin. Nutr. 60, 667–672 (2006).

    CAS  PubMed  Google Scholar 

  148. Suchy, F. J. et al. National Institutes of Health Consensus Development Conference: lactose intolerance and health. Ann. Intern. Med. 152, 792–796 (2010).

    PubMed  Google Scholar 

  149. Kull, M., Kallikorm, R. & Lember, M. Impact of molecularly defined hypolactasia, self-perceived milk intolerance and milk consumption on bone mineral density in a population sample in Northern Europe. Scand. J. Gastroenterol. 44, 415–421 (2009).

    CAS  PubMed  Google Scholar 

  150. Fasano, A., Sapone, A., Zevallos, V. & Schuppan, D. Non-celiac Gluten Sensitivity. Gastroenterology 148, 1195–1204 (2015).

    CAS  PubMed  Google Scholar 

  151. Vernia, P., Di, C. M., Foglietta, T., Avallone, V. E. & De, C. A. Diagnosis of lactose intolerance and the “nocebo” effect: the role of negative expectations. Dig. Liver Dis. 42, 616–619 (2010).

    PubMed  Google Scholar 

  152. Suarez, F. L., Savaiano, D. A. & Levitt, M. D. A comparison of symptoms after the consumption of milk or lactose-hydrolyzed milk by people with self-reported severe lactose intolerance. N. Engl. J. Med. 333, 1–4 (1995).

    CAS  PubMed  Google Scholar 

  153. King, T. Comparison of symptoms after the consumption of milk or lactose-hydrolysed milk by people with self-reported severe lactose intolerance. Clin. Nutr. 15, 97–98 (1996).

    CAS  PubMed  Google Scholar 

  154. Casellas, F., Aparici, A., Casaus, M., Rodriguez, P. & Malagelada, J. R. Impact of orocecal transit time on patients perception of lactose intolerance. Rev. Esp. Enferm. Dig. 105, 13–17 (2013).

    PubMed  Google Scholar 

  155. Tomba, C., Baldassarri, A., Coletta, M., Cesana, B. M. & Basilisco, G. Is the subjective perception of lactose intolerance influenced by the psychological profile? Aliment. Pharmacol. Ther. 36, 660–669 (2012).

    CAS  PubMed  Google Scholar 

  156. Schmid, J. et al. Neural underpinnings of nocebo hyperalgesia in visceral pain: a fMRI study in healthy volunteers. Neuroimage http://dx.doi.org/10.1016/j.neuroimage.2015.06.060

  157. Craig, A. D. Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13, 500–505 (2003).

    CAS  PubMed  Google Scholar 

  158. Wiech, K. et al. Anterior insula integrates information about salience into perceptual decisions about pain. J. Neurosci. 30, 16324–16331 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Linnman, C., Rougemont-Bucking, A., Beucke, J. C., Zeffiro, T. A. & Milad, M. R. Unconditioned responses and functional fear networks in human classical conditioning. Behav. Brain Res. 221, 237–245 (2011).

    PubMed  PubMed Central  Google Scholar 

  160. Bingel, U. et al. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci. Transl. Med. 3, 70ra14 (2011).

    PubMed  Google Scholar 

  161. Colloca, L. & Miller, F. G. The nocebo effect and its relevance for clinical practice. Psychosom. Med. 73, 598–603 (2011).

    PubMed  PubMed Central  Google Scholar 

  162. Icenhour, A. et al. Neural circuitry of abdominal pain-related fear learning and reinstatement in irritable bowel syndrome. Neurogastroenterol. Motil. 27, 114–127 (2015).

    CAS  PubMed  Google Scholar 

  163. Gramsch, C. et al. Learning pain-related fear: neural mechanisms mediating rapid differential conditioning, extinction and reinstatement processes in human visceral pain. Neurobiol. Learn. Mem. 116, 36–45 (2014).

    PubMed  Google Scholar 

  164. Kattoor, J. et al. Fear conditioning in an abdominal pain model: neural responses during associative learning and extinction in healthy subjects. PLoS ONE 8, e51149 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Labus, J. S. et al. Impaired emotional learning and involvement of the corticotropin-releasing factor signaling system in patients with irritable bowel syndrome. Gastroenterology 145, 1253–1261 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Zaman, J., Vlaeyen, J. W., Van Oudenhove, L., Wiech, K. & Van Diest, I. Associative fear learning and perceptual discrimination: a perceptual pathway in the development of chronic pain. Neurosci. Biobehav. Rev. 51, 118–125 (2015).

    PubMed  Google Scholar 

  167. Craske, M. G. et al. A cognitive-behavioral treatment for irritable bowel syndrome using interoceptive exposure to visceral sensations. Behav. Res. Ther. 49, 413–421 (2011).

    PubMed  PubMed Central  Google Scholar 

  168. Ljotsson, B. et al. Acceptability, effectiveness, and cost-effectiveness of internet-based exposure treatment for irritable bowel syndrome in a clinical sample: a randomized controlled trial. BMC Gastroenterol. 11, 110 (2011).

    PubMed  PubMed Central  Google Scholar 

  169. Haake, M. et al. German Acupuncture Trials (GERAC) for chronic low back pain: randomized, multicenter, blinded, parallel-group trial with 3 groups. Arch. Intern. Med. 167, 1892–1898 (2007).

    PubMed  Google Scholar 

  170. Wechsler, M. E. et al. Active albuterol or placebo, sham acupuncture, or no intervention in asthma. N. Engl. J. Med. 365, 119–126 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Kam-Hansen, S. et al. Altered placebo and drug labeling changes the outcome of episodic migraine attacks. Sci. Transl. Med. 6, 218ra5 (2014).

    PubMed  PubMed Central  Google Scholar 

  172. Schenk, L. A., Sprenger, C., Geuter, S. & Buchel, C. Expectation requires treatment to boost pain relief: an fMRI study. Pain 155, 150–157 (2014).

    PubMed  Google Scholar 

  173. Atlas, L. Y. & Wager, T. D. How expectations shape pain. Neurosci. Lett. 520, 140–148 (2012).

    CAS  PubMed  Google Scholar 

  174. Miller, F. G. & Colloca, L. The placebo phenomenon and medical ethics: rethinking the relationship between informed consent and risk-benefit assessment. Theor. Med. Bioeth. 32, 229–243 (2011).

    PubMed  Google Scholar 

  175. Finniss, D. G., Kaptchuk, T. J., Miller, F. & Benedetti, F. Biological, clinical, and ethical advances of placebo effects. Lancet 375, 686–695 (2010).

    PubMed  PubMed Central  Google Scholar 

  176. Kelley, J. M., Kaptchuk, T. J., Cusin, C., Lipkin, S. & Fava, M. Open-label placebo for major depressive disorder: a pilot randomized controlled trial. Psychother. Psychosom. 81, 312–314 (2012).

    PubMed  Google Scholar 

  177. Schafer, S. M., Colloca, L. & Wager, T. D. Conditioned placebo analgesia persists when subjects know they are receiving a placebo. J. Pain 16, 412–420 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. Martin, A. L. & Katz, J. Inclusion of authorized deception in the informed consent process does not affect the magnitude of the placebo effect for experimentally induced pain. Pain 149, 208–215 (2010).

    PubMed  Google Scholar 

  179. Wendt, L., Albring, A. & Schedlowski, M. Learned placebo responses in neuroendocrine and immune functions. Handb. Exp. Pharmacol. 225, 159–181 (2014).

    CAS  PubMed  Google Scholar 

  180. Albring, A. et al. Preserving learned immunosuppressive placebo response: perspectives for clinical application. Clin. Pharmacol. Ther. 96, 247–255 (2014).

    CAS  PubMed  Google Scholar 

  181. Stockhorst, U., Steingrueber, H. J., Enck, P. & Klosterhalfen, S. Pavlovian conditioning of nausea and vomiting. Auton. Neurosci. 129, 50–57 (2006).

    PubMed  Google Scholar 

  182. Rotter JB. Generalized expectancies for internal versus external control of reinforcement. Psychol. Monogr. 80, 1–28 (1966).

    CAS  PubMed  Google Scholar 

  183. Bandura A. in: Encyclopedia of Human Behavior. Vol. 4 (ed. Ramachandran, V. S.) 71–81 (San Diego Academic Press, 1994).

    Google Scholar 

  184. Breckenridge RL & Dodd MO. Locus of control and alcohol placebo effects on performance in a driving simulator. Percept. Mot. Skills 72, 751–756 (1991).

    CAS  PubMed  Google Scholar 

  185. Au Yeung, S. T., Colagiuri, B., Lovibond, P. F. & Colloca, L. Partial reinforcement, extinction, and placebo analgesia. Pain 155, 1110–1117 (2014).

    PubMed  Google Scholar 

  186. Hunter, T., Siess, F. & Colloca, L. Socially induced placebo analgesia: a comparison of a pre-recorded versus live face-to-face observation. Eur. J. Pain 18, 914–922 (2014).

    CAS  PubMed  Google Scholar 

  187. Colloca, L. & Benedetti, F. Placebo analgesia induced by social observational learning. Pain 144, 28–34 (2009).

    PubMed  Google Scholar 

  188. Swider, K. & Babel, P. The effect of the sex of a model on nocebo hyperalgesia induced by social observational learning. Pain 154, 1312–1317 (2013).

    PubMed  Google Scholar 

  189. Vögtle, E., Barke, A. & Kroner-Herwig, B. Nocebo hyperalgesia induced by social observational learning. Pain 154, 1427–1433 (2013).

    PubMed  Google Scholar 

  190. Enck P, Klosterhalfen S. Placebo response in functional bowel disorders [German]. Z. Gastroenterol. 44, 257–266 (2006).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Paul Enck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsenbruch, S., Enck, P. Placebo effects and their determinants in gastrointestinal disorders. Nat Rev Gastroenterol Hepatol 12, 472–485 (2015). https://doi.org/10.1038/nrgastro.2015.117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing