Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Acute-on-chronic liver failure: terminology, mechanisms and management

Key Points

  • Acute-on-chronic liver failure (ACLF) is a distinct clinical syndrome characterized by liver failure due to an acute hepatic injury on an underlying chronic liver disease with high 28-day mortality

  • Acute insults include alcohol, hepatotropic viruses and drugs whereas the underlying chronic liver disease is generally cirrhosis due to alcohol, hepatitis B or C, or NASH

  • After an acute insult, persistent inflammation, systemic inflammatory response syndrome and the cytokine storm have a central role in the pathogenesis of liver failure and subsequent organ failure

  • A short 'golden window' precedes sepsis development and organ(s) failure, providing opportunity for immunomodulation with granulocyte-colony stimulating factor and other interventions; extrahepatic organ failure indicates severity of illness, prognosis and helps guide management

  • Abstinence, antiviral therapy and withdrawal of harmful drug are specific therapies that could help ameliorate or reverse the liver failure

  • Liver transplantation is the definitive treatment and a good outcome is achieved with early transplantation in carefully selected patients; liver dialysis and plasmapheresis can help as 'bridge therapies'

Abstract

Acute-on-chronic liver failure (ACLF) is a distinct clinical entity and differs from acute liver failure and decompensated cirrhosis in timing, presence of acute precipitant, course of disease and potential for unaided recovery. The definition involves outlining the acute and chronic insults to include a homogenous patient group with liver failure and an expected outcome in a specific timeframe. The pathophysiology of ACLF relates to persistent inflammation, immune dysregulation with initial wide-spread immune activation, a state of systematic inflammatory response syndrome and subsequent sepsis due to immune paresis. The disease severity and outcome can be predicted by both hepatic and extrahepatic organ failure(s). Clinical recovery is expected with the use of nucleoside analogues for hepatitis B, and steroids for severe alcoholic hepatitis and, possibly, severe autoimmune hepatitis. Artificial liver support systems help remove toxins and metabolites and serve as a bridge therapy before liver transplantation. Hepatic regeneration during ongoing liver failure, although challenging, is possible through the use of growth factors. Liver transplantation remains the definitive treatment with a good outcome. Pre-emptive antiviral agents for hepatitis B before chemotherapy to prevent viral reactivation and caution in using potentially hepatotoxic drugs can prevent the development of ACLF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Definition and concept of ACLF.
Figure 2: The concept of the hepatic reserve and ACLF.
Figure 3: The mechanism of injury in ACLF.
Figure 4: Histological pattern in ACLF.
Figure 5: Hepatic regeneration in ACLF.
Figure 6: Histological images of liver regeneration in patients with ACLF, ALF and decompensated cirrhosis.
Figure 7: Management algorithm for patients with ACLF.

Similar content being viewed by others

References

  1. Byass, P. The global burden of liver disease: a challenge for methods and for public health. BMC Med. 12, 159 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sarin, S. et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol. Int. 8, 453–471 (2014).

    Article  PubMed  Google Scholar 

  3. Moreau, R. et al. Acute on chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 144, 1426–1437 (2013).

    Article  PubMed  Google Scholar 

  4. Sarin, S. et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol. Int. 3, 269–282 (2009).

    Article  PubMed  Google Scholar 

  5. Bernal, W. et al. Lessons from look-back in acute liver failure? A single centre experience of 3300 patients. J. Hepatol. 59, 74–80 (2013).

    Article  PubMed  Google Scholar 

  6. Bajaj, J. S. Defining acute-on-chronic liver failure: will East and West ever meet? Gastroenterology 144, 1337–1339 (2013).

    Article  PubMed  Google Scholar 

  7. Jalan, R., Gines, P., Arroyo, V. & Kamath, P. S. Acute-on chronic liver failure. J. Hepatol. 57, 1336–1348 (2012).

    Article  PubMed  Google Scholar 

  8. Sen, S., Williams, R. & Jalan, R. The pathophysiological basis of acute-on-chronic liver failure. Liver 22 (Suppl. 2), 5–13 (2002).

    Article  PubMed  Google Scholar 

  9. Jalan, R. et al. Toward an improved definition of acute-on-chronic liver failure. Gastroenterology 147, 4–10 (2014).

    Article  PubMed  Google Scholar 

  10. Shi, Y. et al. Acute-on-chronic liver failure precipitated by hepatic injury is distinct from that precipitated by extrahepatic insults. Hepatology 62, 232–242 (2015).

    Article  PubMed  Google Scholar 

  11. Bajaj, J. S. et al. Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures. Hepatology 60, 250–256 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bernal, W. et al. Acute-on-chronic liver failure. Lancet 386, 1576–1587 (2015).

    Article  PubMed  Google Scholar 

  13. Arroyo, V. et al. Acute-on-chronic liver failure: a new syndrome that will re-classify cirrhosis. J. Hepatol. 62, S131–S143 (2015).

    Article  PubMed  Google Scholar 

  14. Gustot, T. et al. Clinical course of acute-on-chronic liver failure syndrome and effects on prognosis. Hepatology 62, 243–252 (2015).

    Article  PubMed  Google Scholar 

  15. Agrawal, S., Duseja, A., Dhiman, R. K. & Chawla, Y. Simple organ failure count versus CANONIC grading system for predicting mortality in acute-on-chronic liver failure. J. Gastroenterol. Hepatol. 30, 575–581 (2015).

    Article  PubMed  Google Scholar 

  16. Garg, H., Kumar, A., Sharma, B. C. & Sarin, S. K. Clinical profile and predictors of mortality in patients of acute on chronic liver failure. Dig. Liver Dis. 44, 166–171 (2012).

    Article  PubMed  Google Scholar 

  17. Silva, P. E. et al. Single-centre validation of the EASL-CLIF consortium definition of acute-on-chronic liver failure and CLIF-SOFA for prediction of mortality in cirrhosis. Liver Int. 35, 1516–1523 (2015).

    Article  PubMed  Google Scholar 

  18. Silva, P. E. et al. Single-centre validation of the EASL-CLIF consortium definition of acute-on-chronic liver failure and CLIF-SOFA for prediction of mortality in cirrhosis. Liver Int. 35, 1516–1523 (2015).

    Article  PubMed  Google Scholar 

  19. Dhiman, R. K., Agrawal, S., Gupta, T., Duseja, A. & Chawla, Y. Chronic liver failure-sequential organ failure assessment is better than the Asia-Pacific Association for the Study of Liver criteria for defining acute-on-chronic liver failure and predicting outcome. World J. Gastroenterol. 20, 14934–14941 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, Q. et al. Comparison of current diagnostic criteria for acute-on-chronic liver failure. PLoS ONE 10, e0122158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moreau, R., Jalan, R. & Arroyo, V. Acute-on-chronic liver failure: recent concepts. J. Clin. Exp. Hepatol. 5, 81–85 (2015).

    Article  PubMed  Google Scholar 

  22. Sheen, I. S., Liaw, Y. F., Tai, D. I. & Chu, C. M. Hepatic decompensation associated with hepatitis B e antigen clearance in chronic type B hepatitis. Gastroenterology 89, 732–735 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Yuen, M. F. et al. Difference in T helper responses during hepatitis flares in hepatitis B e antigen (HBeAg)-positive patients with genotypes B and C: implication for early HBeAg seroconversion. J. Viral Hepat. 14, 269–275 (2007).

    Article  PubMed  Google Scholar 

  24. Aoki, J., Kowazaki, Y., Okamoto, R. & Kimura, K. Kinetics of peripheral hepatitis B virus-specific CD8+ T cells in patients with onset of viral reactivation. J. Gastroenterol. 48, 728–737 (2013).

    Article  PubMed  Google Scholar 

  25. Zhang, Z., Zhang, J. Y., Wherry, E. J. & Wang, F. S. Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acutehepatitis B. Gastroenterology 134, 1938–1949.e3 (2008).

    Article  PubMed  Google Scholar 

  26. Acharya, S. K. et al. Hepatitis E virus (HEV) infection in patients with cirrhosis is associated with rapid decompensation and death. J. Hepatol. 46, 387–394 (2007).

    Article  Google Scholar 

  27. Dhiman, R. K. et al. Clinical features and predictors of outcomein acute hepatitis A and hepatitis E virus hepatitis on cirrhosis. Liver Int. 29, 392–398 (2009).

    Article  Google Scholar 

  28. Kamar, N. et al. Hepatitis E. Lancet 379, 2477–2488 (2012).

    Article  PubMed  Google Scholar 

  29. Sayed, I. M. et al. Is HEV an emerging problem in industrialized countries? Hepatology http://dx.doi.org/10.1002/hep.27990 (2015).

  30. Blasco-Perrin, H. et al. Hepatitis E virus in patients with decompensated chronic liver disease: a prospective UK/French study. Aliment. Pharmacol. Ther. 42, 574–581 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Sehgal, R. et al. Impaired monocyte-macrophage functions and defective TLR signalling in hepatitis E virus infected pregnant women with acute liver failure. Hepatology http://dx.doi.org/10.1002/hep.28143 (2015).

  32. Saravanabalaji, S. et al. Viral load, antibody titers and recombinant open reading frame 2 protein-induced Th1/Th2 cytokines and cellular immune responses in self-limiting and fulminant hepatitis E. Intervirology 52, 78–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Tripathy, A. S. et al. Peripheral T regulatory cells and cytokines in hepatitis E infection. Eur. J. Clin. Microbiol. Infect. Dis. 31, 179–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Kumar, M., Sharma, B. C. & Sarin, S. K. Hepatitis E virus as an etiology of acute exacerbation of previously unrecognized asymptomatic patients with hepatitis B virus-related chronic liver disease. J. Gastroenterol. Hepatol. 23, 883–887 (2008).

    Article  PubMed  Google Scholar 

  35. Keeffe, E. B. Acute hepatitis A and B in patients with chronic liver disease: prevention through vaccination. Am. J. Med. 118, 21–27 (2005).

    Article  Google Scholar 

  36. Zhang, X., Ke, W., Xie, D. & Gao, Z. Comparison of effects of hepatitis E or A viral superinfection in patients with chronic hepatitis B. Hepatol. Int. 4, 615–620 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim, H. Y. et al. A polymorphism in TIM1 is associated with susceptibility to severe hepatitis A virus infection in humans. J. Clin. Invest. 121, 1111–1118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Choi, Y. S. et al. Liver injury in acute hepatitis A is associated with decreased frequency of regulatory T cells caused by Fas-mediated apoptosis. Gut 64, 1303–1313 (2015).

    Article  PubMed  Google Scholar 

  39. Rutherford, A. et al. Influence of high body mass index on outcome in acute liver failure. Clin. Gastroenterol. Hepatol. 4, 1544–1549 (2006).

    Article  PubMed  Google Scholar 

  40. Gao, B. & Bataller, R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141, 1572–1585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Malhi, H. & Kaufman, R. J. Endoplasmic reticulum stress in liver disease. J. Hepatol. 54, 795–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Cederbaum, A. I. Alcohol metabolism. Clin. Liver Dis. 16, 667–685 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gustot, T. et al. Differential liver sensitization to toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology 43, 989–1000 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Tilg, H., Moschen, A. R. & Kaneider, N. C. Pathways of liver injury in alcoholic liver disease. J. Hepatol. 55, 1159–1161 (2011).

    Article  PubMed  Google Scholar 

  45. Louvet, A. & Mathurin, P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat. Rev. Gastroenterol. Hepatol. 12, 231–242 (2015).

    Article  PubMed  Google Scholar 

  46. Sancho-Bru, P. et al. Liver progenitor cell markers correlate with liver damage and predict short-term mortality in patients with alcoholic hepatitis. Hepatology 55, 1931–1941 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Dubuquoy, L., Louvet, A., Bataller, R. & Mathurin, P. Progenitor cell expansion and impaired hepatocyte regeneration in explanted livers from alcoholic hepatitis. Gut 64, 1949–1960 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Devarbhavi, H., Dierkhising, R., Sandeep, M. S. & Adarsh, C. K. Single-center experience with drug-induced liver injury from India: causes, outcome, prognosis, and predictors of mortality. Am. J. Gastroenterol. 105, 2396–2404 (2010).

    Article  PubMed  Google Scholar 

  49. Kedarisetty, C. K. et al. Liver failure determines the extra-hepatic organ failure and outcome in patients with acute-on-chronic liver failure: analysis of 1363 patients of AARC Data Base [abstract 733]. Hepatology 60 (Suppl. 1), 553A (2014).

    Google Scholar 

  50. Chalasani, N. P. et al. ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am. J. Gastroenterol. 109, 950–966 (2014).

    Article  PubMed  Google Scholar 

  51. Reuben, A., Koch, D. G. & Lee, W. M. Drug-induced acute liver failure: results of a US multicenter, prospective study. Hepatology 52, 2065–2076 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sargenti, K., Prytz, H., Nilsson, E. & Kalaitzakis, E. Predictors of mortality among patients with compensated and decompensated liver cirrhosis: the role of bacterial infections and infection-related acute-on-chronic liver failure. Scand. J. Gastroenterol. 50, 875–883 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Garg, H. et al. Hepatic and systemic hemodynamic derangements predict early mortality and recovery in patients with acute-on-chronic liver failure. J. Gastroenterol. Hepatol. 28, 1361–1367 (2013).

    Article  PubMed  Google Scholar 

  54. Bruns, T., Zimmermann, H. W. & Stallmach, A. Risk factors and outcome of bacterial infections in cirrhosis. World J. Gastroenterol. 20, 2542–2554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Albillos, A., Lario, M. & Álvarez-Mon, M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J. Hepatol. 61, 1385–1396 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Berry, P. A. et al. Severity of the compensatory anti-inflammatory response determined by monocyte HLA-DR expression may assist outcome prediction in cirrhosis. Intensive Care Med. 37, 453–460 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Khanam, A., Trehanpati, N., Sharma, B. C. & Sarin, S. K. Altered frequencies of dendritic cells and IFN-gamma-secreting T cells with granulocyte colony-stimulating factor (G-CSF) therapy in acute-on- chronic liver failure. Liver Int. 34, 505–513 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Mookerjee, R. P. et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts outcome. Hepatology 46, 831–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Nischalke, H. D. et al. Toll-like receptor (TLR) 2 promoter and intron 2 polymorphisms are associated with increased risk for spontaneous bacterial peritonitis in liver cirrhosis. J. Hepatol. 55, 1010–1016 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Jalan, R., Stadlbauer, V., Sen, S. & Mookerjee, R. Role of predisposition, injury, response and organ failure in the prognosis of patients with acute-on chronic liver failure: a prospective cohort study. Crit. Care 16, R227 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Choudhury, A. K., Vashishtha, C., Kedarisetty, C. K. & Sarin, S. K. Systemic inflammatory response syndrome (SIRS) — a potential clinical marker for early sepsis and survival in acute on chronic liver failure (ACLF) [abstract 580]. Hepatology 60 (Suppl. 1), A476A (2014).

    Google Scholar 

  62. Jeon, S. H. et al. Incidence and risk factors of acute hepatic failure after transcatheter arterial chemoembolization for hepatocellular carcinoma. Korean J. Gastroenterol. 50, 176–182 (in Korean) (2007).

    PubMed  Google Scholar 

  63. Huang, Y. S., Chiang, J. H. & Lee, S. D. Risk of hepatic failure after transcatheter arterial chemoembolization for hepatocellular carcinoma: predictive value of the monoethylglycinexylidide test. Am. J. Gastroenterol. 97, 1223–1227 (2002).

    Article  PubMed  Google Scholar 

  64. Min, Y. W., Kim, J., Paik, S. W., Yoo, B. C. & Lee, J. H. Risk factors and a predictive model for acute hepatic failure after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma. Liver Int. 33, 197–202 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Olson, J. C. & Kamath, P. S. Acute-on-chronic liver failure: concept, natural history, and prognosis. Curr. Opin. Crit. Care 17, 165–169 (2011).

    Article  PubMed  Google Scholar 

  66. Laleman, W. et al. Acute-on-chronic liver failure: current concepts on definition pathogenesis, clinical manifestations and potential therapeutic interventions. Expert Rev. Gastroenterol. Hepatol. 5, 523–537 (2011).

    Article  PubMed  Google Scholar 

  67. Rastogi, A. et al. Liver histology as predictor of outcome in patients with acute-on-chronic liver failure (ACLF). Virchows Arch. 459, 121–127 (2011).

    Article  PubMed  Google Scholar 

  68. Loomba, R. & Sanyal, A. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 10, 686–690 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Medzhitov, R. Inflammation 2010: new adventures of an old flame. Cell 140, 771–776 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Chovatiya, R. & Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell. 54, 281–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bone, R. C. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. Crit. Care Med. 24, 163–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Malik, R., Mookerjee, R. & Jalan, R. Infection and inflammation in liver failure: two sides of the same coin. J. Hepatol. 51, 426–429 (2009).

    Article  PubMed  Google Scholar 

  73. Chen, Y., Guo, J., Shi, D. & Li, L. Gut dysbiosis in acute-on-chronic liver failure and its predictive value for mortality. J. Gastroenterol. Hepatol. 30, 1429–1437 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Cirera, I. et al. Bacterial translocation of enteric organisms in patients with cirrhosis. J. Hepatol. 34, 32–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Cariello, R. et al. Intestinal permeability in patients with chronic liver diseases: its relationship with the aetiology and the entity of liver damage. Dig. Liver Dis. 42, 200–204 (2010).

    Article  PubMed  Google Scholar 

  76. Bellot, P. et al. Bacterial DNA translocation is associated with systemic circulatory abnormalities and intrahepatic endothelial dysfunction in patients with cirrhosis. Hepatology 52, 2044–2052 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Wan, J. et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59, 130–142 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Seki, E. & Brenner, D. A. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48, 322–335 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Desmots, F. et al. Pro-inflammatory cytokines tumor necrosis factor and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes. J. Biol. Chem. 277, 17892–17900 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Spahr, L. et al. Soluble TNF R1, but not tumor necrosis factor alpha, predicts the 3 month mortality in patients with alcoholic hepatitis. J. Hepatol. 41, 229–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Wasmuth, H. E. et al. Patients with acute on chronic liver failure display 'sepsis-like' immune paralysis. J. Hepatol. 42, 195–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Rockey, D. C. et al. Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology 27, 472–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Yan, A. W. et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53, 96–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Keshavarzian, A. et al. Leaky gut in alcoholic cirrhosis: a possible mechanism for alcohol-induced liver damage. Am. J. Gastroenterol. 94, 200–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Khanam, A. et al. Impaired neutrophil function aggravates liver injury and correlates with clinical severity indices in acute on-chronic liver failure [abstract 733]. Hepatology 60 (Suppl. 1), 553A (2014).

    Google Scholar 

  86. Xing, T., Li, L., Cao, H. & Huang, J. Altered immune function of monocytes in different stages of patients with acute on chronic liver failure. Clin. Exp. Immunol. 147, 184–188 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, Z. et al. Severe dendritic cell perturbation is actively involved in the pathogenesis of acute-on-chronic hepatitis B liver failure. J. Hepatol. 49, 396–406 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Zhao, J. et al. Improved survival ratios correlate with myeloid dendritic cell restoration in acute-on-chronic liver failure patients receiving methylprednisolone therapy. Cell. Mol. Immunol. 9, 417–422 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bernsmeier, C. et al. Patients with acute-on-chronic liver failure have increased numbers of regulatory immune cells expressing the receptor tyrosine kinase MERTK. Gastroenterology 148, 603–615.e14 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Guignant, C. et al. Increased MerTK expression in circulating innate immune cells of patients with septic shock. Intensive Care Med. 39, 1556–1564 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Zhai, S. et al. The ratio of Th-17 to Treg cells is associated with survival of patients with acute-on-chronic hepatitis B liver failure. Viral Immunol. 24, 303–310 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Kumar, A., Das, K., Sharma, B. C. & Sarin, S. K. Hemodynamic studies in acute-on-chronic liver failure. Dig. Dis. Sci. 54, 869–878 (2009).

    Article  PubMed  Google Scholar 

  93. Kalambokis, G., Manousou, P., Patch, D. & Burroughs, A. K. Transjugular liver biopsy — indications, adequacy, quality of specimens, and complications — a systematic review. J. Hepatol. 47, 284–294 (2007).

    Article  PubMed  Google Scholar 

  94. Katoonizadeh, A. et al. Early features of acute-on-chronic alcoholic liver failure: a prospective cohort study. Gut 59, 1561–1569 (2010).

    Article  PubMed  Google Scholar 

  95. Li, H. et al. Submassive hepatic necrosis distinguishes HBV-associated acute on chronic liver failure from cirrhotic patients with acute decompensation. J. Hepatol. 63, 50–59 (2015).

    Article  PubMed  Google Scholar 

  96. Altamirano, J. et al. A histologic scoring system for prognosis of patients with alcoholic hepatitis. Gastroenterology 146, 1231–1239.e6 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mookerjee, R. P. et al. The role of liver biopsy in the diagnosis and prognosis of patients with acute deterioration of alcoholic cirrhosis. J. Hepatol. 55, 1103–1111 (2011).

    Article  PubMed  Google Scholar 

  98. Louvet, A. et al. Infection in patients with severe alcoholic hepatitis treated with steroids: early response to therapy is the key factor. Gastroenterology 137, 541–548 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Jalan, R. & Mookerjee, R. P. Acute-on-chronic liver failure: an early biopsy is essential? Gut 59, 1455–1456 (2010).

    Article  PubMed  Google Scholar 

  100. Shasthry, S. et al. Baseline liver biopsy can predict response to steroids in patients with severe alcoholic hepatitis. J. Hepatol. 60, S67–S214 (2014).

    Article  Google Scholar 

  101. Krenitsky, J. Nutrition for patients with hepatic failure. Pract. Gastroenterol. 6, 23–42 (2003).

    Google Scholar 

  102. Canbay, A. et al. Overweight patients are more susceptible for acute liver failure. Hepatogastroenterology 52, 1516–1520 (2005).

    PubMed  Google Scholar 

  103. Tsien, C. D., McCullough, A. J. & Dasarathy, S. Late-evening snack: exploiting a period of anabolic opportunity in cirrhosis. J. Gastroenterol. Hepatol. 27, 430–441 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Hou, W., Li, J., Wang, J. H. & Meng, Q. H. Carbohydrate-predominant LES is associated with increases in fasting carbohydrate oxidation, REE and reductions in fat oxidation in adults with ACLF. Therapeutic strategies utilizing LES may promote improved nutritional status in adults with ACLF. Eur. J. Clin. Nutr. 67, 1251–1256 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Morgan, T. et al. Protein consumption and hepatic encephalopathy in alcoholic hepatitis. J. Am. Coll. Nutr. 14, 152–158 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Choudhury, A. K., Vasistha, C., Kumar, S. & Sarin, S. K. A prospective open label randomized noninferiority trial to compare the efficacy and safety of monotherapy with noradrenaline and terlipressin in patients of cirrhosis with septic shock admitted to the intensive care unit [abstract 131]. Hepatology 60 (Suppl. 1), A252A (2014).

    Google Scholar 

  107. O'Brien, A. J. et al. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2 . Nat. Med. 20, 518–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bernardi, M., Ricci, C. S. & Zaccherini, G. Role of human albumin in the management of complications of liver cirrhosis. J. Clin. Exp. Hepatol. 4, 302–311 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Maiwall, R. et al. Utility of a modified PIRO (predisposition, injury, response, organ failure) model for predicting kidney failure in patients with ACLF — a multinational cohort study [abstract 578]. Hepatology 60 (Suppl. 1), 476A (2014).

    Google Scholar 

  110. Nayak, S. et al. Bile pigment nephropathy and acute tubular necrosis in decompensated cirrhotics and acute on chronic liver failure [abstract 248]. Hepatology 60 (Suppl. 1), 325A (2014).

    Google Scholar 

  111. Jindal, A., Bhadoria, A. S., Maiwall, R. & Sarin, S. K. Evaluation of acute kidney injury and its response to terlipressin in patients with acute-on-chronic liver failure. Liver Int. http://dx.doi.org/10.1111/liv.12895 (2015).

  112. Slack, A. J. et al. Ammonia clearance with haemofiltration in adults with liver disease. Liver Int. 34, 42–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Gonwa, T. A. & Wadei, H. M. The challenges of providing renal replacement therapy in decompensated liver cirrhosis. Blood Purif. 33, 144–148 (2012).

    Article  PubMed  Google Scholar 

  114. Davenport, A. Continuous renal replacement therapies in patients with liver disease. Semin. Dial. 22, 169–172 (2009).

    Article  PubMed  Google Scholar 

  115. Sun, L. J. et al. Influential factors of prognosis in lamivudine treatment for patients with acute-onchronic hepatitis B liver failure. J. Gastroenterol. Hepatol 25, 583–590 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Garg, H., Sarin, S. K., Sharma, B. C. & Kumar, A. Tenofovir improves the outcome in patients with spontaneous reactivation of hepatitis B presenting as acute-on-chronic liver failure. Hepatology 53, 774–780 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Jindal, A., Kumar, M. & Sarin, S. K. A randomized comparative open label trial of tenofovir monotherapy versus tenofovir plus telbuvidine dual therapy in spontaneous reactivation of hepatitis B. J. Viral Hepat. 22 (Suppl. 2), 1–18 (2015).

    Google Scholar 

  118. Addolorato, G., Leggio, L., Haber, P. S. & Gasbarrini, G. Effectiveness and safety of baclofen for maintenance of alcohol abstinence in alcohol-dependent patients with liver cirrhosis: randomised, double-blind controlled study. Lancet 370, 1915–1922 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Cabré, E., Rodríguez-Iglesias, P., Caballería, J., R. & Gassull, M. A. Short- and long-term outcome of severe alcohol-induced hepatitis treated with steroids or enteral nutrition: a multicenter randomized trial. Hepatology 32, 36–42 (2000).

    Article  PubMed  Google Scholar 

  120. Yeoman, A. D., O'Grady, J. G. & Heneghan, M. A. Prognosis of acute severe autoimmune hepatitis (AS-AIH): the role of corticosteroids in modifying outcome. J. Hepatol. 61, 876–882 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Karkhanis, J. et al. Steroid use in acute liver failure. Hepatology 59, 612–621 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Mendizabal, M. et al. Fulminant presentation of autoimmune hepatitis: clinical features and early predictors of corticosteroid treatment failure. Eur. J. Gastroenterol. Hepatol. 27, 644–648 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Yeoman, A. D. et al. Early predictors corticosteroid treatment fail in icteric presentations of autoimmune hepatitis. Hepatology 53, 926–934 (2011).

    Article  PubMed  Google Scholar 

  124. Larsen, F. S., Vainer, B., Bjerring, P. N. & Hansen, B. A. Low-dose tacrolimus ameliorates liver inflammation and fibrosis in steroid refractory autoimmune hepatitis. World J. Gastroenterol. 13, 3232–3236 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hennes, E. M. et al. Mycophenolate mofetil as second line therapy in autoimmune hepatitis? Am. J. Gastroenterol. 103, 3063–3070 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Mathurin, P. et al. Corticosteroids improve short-term survival in patients with severe alcoholic hepatitis: meta-analysis of individual patient data. Gut 60, 255–260 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Lucey, M. R., Mathurin, P. & Morgan, T. R. Alcoholic hepatitis. N. Engl. J. Med. 360, 2758–2769 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. di Mambro, A. J. et al. In vitro steroid resistance correlates with outcome in severe alcoholic hepatitis. Hepatology 53, 1316–1322 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Akriviadis, E., Botla, R., Reynolds, T. & Shakil, O. Pentoxifylline improves short-term survival in severe acute alcoholic hepatitis: a double-blind, placebo-controlled trial. Gastroenterology 119, 1637–1648 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Sidhu, S. S. et al. Corticosteroid plus pentoxifylline is not better than corticosteroid alone for improving survival in severe alcoholic hepatitis (COPE trial). Dig. Dis. Sci. 57, 1664–1671 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. De, B. K. et al. Pentoxifylline versus prednisolone for severe alcoholic hepatitis: a randomized controlled trial. World J. Gastroenterol. 15, 1613–1619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lebrec, D. et al. Pentoxifylline does not decrease short-term mortality but does reduce complications in patients with advanced cirrhosis. Gastroenterology 138, 1755–1762 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Park, S. H. et al. Pentoxifylline versus corticosteroid to treat severe alcoholic hepatitis: a randomised, non-inferiority, open trial. J. Hepatol. 61, 792–798 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Thursz, M. R. et al. Prednisolone or pentoxifylline for alcoholic hepatitis. N. Engl. J. Med. 372, 1619–1628 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Tilg, H. et al. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic hepatitis. J. Hepatol. 38, 419–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  137. Hong, M., Kim, S. W., Baik, S. K. & Ham, Y. L. Probiotics (Lactobacillus rhamnosus R0011 and acidophilus R0052) reduce the expression of toll-like receptor 4 in mice with alcoholic liver disease. PLoS ONE 10, e0117451 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Enomoto, N. et al. Thalidomide prevents alcoholi liver injury in rats through suppression of Kupffer cell sensitization and TNF-α production. Gastroenterology 123, 291–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Nyberg, S. L. Bridging the gap: advances in artificial liver support. Liver Transpl. 18, S10–S14 (2012).

    Article  PubMed  Google Scholar 

  140. Maiwall, R., Maras, J. S., Nayak, S. L. & Sarin, S. K. Liver dialysis in acute-on-chronic liver failure: current and future perspectives. Hepatol. Int. 8, S505–S513 (2014).

    Article  Google Scholar 

  141. Catalina, M. V. et al. Hepatic and systemic haemodynamic changes after MARS in patients with acute on chronic liver failure. Liver Int. 23 (Suppl. 3), 39–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Nevens, F. & Laleman, W. Artificial liver support devices as treatment option for liver failure. Best Pract. Res. Clin. Gastroenterol. 26, 17–26 (2012).

    Article  PubMed  Google Scholar 

  143. Tritto, G., Davies, N. A. & Jalan, R. Liver replacement therapy. Semin. Respir. Crit. Care Med. 33, 70–79 (2012).

    Article  PubMed  Google Scholar 

  144. Banares, R. et al. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology 57, 1153–1162 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Kribben, A. et al. Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology 142, 782–789.e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Zheng, Z. et al. Artificial and bioartificial liver support systems for acute and acute-on-chronic hepatic failure: a meta-analysis and meta-regression. Exp. Ther. Med. 6, 929–936 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ling, Q. et al. Downgrading MELD improves the outcomes after liver transplantation in patients with acute-on-chronic hepatitis B liver failure. PLoS ONE 7, e30322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Finkenstedt, A., Nachbaur, K., Graziadei, W. & Vogel, W. Acute-on-chronic liver failure: excellent outcomes after liver transplantation but high mortality on the wait list. Liver Transpl. 19, 879–886 (2013).

    Article  PubMed  Google Scholar 

  149. Pamecha, V., Kumar, S. & Bharathy, K. G. Liver transplantation in acute on chronic liver failure: challenges and an algorithm for patient selection and management. Hepatol. Int. 9, 534–542 (2015).

    Article  PubMed  Google Scholar 

  150. Xing, T. et al. Experience of combined liver-kidney transplantation for acute-on-chronic liver failure patients with renal dysfunction. Transplant. Proc. 45, 2307–2313 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Kumar, R. et al. Change in model for end-stage liver disease score at two weeks, as an indicator of mortality or liver transplantation at 60 days in acute-on-chronic liver failure. Gastroenterol. Rep. 3, 122–127 (2015).

    Article  Google Scholar 

  152. Duan, B. W. et al. Liver transplantation in acute-on-chronic liver failure patients with high model for end-stage liver disease (MELD) scores: a single center experience of 100 consecutive cases. J. Surg. Res. 183, 936–943 (2013).

    Article  PubMed  Google Scholar 

  153. Chan, A. C. et al. Liver transplantation for acute-on-chronic liver failure. Hepatol. Int. 3, 571–581 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Mathurin, P., Moreno, C., Pruvot, F. R. & Vallée, J. C. Early liver transplantation for severe alcoholic hepatitis. N. Engl. J. Med. 365, 1790–1800 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Stroh, G., Rosell, T., Dong, F. & Forster, J. Early liver transplantation for patients with acute alcoholic hepatitis: public views and the effects on organ donation. Am. J. Transplant. 15, 1598–1604 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Fausto, N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39, 1477–1487 (2004).

    Article  PubMed  Google Scholar 

  157. Shubham, S., Maras, J. S., Kumar, A. & Sarin, S. K. Altered hepatic microenvironment governs the nature of hepatic regenerative response to acute hepatic insult [abstract 297]. Hepatology 58 (Suppl. 1), 92A (2013).

    Google Scholar 

  158. Kumar, D., Rooge, S., Kumar, A. & Sarin, S. K. Alternatively activated M2 macrophages promotes hepatocyte differentiation in hepatic progenitor cell mediated liver regeneration in acute on chronic liver failure patients [abstract 423]. Hepatology 60 (Suppl. 1), 102A (2014).

    Google Scholar 

  159. Karaca, G. et al. TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice. PLoS ONE 9, e83987 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18, 572–579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Burgada, J. et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 162, 766–779 (2015).

    Article  CAS  Google Scholar 

  162. Lu, W. Y. et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat. Cell Biol. 17, 971–983 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rastogi, A., Bihari, C., Kumar, A. & Sarin, S. K. Hepatic stellate cells are involved in the pathogenesis of acute-on-chronic liver failure (ACLF). Virchows Arch. 461, 393–398 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Kordes, C. et al. Hepatic stellate cells contribute to progenitor cells and liver regeneration. J. Clin. Invest. 124, 5503–5515 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Maiwal, R., Kumar, A. & Sarin, S. K. Liver regeneration during acute-on-chronic liver failure using growth factors: in vivo or ex vivo indulgence of bone marrow? Gastroenterology 145, 901–904 (2013).

    Article  PubMed  Google Scholar 

  166. Gilchrist, E. S. & Plevris, J. N. Bone marrow-derived stem cells in liver repair: 10 years down the line. Liver Transpl. 16, 118–129 (2010).

    Article  PubMed  Google Scholar 

  167. Uda, Y., Hirano, T. & Fujimoto, J. Angiogenesis is crucial for liver regeneration after partial hepatectomy. Surgery 153, 70–77 (2013).

    Article  PubMed  Google Scholar 

  168. Kaur, S., Tripathi, D., Sakhuja, P. & Sarin, S. K. Increased number and function of endothelial progenitor cells stimulate angiogenesis by resident liver sinusoidal endothelial cells (SECs) in cirrhosis through paracrine factors. J. Hepatol. 57, 1193–1198 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Wiemann, S. U. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 16, 935–942 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Di Campli, C. et al. Safety and efficacy profile of G-CSF therapy in patients with acute on chronic liver failure. Dig. Liver Dis. 39, 1071–1076 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Garg, V. et al. Granulocyte-colony stimulating factor mobilizes CD34+ cells and improves survival of patients with acute on chronic liver failure. Gastroenterology 142, 505–512 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Kedarisetty, C. K., Anand, L., Bhatia, V. & Sarin, S. K. Combination of granulocyte colony-stimulating factor and erythropoietin improves outcomes of patients with decompensated cirrhosis. Gastroenterology 148, 1362–1370.e7 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Meng, F., Francis, H., Glaser, S. & Alpini, G. Role of stem cell factor and granulocyte colony-stimulating factor in remodeling during liver regeneration. Hepatology 55, 209–221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Petit, I., Szyper-Kravitz, M., Zipori, D. & Lapidot, T. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3, 687–694 (2002).

    Article  CAS  PubMed  Google Scholar 

  175. Roilides, E. et al. Granulocyte colony-stimulating factor enhances the phagocytic and bactericidal activity of normal and defective human neutrophils. J. Infect. Dis. 163, 579–583 (1991).

    Article  CAS  PubMed  Google Scholar 

  176. Urao, N. et al. Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ. Res. 98, 1405–1413 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Egrie, J. C. & Browne, J. K. Development and characterization of erythropoiesis stimulating protein (NESP). Br. J. Cancer 84, 3–10 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pusic, I. & Di Persio, J. F. Update on clinical experience with amd3100, an sdf-1/cxcl12–cxcr4 inhibitor, in mobilization of hematopoietic stem and progenitor cells. Curr. Opin. Hematol. 17, 319–326 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Cui, Y. L. et al. Recombinant human hepatocyte growth factor for liver failure. Contemp. Clin. Trials 29, 696–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Kallis, Y. N., Alison, M. R. & Forbes, J. S. Bone marrow stem cells and liver disease. Gut 56, 716–724 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Duan, X. Z. et al. Granulocyte-colony stimulating factor therapy improves survival in patients with hepatitis B virus-associated acute on- chronic liver failure. World J. Gastroenterol. 19, 1104–1110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Singh, V. et al. Granulocyte colony-stimulating factor in severe alcoholic hepatitis: a randomized pilot study. Am. J. Gastroenterol. 109, 1417–1423 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Meier, R. P., Müller, Y. D., Morel, P. & Bühler, L. H. Transplantation of mesenchymal stem cells for the treatment of liver diseases, is there enough evidence? Stem Cell Res. 11, 1348–1364 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Ma, X. R., Tang, Y. L., Xuan, M. & Liang, X. H. Transplantation of autologous mesenchymal stem cells for end-stage liver cirrhosis: a meta-analysis based on seven controlled trials. Gastroenterol. Res. Pract. 2015, 908275 (2015).

    PubMed  PubMed Central  Google Scholar 

  185. Shi, M., Zhang, Z., Jin, L., Liu, Z. & Wang, F. S. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl. Med. 1, 725–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hwang, J. P. & Lok, A. S. Management of patients with hepatitis B who require immunosuppressive therapy. Nat. Rev. Gastroenterol. Hepatol. 11, 209–219 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Roche, B. & Samuel, D. The difficulties of managing severe hepatitis B virus reactivation. Liver Int. 31 (Suppl. 1), 104–110 (2011).

    Article  PubMed  Google Scholar 

  188. Fukui, H. Gut–liver axis in liver cirrhosis: how to manage leaky gut & endotoxemia. World J. Hepatol. 7, 425–442 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Verma, S. & Kaplowitz, N. Diagnosis, management and prevention of drug-induced liver injury. Gut 58, 1555–1564 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Ash, S. R. Hemodiabsorption in treatment of acute hepatic failure and chronic cirrhosis with ascites. Artif. Organs 18, 355–362 (1994).

    Article  CAS  PubMed  Google Scholar 

  191. Sen, S. et al. Pathophysiological effects of albumin dialysis in acute-on-chronic liver failure: a randomized controlled study. Liver Transpl. 10, 1109–1119 (2004).

    Article  PubMed  Google Scholar 

  192. Laleman, W. et al. Effect of the molecular adsorbent recirculating system and Prometheus devices on systemic haemodynamics and vasoactive agents in patients with acute-on-chronic alcoholic liver failure. Crit. Care 10, R108 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Lin, K.-H. et al. Impacts of pretransplant infections on clinical outcomes of patients with acute-on-chronic liver failure who received living-donor liver transplantation. PLoS ONE 8, e72893 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Liu, C. L. et al. Live-donor liver transplantation for acute-on-chronic hepatitis B liver failure. Transplantation 76, 1174–1179 (2003).

    Article  PubMed  Google Scholar 

  195. Bahirwani, R., Shaked, O., Bewtra, M. & Reddy, R. K. Acute-on-chronic liver failure before liver transplantation: impact on posttransplant outcomes. Transplantation 92, 952–957 (2011).

    Article  PubMed  Google Scholar 

  196. Wang, Z. X. et al. Impact of pretransplant MELD score on posttransplant outcome in orthotopic liver transplantation for patients with acute-on-chronic hepatitis B liver failure. Transplant. Proc. 39, 1501–1504 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to N. Trehanpati, A. Kumar, A. Rastogi, R. K. Gulati, S Baweja and A. Khanam for their intellectual inputs in the preparation of the figures.

Author information

Authors and Affiliations

Authors

Contributions

A.C. prepared the draft manuscript and designed the sections; S.K.S. conceived, edited, revised and prepared the final draft.

Corresponding author

Correspondence to Shiv K. Sarin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarin, S., Choudhury, A. Acute-on-chronic liver failure: terminology, mechanisms and management. Nat Rev Gastroenterol Hepatol 13, 131–149 (2016). https://doi.org/10.1038/nrgastro.2015.219

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.219

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing