Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards a systems view of IBS

Key Points

  • Physiological and molecular alterations have been identified in the brain–gut axis of human and rodent models of IBS, yet a comprehensive disease model to guide effective drug development has not emerged

  • Studies have identified distinct brain signatures in patients with IBS, which provide plausible neurobiological substrates of many previously reported behavioural and psychosocial observations

  • Emerging evidence demonstrates correlations of these brain signatures with alterations in genetics, immune system and gut microbiota in IBS, even though the causality of these interactions remains unknown

  • A systems-biology-based model is proposed to integrate the growing number of central, peripheral and behavioural IBS-related alterations, and to identify targets for more effective therapies

Abstract

Despite an extensive body of reported information about peripheral and central mechanisms involved in the pathophysiology of IBS symptoms, no comprehensive disease model has emerged that would guide the development of novel, effective therapies. In this Review, we will first describe novel insights into some key components of brain–gut interactions, starting with the emerging findings of distinct functional and structural brain signatures of IBS. We will then point out emerging correlations between these brain networks and genomic, gastrointestinal, immune and gut-microbiome-related parameters. We will incorporate this new information, as well as the reported extensive literature on various peripheral mechanisms, into a systems-based disease model of IBS, and discuss the implications of such a model for improved understanding of the disorder, and for the development of more-effective treatment approaches in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brain–gut axis.
Figure 2: Brain networks contributing to IBS symptoms.
Figure 3: Cross-sectional integrated brain–gut model of IBS pathophysiology.
Figure 4: Longitudinal brain–gut model of IBS pathophysiology.
Figure 5: Systems biological model of IBS.

Similar content being viewed by others

References

  1. Longstreth, G. F. et al. in ROME III: The Functional Gastrointestinal Disorders (eds Drossman, D. A. et al.) 487–556 (Degnon Associates, 2006).

    Google Scholar 

  2. Mayer, E. A. & Bushnell, M. C. in Functional Pain Syndromes: Presentation and Pathophysiology (eds Mayer, E. A. & Bushnell, M. C.) 531–565 (IASP Press, 2009).

    Google Scholar 

  3. Camilleri, M. Peripheral mechanisms in irritable bowel syndrome. N. Engl. J. Med. 367, 1626–1635 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Hughes, P. A. et al. Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms? Am. J. Gastroenterol. 108, 1066–1074 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Ohman, L. & Simren, M. Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat. Rev. Gastroenterol. Hepatol. 7, 163–173 (2010).

    Article  PubMed  Google Scholar 

  6. Fukudo, S. Stress and visceral pain: focusing on irritable bowel syndrome. Pain 154 (Suppl. 1), S63–S70 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Mayer, E. A., Gupta, A., Kilpatrick, L. K. & Hong, J. Y. Chronic visceral pain. Pain 156 (Suppl. 1), S50–S63 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Elsenbruch, S. Abdominal pain in irritable bowel syndrome: a review of putative psychological, neural and neuro-immune mechanisms. Brain Behav. Immun. 25, 386–394 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Al Omran, Y. & Aziz, Q. Functional brain imaging in gastroenterology: to new beginnings. Nat. Rev. Gastroenterol. Hepatol. 11, 565–576 (2014).

    Article  PubMed  Google Scholar 

  10. Greenwood-Van Meerveld, B., Prusator, D. K. & Johnson, A. C. Animal models of visceral pain: pathophysiology, translational relevance and challenges. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G885–G903 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Lackner, J. M. in Functional and GI Motility Disorders (eds Quigley, E. M. M., Hongo, M. & Fukudo, S.) 104–116 (Karger Medical and Scientific Publishers, 2014).

    Book  Google Scholar 

  12. Bischoff, S. C. et al. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Larauche, M., Mulak, A. & Tache, Y. Stress and visceral pain: from animal models to clinical therapies. Exp. Neurol. 233, 49–67 (2012).

    Article  PubMed  Google Scholar 

  15. Elsenbruch, S. How positive and negative expectations shape the experience of visceral pain. Handb. Exp. Pharmacol. 225, 97–119 (2014).

    Article  PubMed  Google Scholar 

  16. Aizawa, E. et al. Altered cognitive function of prefrontal cortex during error feedback in patients with irritable bowel syndrome, based on FMRI and dynamic causal modeling. Gastroenterology 143, 1188–1198 (2012).

    Article  PubMed  Google Scholar 

  17. Kennedy, P. J. et al. Cognitive performance in irritable bowel syndrome: evidence of a stress-related impairment in visuospatial memory. Psychol. Med. 44, 1553–1566 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka, Y., Kanazawa, M., Fukudo, S. & Drossman, D. A. Biopsychosocial model of irritable bowel syndrome. J. Neurogastroenterol. Motil. 17, 131–139 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Piche, M., Arsenault, M., Poitras, P., Rainville, P. & Bouin, M. Widespread hypersensitivity is related to altered pain inhibition processes in irritable bowel syndrome. Pain 148, 49–58 (2010).

    Article  PubMed  Google Scholar 

  20. Wilder-Smith, C. H. The balancing act: endogenous modulation of pain in functional gastrointestinal disorders. Gut 60, 1589–1599 (2011).

    Article  PubMed  Google Scholar 

  21. Mayer, E. A., Savidge, T. & Shulman, R. J. Brain–gut microbiome interactions and functional bowel disorders. Gastroenterology 146, 1500–1512 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Simren, M. et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 62, 159–176 (2013).

    Article  PubMed  Google Scholar 

  23. Drossman, D. A. in The Growth of Gastroenterologic Knowledge in the 20th Century (ed. Kirsner, J. B.) 419–432 (Lea & Febiger, 1993).

    Google Scholar 

  24. Mayer, E. A., Tillisch, K. & Bradesi, S. Review article: modulation of the brain-gut axis as a therapeutic approach in gastrointestinal disease. Aliment. Pharmacol. Ther. 24, 919–933 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Barboza, J. L., Talley, N. J. & Moshiree, B. Current and emerging pharmacotherapeutic options for irritable bowel syndrome. Drugs 74, 1849–1870 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Mayer, E. A. et al. Functional GI disorders: from animal models to drug development. Gut 57, 384–404 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Keita, A. V. & Soderholm, J. D. The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol. Motil. 22, 718–733 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Elenkov, I. J. & Chrousos, G. P. Stress system—organization, physiology and immunoregulation. Neuroimmunomodulation 13, 257–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Hayes, P. A., Fraher, M. H. & Quigley, E. M. Irritable bowel syndrome: the role of food in pathogenesis and management. Gastroenterol. Hepatol. (N. Y.) 10, 164–174 (2014).

    Google Scholar 

  30. Spiller, R. & Lam, C. An Update on post-infectious irritable bowel syndrome: role of genetics, immune activation, serotonin and altered microbiome. J. Neurogastroenterol. Motil. 18, 258–268 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jeffery, I. B. et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61, 997–1006 (2012).

    Article  PubMed  Google Scholar 

  32. Mayer, E. A. The neurobiology of stress and gastrointestinal disease. Gut 47, 861–869 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ford, A. C. et al. Effect of antidepressants and psychological therapies, including hypnotherapy, in irritable bowel syndrome: systematic review and meta-analysis. Am. J. Gastroenterol. 109, 1350–1365 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Mayer, E. A. Gut feelings: the emerging biology of gut–brain communication. Nat. Rev. Neurosci. 12, 453–466 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Bohorquez, D. V. & Liddle, R. A. The gut connectome: making sense of what you eat. J. Clin. Invest. 125, 888–890 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mayer, E. A. et al. Brain imaging approaches to the study of functional GI disorders: a Rome working team report. Neurogastroenterol. Motil. 21, 579–596 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Farmer, A. D., Aziz, Q., Tack, J. & Van Oudenhove, L. The future of neuroscientific research in functional gastrointestinal disorders: integration towards multidimensional (visceral) pain endophenotypes? J. Psychosom. Res. 68, 475–481 (2010).

    Article  PubMed  Google Scholar 

  39. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo, C. C. et al. One-year test-retest reliability of intrinsic connectivity network fMRI in older adults. Neuroimage 61, 1471–1483 (2012).

    Article  PubMed  Google Scholar 

  41. Bajaj, S., Adhikari, B. M. & Dhamala, M. Higher frequency network activity flow predicts lower frequency node activity in intrinsic low-frequency BOLD fluctuations. PLoS ONE 8, e64466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    Article  PubMed  Google Scholar 

  44. Hutchison, R. M. et al. Resting-state connectivity identifies distinct functional networks in macaque cingulate cortex. Cereb. Cortex 22, 1294–1308 (2012).

    Article  PubMed  Google Scholar 

  45. Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2009).

    Article  PubMed  Google Scholar 

  46. Sporns, O. Networks of the Brain (The MIT Press, 2010).

    Book  Google Scholar 

  47. Tijms, B. M., Series, P., Willshaw, D. J. & Lawrie, S. M. Similarity-based extraction of individual networks from gray matter MRI scans. Cereb. Cortex 22, 1530–1541 (2012).

    Article  PubMed  Google Scholar 

  48. Hagmann, P. et al. Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2, e597 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bradford, K. et al. Association between early adverse life events and irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 10, 385–390. e1–e3 (2012).

    Article  PubMed  Google Scholar 

  50. Dickhaus, B. et al. Irritable bowel syndrome patients show enhanced modulation of visceral perception by auditory stress. Am. J. Gastroenterol. 98, 135–143 (2003).

    Article  PubMed  Google Scholar 

  51. Labus, J. S. et al. Sex differences in emotion-related cognitive processes in irritable bowel syndrome and healthy control subjects. Pain 154, 2088–2099 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tillisch, K. et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144, 1394–1401. e1–4 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Tillisch, K., Mayer, E. A. & Labus, J. S. Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome. Gastroenterology 140, 91–100 (2011).

    Article  PubMed  Google Scholar 

  54. Farmer, A. D. & Aziz, Q. Visceral pain hypersensitivity in functional gastrointestinal disorders. Br. Med. Bull. 91, 123–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Mayer, E. A., Berman, S., Chang, L. & Naliboff, B. D. Sex-based differences in gastrointestinal pain. Eur. J. Pain 8, 451–463 (2004).

    Article  PubMed  Google Scholar 

  56. Tillisch, K. et al. Sex specific alterations in autonomic function among patients with irritable bowel syndrome. Gut 54, 1396–1401 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gupta, A. et al. Early adverse life events and resting state neural networks in patients with chronic abdominal pain: evidence for sex differences. Psychosom. Med. 76, 404–412 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hong, J. Y. et al. Sex and disease-related alterations of anterior insula functional connectivity in chronic abdominal pain. J. Neurosci. 34, 14252–14259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hong, J. Y. et al. Patients with chronic visceral pain show sex-related alterations in intrinsic oscillations of the resting brain. J. Neurosci. 33, 11994–12002 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kilpatrick, L. A. et al. Sex-related differences in prepulse inhibition of startle in irritable bowel syndrome (IBS). Biol. Psychol. 84, 272–278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Van Oudenhove, L., Vandenberghe, J., Vos, R., Holvoet, L. & Tack, J. Factors associated with co-morbid irritable bowel syndrome and chronic fatigue-like symptoms in functional dyspepsia. Neurogastroenterol. Motil. 23, 524–e202 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Naliboff, B. D. et al. Longitudinal change in perceptual and brain activation response to visceral stimuli in irritable bowel syndrome patients. Gastroenterology 131, 352–365 (2006).

    Article  PubMed  Google Scholar 

  63. Naliboff, B. N., Lackner, J. & Mayer, E. A. in Principles of Clinical Gastroenterology (eds Yamada, T. et al.) (Wiley-Blackwell Publishing 2008).

    Google Scholar 

  64. Hubbard, C. S. et al. Corticotropin-releasing factor receptor 1 antagonist alters regional activation and effective connectivity in an emotional-arousal circuit during expectation of abdominal pain. J. Neurosci. 31, 12491–12500 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hall, G. B. et al. Heightened central affective response to visceral sensations of pain and discomfort in IBS. Neurogastroenterol. Motil. 22, 276–e80 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Labus, J. S. et al. Acute tryptophan depletion alters the effective connectivity of emotional arousal circuitry during visceral stimuli in healthy women. Gut 60, 1196–1203 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Straube, T., Schmidt, S., Weiss, T., Mentzel, H. J. & Miltner, W. H. Dynamic activation of the anterior cingulate cortex during anticipatory anxiety. Neuroimage 44, 975–981 (2009).

    Article  PubMed  Google Scholar 

  68. Porro, C. A. et al. Does anticipation of pain affect cortical nociceptive systems? J. Neurosci. 22, 3206–3214 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Koyama, T., McHaffie, J. G., Laurienti, P. J. & Coghill, R. C. The subjective experience of pain: where expectations become reality. Proc. Natl Acad. Sci. USA 102, 12950–12955 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bornhovd, K. et al. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125, 1326–1336 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Verne, G. N. et al. Central representation of visceral and cutaneous hypersensitivity in the irritable bowel syndrome. Pain 103, 99–110 (2003).

    Article  PubMed  Google Scholar 

  72. Seifert, F. et al. Brain activity during sympathetic response in anticipation and experience of pain. Hum. Brain Mapp. 34, 1768–1782 (2013).

    Article  PubMed  Google Scholar 

  73. Yaguez, L. et al. Brain response to visceral aversive conditioning: a functional magnetic resonance imaging study. Gastroenterology 128, 1819–1829 (2005).

    Article  PubMed  Google Scholar 

  74. Berman, S. M. et al. Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J. Neurosci. 28, 349–359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stephan, E. et al. Functional neuroimaging of gastric distention. J. Gastrointest Surg. 7, 740–749 (2003).

    Article  PubMed  Google Scholar 

  76. Lawal, A. et al. Neurocognitive processing of esophageal central sensitization in the insula and cingulate gyrus. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G787–G794 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Kilpatrick, L. A. et al. The HTR3A polymorphism c. −42C>T is associated with amygdala responsiveness in patients with irritable bowel syndrome. Gastroenterology 140, 1943–1951 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Labus, J. S. et al. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks. Pain 155, 137–149 (2014).

    Article  PubMed  Google Scholar 

  79. de Kloet, E. R., Joels, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6, 463–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. McEwen, B. S. & Morrison, J. H. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79, 16–29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Holschneider, D. P., Bradesi, S. & Mayer, E. A. The role of experimental models in developing new treatments for irritable bowel syndrome. Expert Rev. Gastroenterol. Hepatol. 5, 43–57 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tache, Y., Martinez, V., Wang, L. & Million, M. CRF1 receptor signaling pathways are involved in stress-related alterations of colonic function and viscerosensitivity: implications for irritable bowel syndrome. Br. J. Pharmacol. 141, 1321–1330 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Labus, J. S. et al. Impaired emotional learning and involvement of the corticotropin-releasing factor signaling system in patients with irritable bowel syndrome. Gastroenterology 145, 1253–1261 e1–3 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Rubio, A. et al. Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system - a fMRI study in healthy volunteers. Neuroimage 107C, 110–22 (2014).

    Google Scholar 

  85. Kilpatrick, L. A. et al. Alterations in resting state oscillations and connectivity in sensory and motor networks in women with interstitial cystitis/painful bladder syndrome. J. Urol. 192, 947–955 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Apkarian, A. V., Thomas, P. S., Krauss, B. R. & Szeverenyi, N. M. Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci. Lett. 311, 193–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Becerra, L. et al. Intrinsic brain networks normalize with treatment in pediatric complex regional pain syndrome. Neuroimage Clin. 6, 347–369 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. DaSilva, A. F. et al. Colocalized structural and functional changes in the cortex of patients with trigeminal neuropathic pain. PLoS ONE 3, e3396 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ellingson, B. M. et al. Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. Pain 154, 1528–1541 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jiang, Z. et al. Sex-related differences of cortical thickness in patients with chronic abdominal pain. PLoS ONE 8, e73932 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Piche, M. et al. Thicker posterior insula is associated with disease duration in women with irritable bowel syndrome (IBS) whereas thicker orbitofrontal cortex predicts reduced pain inhibition in both IBS patients and controls. J. Pain 14, 1217–1226 (2013).

    Article  PubMed  Google Scholar 

  92. Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I. & Posner, M. I. The activation of attentional networks. Neuroimage 26, 471–479 (2005).

    Article  PubMed  Google Scholar 

  93. Afzal, M., Potokar, J. P., Probert, C. S. & Munafo, M. R. Selective processing of gastrointestinal symptom-related stimuli in irritable bowel syndrome. Psychosom. Med. 68, 758–761 (2006).

    Article  PubMed  Google Scholar 

  94. Gibbs-Gallagher, N. et al. Selective recall of gastrointestinal-sensation words: evidence for a cognitive-behavioral contribution to irritable bowel syndrome. Am. J. Gastroenterol. 96, 1133–1138 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Phillips, K., Wright, B. J. & Kent, S. Irritable bowel syndrome and symptom severity: Evidence of negative attention bias, diminished vigour, and autonomic dysregulation. J. Psychosom Res. 77, 13–19 (2014).

    Article  PubMed  Google Scholar 

  96. Tkalcic, M., Domijan, D., Pletikosic, S., Setic, M. & Hauser, G. Attentional biases in irritable bowel syndrome patients. Clin. Res. Hepatol. Gastroenterol. 38, 621–628 (2014).

    Article  PubMed  Google Scholar 

  97. Labus, J. S. et al. Brain networks underlying perceptual habituation to repeated aversive visceral stimuli in patients with irritable bowel syndrome. Neuroimage 47, 952–960 (2009).

    Article  PubMed  Google Scholar 

  98. Blankstein, U., Chen, J., Diamant, N. E. & Davis, K. D. Altered brain structure in irritable bowel syndrome: potential contributions of pre-existing and disease-driven factors. Gastroenterology 138, 1783–1789 (2010).

    Article  PubMed  Google Scholar 

  99. Seminowicz, D. A. et al. Cognitive-behavioral therapy increases prefrontal cortex gray matter in patients with chronic pain. J. Pain 14, 1573–1584 (2013).

    Article  PubMed  Google Scholar 

  100. Elsenbruch, S. et al. Patients with irritable bowel syndrome have altered emotional modulation of neural responses to visceral stimuli. Gastroenterology 139, 1310–1319 (2010).

    Article  PubMed  Google Scholar 

  101. Elsenbruch, S. et al. Affective disturbances modulate the neural processing of visceral pain stimuli in irritable bowel syndrome: an fMRI study. Gut 59, 489–495 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Jui-Yang Hong et al. IBS patients show altered brain responses during uncertain, but not certain expectation of painful stimulation of the abdominal wall [abstract]. Gastroenterology 148 (Suppl.) S384 (2014).

    Google Scholar 

  103. Irwin, M. R. & Cole, S. W. Reciprocal regulation of the neural and innate immune systems. Nat. Rev. Immunol. 11, 625–632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lackner, J. M. & Gurtman, M. B. Pain catastrophizing and interpersonal problems: a circumplex analysis of the communal coping model. Pain 110, 597–604 (2004).

    Article  PubMed  Google Scholar 

  105. van Tilburg, M. A., Palsson, O. S. & Whitehead, W. E. Which psychological factors exacerbate irritable bowel syndrome? Development of a comprehensive model. J. Psychosom Res. 74, 486–492 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Camilleri, M. Genetics of human gastrointestinal sensation. Neurogastroenterol. Motil. 25, 458–466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Saito, Y. A., Mitra, N. & Mayer, E. A. Genetic approaches to functional gastrointestinal disorders. Gastroenterology 138, 1276–1285 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Gupta, A. et al. Early life adversity: interactions with stress related gene polymorphisms to impact regional brain structure in females. Brain Struct. Funct. http://dx.doi.org/10.1007/s00429-015-0996-9.

  109. Kilpatrick, L., Gupta, A., Heendeniya, N., Labus, J. & Mayer, E. A. Corticotropin releasing hormone receptor 1 (crh-r1) and progestoerone receptor (pgr) polymorphisms interact with early life trauma in healthy controls (hc) and patients with irritable bowel syndrome (IBS) [abstract 666]. Gastroenterology 144 (Suppl. 1), S121 (2013).

    Article  Google Scholar 

  110. Gupta, A. et al. Catecholaminergic gene polymorphisms are associated with GI symptoms and morphological brain changes in irritable bowel syndrome. PLoS ONE (in press).

  111. Hong, S., Zheng, G. & Wiley, J. W. Epigenetic regulation of genes that modulate chronic stress-induced visceral pain in the peripheral nervous system. Gastroenterology 148, 148–157.e7 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Tran, L., Schulkin, J., Ligon, C. O. & Greenwood-Van Meerveld, B. Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2014.122.

  113. Videlock, E. J. et al. Childhood trauma is associated with hypothalamic-pituitary-adrenal axis responsiveness in irritable bowel syndrome. Gastroenterology 137, 1954–1962 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Heim, C. & Nemeroff, C. B. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol. Psychiatry 49, 1023–1039 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Klengel, T. & Binder, E. B. Gene-environment interactions in major depressive disorder. Can. J. Psychiatry 58, 76–83 (2013).

    Article  PubMed  Google Scholar 

  116. Felitti, V. J. et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am. J. Prev. Med. 14, 245–258 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Berman, S. et al. Evidence for alterations in central noradrenergic signaling in irritable bowel syndrome. Neuroimage 63, 1854–1863 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Chaloner, A., Rao, A., Al-Chaer, E. D. & Greenwood-Van Meerveld, B. Importance of neural mechanisms in colonic mucosal and muscular dysfunction in adult rats following neonatal colonic irritation. Int. J. Dev. Neurosci. 28, 99–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Flugge, G., van Kampen, M., Meyer, H. & Fuchs, E. α2A and α2C-adrenoceptor regulation in the brain: α2A changes persist after chronic stress. Eur. J. Neurosci. 17, 917–928 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Chaloner, A. & Greenwood-Van Meerveld, B. Early life adversity as a risk factor for visceral pain in later life: importance of sex differences. Front. Neurosci. 7, 13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. McEwen, B. S. Understanding the potency of stressful early life experiences on brain and body function. Metabolism 57 (Suppl. 2), S11–S15 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Provencal, N. et al. The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J. Neurosci. 32, 15626–15642 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Provencal, N. & Binder, E. B. The effects of early life stress on the epigenome: from the womb to adulthood and even before. Exp. Neurol. 268, 10–20 (2015).

    Article  PubMed  Google Scholar 

  124. Barsky, A. J. & Borus, J. F. Functional somatic syndromes. Ann. Intern. Med. 130, 910–921 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Ahmad, O. F. & Akbar, A. Dietary treatment of irritable bowel syndrome. Br. Med. Bull. 113, 83–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Fasano, A., Sapone, A., Zevallos, V. & Schuppan, D. Non-celiac gluten sensitivity. Gastroenterology 148, 1195–1204 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Lomer, M. C. Review article: the aetiology, diagnosis, mechanisms and clinical evidence for food intolerance. Aliment Pharmacol. Ther. 41, 262–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Shepherd, S. J., Halmos, E. & Glance, S. The role of FODMAPs in irritable bowel syndrome. Curr. Opin. Clin. Nutr. Metab. Care 17, 605–609 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Grover, M., Camilleri, M., Smith, K., Linden, D. R. & Farrugia, G. On the fiftieth anniversary. Postinfectious irritable bowel syndrome: mechanisms related to pathogens. Neurogastroenterol. Motil. 26, 156–167 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Spiller, R. & Garsed, K. Postinfectious irritable bowel syndrome. Gastroenterology 136, 1979–1988 (2009).

    Article  PubMed  Google Scholar 

  131. Maxwell, P. R., Rink, E., Kumar, D. & Mendall, M. A. Antibiotics increase functional abdominal symptoms. Am. J. Gastroenterol. 97, 104–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Villarreal, A. A., Aberger, F. J., Benrud, R. & Gundrum, J. D. Use of broad-spectrum antibiotics and the development of irritable bowel syndrome. WMJ 111, 17–20 (2012).

    PubMed  Google Scholar 

  133. Bashashati, M. et al. Cytokine imbalance in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol. Motil. 26, 1036–1048 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Darkoh, C. et al. Chemotactic chemokines are important in the pathogenesis of irritable bowel syndrome. PLoS ONE 9, e93144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ohman, L. et al. Increased TLR2 expression on blood monocytes in irritable bowel syndrome patients. Eur. J. Gastroenterol. Hepatol. 24, 398–405 (2012).

    PubMed  Google Scholar 

  136. Matricon, J. et al. Review article: associations between immune activation, intestinal permeability and the irritable bowel syndrome. Aliment. Pharmacol. Ther. 36, 1009–1031 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Cremon, C. et al. Mucosal immune activation in irritable bowel syndrome: gender-dependence and association with digestive symptoms. Am. J. Gastroenterol. 104, 392–400 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Lee, K. J. et al. The alteration of enterochromaffin cell, mast cell, and lamina propria T lymphocyte numbers in irritable bowel syndrome and its relationship with psychological factors. J. Gastroenterol. Hepatol. 23, 1689–1694 (2008).

    Article  PubMed  Google Scholar 

  139. Farhadi, A., Fields, J. Z. & Keshavarzian, A. Mucosal mast cells are pivotal elements in inflammatory bowel disease that connect the dots: stress, intestinal hyperpermeability and inflammation. World J. Gastroenterol. 13, 3027–3030 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Cole, S. W. Social regulation of human gene expression. Curr. Dir. Psychol. Sci. 18, 132–137 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Miller, G. E. et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc. Natl Acad. Sci. USA 106, 14716–14721 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Szyf, M. The early life environment and the epigenome. Biochim. Biophys. Acta 1790, 878–885 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Gupta, A. et al. Early adverse life events: influence on resting state connectivity in patients with chronic abdominal pain. Psychosom. Med. 76, 404–412 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Cole, S. W. Human social genomics. PLoS Genet. 10, e1004601 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cole, S. W. et al. Transcriptional modulation of the developing immune system by early life social adversity. Proc. Natl Acad. Sci. USA 109, 20578–20583 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Powell, N. D. et al. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis. Proc. Natl Acad. Sci. USA 110, 16574–16579 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Wohleb, E. S., Powell, N. D., Godbout, J. P. & Sheridan, J. F. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J. Neurosci. 33, 13820–13833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wohleb, E. S. et al. Re-establishment of anxiety in stress-sensitized mice is caused by monocyte trafficking from the spleen to the brain. Biol. Psychiatry 75, 970–981 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Wohleb, E. S. et al. beta-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J. Neurosci. 31, 6277–6288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tillisch, K. et al. Sex specific alterations in autonomic function among patients with irritable bowel syndrome. Gut 54, 1396–1401 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Berman, S. et al. Differential noradrenergic (NE) modulation of brain metabolic and electrical activity in IBS patients and healthy controls. Gastroenterology 132, A726 (2007).

    Google Scholar 

  152. Labus, J. et al. Sex-specific differences in a brain network functioning during anticipation of rectal discomfort in irritable bowel syndrome patients (IBS). Gastroenterology 130, A93 (2006).

    Article  CAS  Google Scholar 

  153. Mayer, E. A. et al. Correlation between gene expression profiles in peripheral blood mononuclear cells and structural and functional brain networks in chronic visceral pain. Neuropsychopharmacology 39, S641 (2014).

    Google Scholar 

  154. Cole, S. W., Hawkley, L. C., Arevalo, J. M. & Cacioppo, J. T. Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proc. Natl Acad. Sci. USA 108, 3080–3085 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Beissner, F., Meissner, K., Bar, K. J. & Napadow, V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 33, 10503–10511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Seminowicz, D. A. et al. Regional gray matter density changes in brains of patients with irritable bowel syndrome. Gastroenterology 139, U48–U82 (2010).

    Article  Google Scholar 

  157. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Mayer, E. A. & Tillisch, K. Gut brain axis and the microbiome. J. Clin. Invest. 125, 926–938 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Stilling, R. M., Dinan, T. G. & Cryan, J. F. Microbial genes, brain & behaviour—epigenetic regulation of the gut-brain axis. Genes Brain Behav. 13, 69–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Rhee, S. H., Pothoulakis, C. & Mayer, E. A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 6, 306–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Benton, D., Williams, C. & Brown, A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur. J. Clin. Nutr. 61, 355–361 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Messaoudi, M. et al. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2, 256–261 (2011).

    Article  PubMed  Google Scholar 

  163. McNulty, N. P. et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 3, 106ra106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mayer, E. A. et al. Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis. Pain 115, 398–409 (2005).

    Article  PubMed  Google Scholar 

  165. Hood, L., Heath, J. R., Phelps, M. E. & Lin, B. Systems biology and new technologies enable predictive and preventative medicine. Science 306, 640–643 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Hornberg, J. J., Bruggeman, F. J., Westerhoff, H. V. & Lankelma, J. Cancer: a systems biology disease. Biosystems 83, 81–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Likic, V. A., McConville, M. J., Lithgow, T. & Bacic, A. Systems biology: the next frontier for bioinformatics. Adv. Bioinformatics 2010, 268925 (2010).

    Article  Google Scholar 

  168. Chang, L., Lembo, A. & Sultan, S. American Gastroenterological Association institute technical review on the pharmacological management of irritable bowel syndrome. Gastroenterology 147, 1149–1172.e2 (2014).

    Article  PubMed  Google Scholar 

  169. Mayer, E. A. & Collins, S. M. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology 122, 2032–2048 (2002).

    Article  PubMed  Google Scholar 

  170. Tache, Y., Martinez, V., Million, M. & Wang, L. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G173–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Patel, V. R., Eckel-Mahan, K., Sassone-Corsi, P. & Baldi, P. CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics. Nat, Methods 9, 772–773 (2012).

    Article  CAS  Google Scholar 

  172. Patel, V. R., Eckel-Mahan, K., Sassone-Corsi, P. & Baldi, P. How pervasive are circadian oscillations? Trends Cell Biol. 24, 329–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Partch, C. L., Green, C. B. & Takahashi, J. S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24, 90–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Eckel-Mahan, K. L. et al. Reprogramming of the circadian clock by nutritional challenge. Cell 155, 1464–1478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Takahashi, J. S., Hong, H. K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764–775 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bellet, M. M. et al. Circadian clock regulates the host response to Salmonella. Proc. Natl Acad. Sci. USA 110, 9897–9902 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bonaz, B. L. & Bernstein, C. N. Brain-gut interactions in inflammatory bowel disease. Gastroenterology 144, 36–49 (2013).

    Article  PubMed  Google Scholar 

  179. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain's default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008).

    Article  PubMed  Google Scholar 

  181. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Qin, P. & Northoff, G. How is our self related to midline regions and the default-mode network? Neuroimage 57, 1221–1233 (2011).

    Article  PubMed  Google Scholar 

  183. Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103, 13848–13853 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Labus, J. S. et al. Sex differences in brain activity during aversive visceral stimulation and its expectation in patients with chronic abdominal pain: a network analysis. Neuroimage 41, 1032–1043 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Pezawas, L. et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat. Neurosci. 8, 828–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Stein, J. L. et al. A validated network of effective amygdala connectivity. Neuroimage 36, 736–745 (2007).

    Article  PubMed  Google Scholar 

  187. Critchley, H. D., Nagai, Y., Gray, M. A. & Mathias, C. J. Dissecting axes of autonomic control in humans: Insights from neuroimaging. Auton. Neurosci. 161, 34–42 (2011).

    Article  PubMed  Google Scholar 

  188. Saper, C. B. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25, 433–469 (2002).

    Article  CAS  PubMed  Google Scholar 

  189. Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  190. Jones, L. M., Fontanini, A., Sadacca, B. F., Miller, P. & Katz, D. B. Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proc. Natl Acad. Sci. USA 104, 18772–18777 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Alcauter, S. et al. Development of thalamocortical connectivity during infancy and its cognitive correlations. J. Neurosci. 34, 9067–9075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Levinthal, D. J. & Strick, P. L. The motor cortex communicates with the kidney. J. Neurosci. 32, 6726–6731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Article  PubMed  Google Scholar 

  194. Borsook, D., Edwards, R., Elman, I., Becerra, L. & Levine, J. Pain and analgesia: the value of salience circuits. Prog. Neurobiol. 104, 93–105 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Greicius, M. D. et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62, 429–437 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Laird, A. R. et al. Behavioral interpretations of intrinsic connectivity networks. J. Cogn. Neurosci. 23, 4022–4037 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by funding National Institutes of Health grants P50 DK064539 (E.A.M.), R01 DK048351 (E.A.M.) and P30 DK041301 (E.R.). The authors thank Cathy Liu and Arpana Gupta for invaluable editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

The article was conceptualized and composed by E.A.M. Inputs to the following sections came from the following co-authors: immune system (S.W.C.); brain networks (J.S.L.); gut microbiota (K.T.); and systems biology (P.B.).

Corresponding author

Correspondence to Emeran A. Mayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, E., Labus, J., Tillisch, K. et al. Towards a systems view of IBS. Nat Rev Gastroenterol Hepatol 12, 592–605 (2015). https://doi.org/10.1038/nrgastro.2015.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing