Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Medical devices for the treatment of obesity

Key Points

  • Bariatric surgery provides substantial and durable weight loss, indicating that the gastrointestinal tract has key gut–brain signalling pathways that can alter control of central energy balance

  • Gastrointestinal devices assisting weight management can be placed endoscopically or laparoscopically, and aim at filling the safety and effectiveness therapeutic gap between lifestyle interventions and more invasive bariatric surgery

  • Laparoscopic adjustable gastric bands provide the largest amount of durable weight loss compared with other devices, and tailored, multidisciplinary aftercare programmes reduce explant rates and adverse outcomes

  • Intragastric balloon therapy is indicated in individuals with a BMI 30–40 kg/m2 for a maximum duration of 6 months; advances have enabled swallowable balloons not requiring endoscopic placement

  • Vagal blockade involves the surgical placement of a neuromodulator device with electrodes connected to the infradiaphragmatic vagal trunks, and achieves modest weight loss

  • A novel gastric emptying system that enables patients to aspirate gastric contents and ingested food via an endoscopically placed gastrostomy tube displays a promising benefit–risk profile

Abstract

Obesity is a major public health concern that leads to numerous metabolic, mechanical and psychological complications. Although lifestyle interventions are the cornerstone of obesity management, subsequent physiological neurohormonal adaptations limit weight loss, strongly favour weight regain and counteract sustained weight loss. A range of effective therapies are therefore needed to manage this chronic relapsing disease. Bariatric surgery delivers substantial, durable weight loss but limited access to care, perceived high risks and costs restrict uptake. Medical devices are uniquely positioned to bridge the gap between more conservative lifestyle intervention and weight-loss pharmacotherapy and more disruptive bariatric surgery. In this Review, we examine the range of gastrointestinal medical devices that are available in clinical practice to treat obesity, as well as those that are in advanced stages of development. We focus on the mechanisms of action as well as the efficacy and safety profiles of these devices. Many of these devices are placed endoscopically, which provides gastroenterologists with exciting opportunities for treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of the 'green zone' for optimal LAGB adjustment.
Figure 2: Intragastric balloons available in the USA.
Figure 3: vBloc Maestro System.
Figure 4: AspireAssist aspiration therapy system.
Figure 5
Figure 6: Creation of anastomosis using the Incisionless Anastomosis System.

Similar content being viewed by others

References

  1. World Health Organization. Global Health Observatory (GHO) data: overweight and obesity. WHO http://www.who.int/gho/ncd/risk_factors/overweight_text/en/ (2016).

  2. Stevens, J., Oakkar, E. E., Cui, Z., Cai, J. & Truesdale, K. P. US adults recommended for weight reduction by 1998 and 2013 obesity guidelines, NHANES 2007–2012. Obesity (Silver Spring) 23, 527–531 (2015).

    Google Scholar 

  3. Apovian, C. M. et al. Best practice updates for multidisciplinary care in weight loss surgery. Obesity (Silver Spring) 17, 871–879 (2009).

    Google Scholar 

  4. Magkos, F. et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 23, 591–601 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jensen, M. D. et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines and The Obesity Society. Circulation 129, S102–S138 (2014).

    PubMed  Google Scholar 

  6. Sumithran, P. et al. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 365, 1597–1604 (2011).

    CAS  PubMed  Google Scholar 

  7. Rosenbaum, M., Hirsch, J., Gallagher, D. A. & Leibel, R. L. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am. J. Clin. Nutr. 88, 906–912 (2008).

    CAS  PubMed  Google Scholar 

  8. Apovian, C. M. et al. Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 100, 342–362 (2015).

    CAS  PubMed  Google Scholar 

  9. Apovian, C. M., Garvey, W. T. & Ryan, D. H. Challenging obesity: patient, provider, and expert perspectives on the roles of available and emerging nonsurgical therapies. Obesity (Silver Spring) 23 (Suppl. 2), S1–S26 (2015).

    Google Scholar 

  10. Angrisani, L. et al. Bariatric surgery worldwide 2013. Obes. Surg. 25, 1822–1832 (2015).

    CAS  PubMed  Google Scholar 

  11. Afonso, B. B., Rosenthal, R., Li, K. M., Zapatier, J. & Szomstein, S. Perceived barriers to bariatric surgery among morbidly obese patients. Surg. Obes. Relat. Dis. 6, 16–21 (2010).

    PubMed  Google Scholar 

  12. Wharton, S. et al. Interest, views and perceived barriers to bariatric surgery in patients with morbid obesity. Clin. Obes. 6, 154–160 (2016).

    CAS  PubMed  Google Scholar 

  13. Hallberg, D. & Forsell, P. Ballongband vid behandling av massiv övervikt [Swedish]. Svensk Kirurgi. 43, 106 (1985).

    Google Scholar 

  14. Belachew, M. et al. Laparoscopic placement of adjustable silicone gastric band in the treatment of morbid obesity: how to do it. Obes. Surg. 5, 66–70 (1995).

    CAS  PubMed  Google Scholar 

  15. DeMaria, E. J., Pate, V., Warthen, M. & Winegar, D. A. Baseline data from American Society for Metabolic and Bariatric Surgery-designated Bariatric Surgery Centers of Excellence using the Bariatric Outcomes Longitudinal Database. Surg. Obes. Relat. Dis. 6, 347–355 (2010).

    PubMed  Google Scholar 

  16. Longitudinal Assessment of Bariatric Surgery Consortium et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N. Engl. J. Med. 361, 445–454 (2009).

  17. Dixon, A. F., Dixon, J. B. & O'Brien, P. E. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J. Clin. Endocrinol. Metab. 90, 813–819 (2005).

    CAS  PubMed  Google Scholar 

  18. Burton, P. R. et al. Changes in satiety, supra- and infraband transit, and gastric emptying following laparoscopic adjustable gastric banding: a prospective follow-up study. Obes. Surg. 21, 217–223 (2011).

    PubMed  Google Scholar 

  19. Dixon, J. B., Lambert, E. A. & Lambert, G. W. Neuroendocrine adaptations to bariatric surgery. Mol. Cell. Endocrinol. 418, 143–152 (2015).

    CAS  PubMed  Google Scholar 

  20. Dixon, A. F. et al. Pancreatic polypeptide meal response may predict gastric band-induced weight loss. Obes. Surg. 21, 1906–1913 (2011).

    PubMed  Google Scholar 

  21. Aneta Stefanidis, P. D. et al. An investigation of the neural mechanisms underlying the efficacy of the adjustable gastric band. Surg. Obes. Relat. Dis. 12, 828–838 (2016).

    PubMed  Google Scholar 

  22. Dixon, J. B., Straznicky, N. E., Lambert, E. A., Schlaich, M. P. & Lambert, G. W. Laparoscopic adjustable gastric banding and other devices for the management of obesity. Circulation 126, 774–785 (2012).

    PubMed  Google Scholar 

  23. O'Brien, P. E. et al. Treatment of mild to moderate obesity with laparoscopic adjustable gastric banding or an intensive medical program: a randomized trial. Ann. Intern. Med. 144, 625–633 (2006).

    PubMed  Google Scholar 

  24. Dixon, J. B. et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 299, 316–323 (2008).

    CAS  PubMed  Google Scholar 

  25. O'Brien, P. E. et al. Laparoscopic adjustable gastric banding in severely obese adolescents: a randomized trial. JAMA 303, 519–526 (2010).

    CAS  PubMed  Google Scholar 

  26. O'Brien, P. E., MacDonald, L., Anderson, M., Brennan, L. & Brown, W. A. Long-term outcomes after bariatric surgery: fifteen-year follow-up of adjustable gastric banding and a systematic review of the bariatric surgical literature. Ann. Surg. 257, 87–94 (2013).

    PubMed  Google Scholar 

  27. Rogers, C. A. et al. The By-Band study: gastric bypass or adjustable gastric band surgery to treat morbid obesity: study protocol for a multi-centre randomised controlled trial with an internal pilot phase. Trials 15, 53 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Dixon, J. B. & O'Brien, P. E. Changes in comorbidities and improvements in quality of life after LAP-BAND placement. Am. J. Surg. 184, 51S–54S (2002).

    PubMed  Google Scholar 

  29. Chen, S. B. et al. Serum C-reactive protein and white blood cell count in morbidly obese surgical patients. Obes. Surg. 19, 461–466 (2009).

    PubMed  Google Scholar 

  30. Buchwald, H. et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med. 122, 248–256.e5 (2009).

    PubMed  Google Scholar 

  31. Busetto, L. et al. Comparative long-term mortality after laparoscopic adjustable gastric banding versus nonsurgical controls. Surg. Obes. Relat. Dis. 3, 496–502 (2007).

    PubMed  Google Scholar 

  32. Peeters, A. et al. Substantial intentional weight loss and mortality in the severely obese. Ann. Surg. 246, 1028–1033 (2007).

    PubMed  Google Scholar 

  33. Watkins, B. M. et al. Laparoscopic adjustable gastric banding in an ambulatory surgery center. Surg. Obes. Relat. Dis. 4, S56–S62 (2008).

    PubMed  Google Scholar 

  34. Cobourn, C., Mumford, D., Chapman, M. A. & Wells, L. Laparoscopic gastric banding is safe in outpatient surgical centers. Obes. Surg. 20, 415–422 (2010).

    PubMed  Google Scholar 

  35. Chapman, A. E. et al. Laparoscopic adjustable gastric banding in the treatment of obesity: a systematic literature review. Surgery 135, 326–351 (2004).

    PubMed  Google Scholar 

  36. Buchwald, H., Estok, R., Fahrbach, K., Banel, D. & Sledge, I. Trends in mortality in bariatric surgery: a systematic review and meta-analysis. Surgery 142, 621–632 (2007).

    PubMed  Google Scholar 

  37. Lancaster, R. T. & Hutter, M. M. Bands and bypasses: 30-day morbidity and mortality of bariatric surgical procedures as assessed by prospective, multi-center, risk-adjusted ACS-NSQIP data. Surg. Endosc. 22, 2554–2563 (2008).

    PubMed  Google Scholar 

  38. Parikh, M. S., Laker, S., Weiner, M., Hajiseyedjavadi, O. & Ren, C. J. Objective comparison of complications resulting from laparoscopic bariatric procedures. J. Am. Coll. Surg. 202, 252–261 (2006).

    PubMed  Google Scholar 

  39. Egberts, K., Brown, W. A. & O'Brien, P. E. Systematic review of erosion after laparoscopic adjustable gastric banding. Obes. Surg. 21, 1272–1279 (2011).

    PubMed  Google Scholar 

  40. Dixon, J., Eaton, L., Cobourn, C. & Curry, T. A prospective, international, multi-center, non-randomized, open label study (HERO) of health outcomes and the rates of explants and reoperations after 5 years of treatment with laparoscopic adjustable gastric banding. Surg. Obes. Relat. Dis. 12, S79 (2016)

    Google Scholar 

  41. Khan, S. et al. Trends in bariatric surgery from 2008 to 2012. Am. J. Surg. 211, 1041–1046 (2016).

    PubMed  Google Scholar 

  42. ASGE/ASMBS Task Force on Endoscopic Bariatric Therapy. A pathway to endoscopic bariatric therapies. Surg. Obes. Relat. Dis. 7, 672–682 (2011).

  43. Nieben, O. G. & Harboe, H. Intragastric balloon as an artificial bezoar for treatment of obesity. Lancet 1, 198–199 (1982).

    CAS  PubMed  Google Scholar 

  44. Kramer, F. M. et al. Limited weight losses with a gastric balloon. Arch. Intern. Med. 149, 411–413 (1989).

    CAS  PubMed  Google Scholar 

  45. Schapiro, M. et al. Obesity and the gastric balloon: a comprehensive workshop. Tarpon Springs, Florida, March 19–21, 1987. Gastrointest. Endosc. 33, 323–327 (1987).

    CAS  PubMed  Google Scholar 

  46. Galloro, G. et al. Preliminary endoscopic technical report of a new silicone intragastric balloon in the treatment of morbid obesity. Obes. Surg. 9, 68–71 (1999).

    CAS  PubMed  Google Scholar 

  47. Genco, A. et al. BioEnterics intragastric balloon: the Italian experience with 2,515 Patients. Obes. Surg. 15, 1161–1164 (2005).

    CAS  PubMed  Google Scholar 

  48. Roman, S. et al. Intragastric balloon for “non-morbid” obesity: a retrospective evaluation of tolerance and efficacy. Obes. Surg. 14, 539–544 (2004).

    PubMed  Google Scholar 

  49. Sallet, J. A. et al. Brazilian multicenter study of the intragastric balloon. Obes. Surg. 14, 991–998 (2004).

    PubMed  Google Scholar 

  50. Totte, E., Hendrickx, L., Pauwels, M. & Van Hee, R. Weight reduction by means of intragastric device: experience with the bioenterics intragastric balloon. Obes. Surg. 11, 519–523 (2001).

    CAS  PubMed  Google Scholar 

  51. Imaz, I., Martinez-Cervell, C., Garcia-Alvarez, E. E., Sendra-Gutierrez, J. M. & Gonzalez-Enriquez, J. Safety and effectiveness of the intragastric balloon for obesity. A meta-analysis. Obes. Surg. 18, 841–846 (2008).

    PubMed  Google Scholar 

  52. Courcoulas, A. et al. Intragastric balloon as an adjunct to lifestyle intervention: a randomized controlled trial. Int. J. Obes. (Lond.) 41, 427–433 (2017).

    CAS  Google Scholar 

  53. Ponce, J. et al. The REDUCE pivotal trial: a prospective, randomized controlled pivotal trial of a dual intragastric balloon for the treatment of obesity. Surg. Obes. Relat. Dis. 11, 874–881 (2015).

    PubMed  Google Scholar 

  54. Mion, F. et al. Swallowable Obalon® gastric balloons as an aid for weight loss: a pilot feasibility study. Obes. Surg. 23, 730–733 (2013).

    PubMed  Google Scholar 

  55. U.S. Food and Drug Administration. Summary of safety and effectiveness data: Obalon Balloon System — P160001. FDA http://www.accessdata.fda.gov/cdrh_docs/pdf16/P160001b.pdf (2016).

  56. Machytka, E. et al. Elipse, a procedureless gastric balloon for weight loss: a proof-of-concept pilot study. Obes. Surg. 26, 512–516 (2016).

    PubMed  Google Scholar 

  57. Marinos, G., Eliades, C., Raman Muthusamy, V. & Greenway, F. Weight loss and improved quality of life with a nonsurgical endoscopic treatment for obesity: clinical results from a 3- and 6-month study. Surg. Obes. Relat. Dis. 10, 929–934 (2014).

    PubMed  Google Scholar 

  58. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02518685 (2017).

  59. Ritter, R. C. Gastrointestinal mechanisms of satiation for food. Physiol. Behav. 81, 249–273 (2004).

    CAS  PubMed  Google Scholar 

  60. de Lartigue, G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J. Physiol. 594, 5791–5815 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Berthoud, H. R. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol. Motil. 20 (Suppl. 1), 64–72 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mion, F. et al. Effects of intragastric balloon on gastric emptying and plasma ghrelin levels in non-morbid obese patients. Obes. Surg. 15, 510–516 (2005).

    PubMed  Google Scholar 

  63. Martinez-Brocca, M. A. et al. Intragastric balloon-induced satiety is not mediated by modification in fasting or postprandial plasma ghrelin levels in morbid obesity. Obes. Surg. 17, 649–657 (2007).

    PubMed  Google Scholar 

  64. Mathus-Vliegen, E. M. & Eichenberger, R. I. Fasting and meal-suppressed ghrelin levels before and after intragastric balloons and balloon-induced weight loss. Obes. Surg. 24, 85–94 (2014).

    CAS  PubMed  Google Scholar 

  65. Konopko-Zubrzycka, M. et al. The effect of intragastric balloon on plasma ghrelin, leptin, and adiponectin levels in patients with morbid obesity. J. Clin. Endocrinol. Metab. 94, 1644–1649 (2009).

    CAS  PubMed  Google Scholar 

  66. Mathus-Vliegen, E. M. & de Groot, G. H. Fasting and meal-induced CCK and PP secretion following intragastric balloon treatment for obesity. Obes. Surg. 23, 622–633 (2013).

    PubMed  Google Scholar 

  67. Kumar, N. Endoscopic therapy for weight loss: gastroplasty, duodenal sleeves, intragastric balloons, and aspiration. World J. Gastrointest. Endosc. 7, 847–859 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Issa, I., Taha, A. & Azar, C. Acute pancreatitis caused by intragastric balloon: a case report. Obes. Res. Clin. Pract. 10, 340–343 (2016).

    PubMed  Google Scholar 

  69. Mohammed, A. E. & Benmousa, A. Acute pancreatitis complicating intragastric balloon insertion. Case Rep. Gastroenterol. 2, 291–295 (2008).

    PubMed  PubMed Central  Google Scholar 

  70. U.S. Food and Drug Administration. The FDA alerts health care providers about potential risks with fluid-filled intragastric balloons. FDA http://www.fda.gov/MedicalDevices/ResourcesforYou/HealthCareProviders/ucm540655.htm (2017).

  71. De Castro, M. L. et al. Efficacy, safety, and tolerance of two types of intragastric balloons placed in obese subjects: a double-blind comparative study. Obes. Surg. 20, 1642–1646 (2010).

    PubMed  Google Scholar 

  72. Machytka, E. et al. Adjustable intragastric balloons: a 12-month pilot trial in endoscopic weight loss management. Obes. Surg. 21, 1499–1507 (2011).

    PubMed  PubMed Central  Google Scholar 

  73. Yap Kannan, R. & Nutt, M. R. Are intra-gastric adjustable balloon system safe? A case series. Int. J. Surg. Case Rep. 4, 936–938 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Dumonceau, J. M. Evidence-based review of the Bioenterics intragastric balloon for weight loss. Obes. Surg. 18, 1611–1617 (2008).

    PubMed  Google Scholar 

  75. Genco, A. et al. BioEnterics Intragastric Balloon (BIB): a short-term, double-blind, randomised, controlled, crossover study on weight reduction in morbidly obese patients. Int. J. Obes. (Lond.) 30, 129–133 (2006).

    CAS  Google Scholar 

  76. Alfalah, H. et al. Intragastric balloon for preoperative weight reduction in candidates for laparoscopic gastric bypass with massive obesity. Obes. Surg. 16, 147–150 (2006).

    PubMed  Google Scholar 

  77. Gottig, S., Weiner, R. A. & Daskalakis, M. Preoperative weight reduction using the intragastric balloon. Obes. Facts 2 (Suppl. 1), 20–23 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. Frutos, M. D. et al. Intragastric balloon reduces liver volume in super-obese patients, facilitating subsequent laparoscopic gastric bypass. Obes. Surg. 17, 150–154 (2007).

    PubMed  Google Scholar 

  79. Coffin, B. et al. Impact of intragastric balloon before laparoscopic gastric bypass on patients with super obesity: a randomized multicenter study. Obes. Surg. 27, 902–909 (2017).

    CAS  PubMed  Google Scholar 

  80. Kral, J. G. & Gortz, L. Truncal vagotomy in morbid obesity. Int. J. Obes. 5, 431–435 (1981).

    CAS  PubMed  Google Scholar 

  81. Kral, J. G. Surgical treatment of obesity. Med. Clin. North Am. 73, 251–264 (1989).

    CAS  PubMed  Google Scholar 

  82. Lebovitz, H. E. Interventional treatment of obesity and diabetes: an interim report on gastric electrical stimulation. Rev. Endocr. Metab. Disord. 17, 73–80 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Camilleri, M. et al. Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery 143, 723–731 (2008).

    CAS  PubMed  Google Scholar 

  84. Ikramuddin, S. et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA 312, 915–922 (2014).

    CAS  PubMed  Google Scholar 

  85. Shikora, S. A. et al. Sustained weight loss with vagal nerve blockade but not with sham: 18-month results of the ReCharge trial. J. Obes. 2015, 365604 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Apovian, C. M. et al. Two-year outcomes of vagal nerve blocking (vBloc) for the treatment of obesity in the ReCharge trial. Obes. Surg. 27, 169–176 (2017).

    PubMed  Google Scholar 

  87. Shikora, S. A. et al. Implantable gastric stimulation for the treatment of clinically severe obesity: results of the SHAPE trial. Surg. Obes. Relat. Dis. 5, 31–37 (2009).

    PubMed  Google Scholar 

  88. Lebovitz, H. E. et al. Fasting plasma triglycerides predict the glycaemic response to treatment of type 2 diabetes by gastric electrical stimulation. A novel lipotoxicity paradigm. Diabet. Med. 30, 687–693 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lebovitz, H. E. et al. Treatment of patients with obese type 2 diabetes with tantalus-DIAMOND® gastric electrical stimulation: normal triglycerides predict durable effects for at least 3 years. Horm. Metab. Res. 47, 456–462 (2015).

    CAS  PubMed  Google Scholar 

  90. Lebovitz, H. E. et al. Gastric electrical stimulation treatment of type 2 diabetes: effects of implantation versus meal-mediated stimulation. A randomized blinded cross-over trial. Physiol. Rep. 3, e12456 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Miras, M., Serrano, M., Duran, C., Valino, C. & Canton, S. Early experience with customized, meal-triggered gastric electrical stimulation in obese patients. Obes. Surg. 25, 174–179 (2015).

    CAS  PubMed  Google Scholar 

  92. Horbach, T. et al. Abiliti closed-loop gastric electrical stimulation system for treatment of obesity: clinical results with a 27-month follow-up. Obes. Surg. 25, 1779–1787 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Horbach, T. et al. Closed-loop gastric electrical stimulation versus laparoscopic adjustable gastric band for the treatment of obesity: a randomized 12-month multicenter study. Int. J. Obes. (Lond.) 40, 1891–1898 (2016).

    CAS  Google Scholar 

  94. Pellegrini, C. A. et al. The comparison of a technology-based system and an in-person behavioral weight loss intervention. Obesity (Silver Spring) 20, 356–363 (2012).

    Google Scholar 

  95. Polzien, K. M., Jakicic, J. M., Tate, D. F. & Otto, A. D. The efficacy of a technology-based system in a short-term behavioral weight loss intervention. Obesity (Silver Spring) 15, 825–830 (2007).

    Google Scholar 

  96. Jakicic, J. M. et al. Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: the IDEA randomized clinical trial. JAMA 316, 1161–1171 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. Forssell, H. & Noren, E. A novel endoscopic weight loss therapy using gastric aspiration: results after 6 months. Endoscopy 47, 68–71 (2015).

    PubMed  Google Scholar 

  98. Sullivan, S., Stein, R., Jonnalagadda, S., Mullady, D. & Edmundowicz, S. Aspiration therapy leads to weight loss in obese subjects: a pilot study. Gastroenterology 145, 1245–1252.e5 (2013).

    PubMed  Google Scholar 

  99. Thompson, C. C. et al. Percutaneous gastrostomy device for the treatment of class II and class III obesity: results of a randomized controlled trial. Am. J. Gastroenterol. 112, 447–457 (2017).

    PubMed  Google Scholar 

  100. U.S. Food and Drug Administration. Summary of safety and effectiveness data: AspireAssist®. FDA http://www.accessdata.fda.gov/cdrh_docs/pdf15/p150024b.pdf (2016).

  101. Koehestanie, P. et al. The effect of the endoscopic duodenal-jejunal bypass liner on obesity and type 2 diabetes mellitus, a multicenter randomized controlled trial. Ann. Surg. 260, 984–992 (2014).

    PubMed  Google Scholar 

  102. Kaplan, L. M. et al. Endobarrier therapy is associated with glycemic improvement, weight loss and safety issues in patients with obesity and type 2 diabetes on oral antihyperglycemic agents. Presented at the American Diabetes Association 76th Scientific Sessions, New Orleans, USA (2016)

  103. Rohde, U., Hedback, N., Gluud, L. L., Vilsboll, T. & Knop, F. K. Effect of the EndoBarrier Gastrointestinal Liner on obesity and type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes. Metab. 18, 300–305 (2016).

    CAS  PubMed  Google Scholar 

  104. Rubino, F. et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann. Surg. 244, 741–749 (2006).

    PubMed  PubMed Central  Google Scholar 

  105. de Jonge, C. et al. Endoscopic duodenal-jejunal bypass liner rapidly improves type 2 diabetes. Obes. Surg. 23, 1354–1360 (2013).

    PubMed  Google Scholar 

  106. Vilarrasa, N. et al. Endobarrier® in grade I obese patients with long-standing type 2 diabetes: role of gastrointestinal hormones in glucose metabolism. Obes. Surg. 27, 569–577 (2016).

    Google Scholar 

  107. Rohde, U. et al. The impact of EndoBarrier Gastrointestinal Liner in obese patients with normal glucose tolerance and patients with type 2 diabetes. Diabetes Obes. Metab. 19, 189–199 (2017).

    CAS  PubMed  Google Scholar 

  108. de Moura, E. G. et al. Effects of duodenal-jejunal bypass liner (EndoBarrier®) on gastric emptying in obese and type 2 diabetic patients. Obes. Surg. 25, 1618–1625 (2015).

    PubMed  Google Scholar 

  109. Betzel, B. et al. Safety experience with the duodenal-jejunal bypass liner: an endoscopic treatment for diabetes and obesity. Gastrointest. Endosc. 82, 845–852 (2015).

    PubMed  Google Scholar 

  110. Zechmeister-Koss, I., Huic, M., Fischer, S. & European Network for Health Technology Assessment. The duodenal-jejunal bypass liner for the treatment of type 2 diabetes mellitus and/or obesity: a systematic review. Obes. Surg. 24, 310–323 (2014).

    PubMed  Google Scholar 

  111. GI Dynamics. TGA cancellation of EndoBarrier listing. GI Dynamics http://gidynamics.com/2016/10/24/tga-cancellation-of-endobarrier-listing/ (2016).

  112. Sandler, B. J. et al. Human experience with an endoluminal, endoscopic, gastrojejunal bypass sleeve. Surg. Endosc. 25, 3028–3033 (2011).

    PubMed  Google Scholar 

  113. Sandler, B. J. et al. One-year human experience with a novel endoluminal, endoscopic gastric bypass sleeve for morbid obesity. Surg. Endosc. 29, 3298–3303 (2015).

    PubMed  Google Scholar 

  114. Neylan, C. J., Dempsey, D. T., Tewksbury, C. M., Williams, N. N. & Dumon, K. R. Endoscopic treatments of obesity: a comprehensive review. Surg. Obes. Relat. Dis. 12, 1108–1115 (2016).

    PubMed  Google Scholar 

  115. Rajagopalan, H. et al. Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes: 6-month interim analysis from the first-in-human proof-of-concept study. Diabetes Care 39, 2254–2261 (2016).

    CAS  PubMed  Google Scholar 

  116. Dargent, J. Novel endoscopic management of obesity. Clin. Endosc. 49, 30–36 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Kipshidze, N., Archvadze, A., Bertog, S., Leon, M. B. & Sievert, H. Endovascular bariatrics: first in humans study of gastric artery embolization for weight loss. JACC Cardiovasc. Interv. 8, 1641–1644 (2015).

    PubMed  Google Scholar 

  118. Simonson, D. C. et al. Treatment of obese T2DM and pre-diabetes with dual-path enteral bypass created by an incisionless anastomosis system (IAS). Presented at the American Diabetes Association Scientific Sessions, New Orleans, USA (2016).

  119. U.S. Food and Drug Administration. U.S. Food and Drug Administration letter. FDA http://www.accessdata.fda.gov/cdrh_docs/pdf15/den150033.pdf (2016).

  120. Lerner, H., Whang, J. & Nipper, R. Benefit-risk paradigm for clinical trial design of obesity devices: FDA proposal. Surg. Endosc. 27, 702–707 (2013).

    PubMed  Google Scholar 

  121. Brethauer, S. A. et al. Endoluminal procedures for bariatric patients: expectations among bariatric surgeons. Surg. Obes. Relat. Dis. 5, 231–236 (2009).

    PubMed  Google Scholar 

  122. Talamini, M. A. Benefit-risk paradigm for clinical trial design of obesity devices: FDA proposal. Surg. Endosc. 27, 701 (2013).

    PubMed  Google Scholar 

  123. Cawley, J. & Meyerhoefer, C. The medical care costs of obesity: an instrumental variables approach. J. Health Econ. 31, 219–230 (2012).

    PubMed  Google Scholar 

  124. Finkelstein, E. A., Trogdon, J. G., Cohen, J. W. & Dietz, W. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff. (Millwood) 28, w822–w831 (2009).

    Google Scholar 

  125. Colagiuri, S. et al. The cost of overweight and obesity in Australia. Med. J. Aust. 192, 260–264 (2010).

    PubMed  Google Scholar 

  126. Tsai, A. G., Williamson, D. F. & Glick, H. A. Direct medical cost of overweight and obesity in the USA: a quantitative systematic review. Obes. Rev. 12, 50–61 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Trogdon, J. G., Finkelstein, E. A., Hylands, T., Dellea, P. S. & Kamal-Bahl, S. J. Indirect costs of obesity: a review of the current literature. Obes. Rev. 9, 489–500 (2008).

    CAS  PubMed  Google Scholar 

  128. Cremieux, P. Y. et al. A study on the economic impact of bariatric surgery. Am. J. Manag. Care 14, 589–596 (2008).

    PubMed  Google Scholar 

  129. Keating, C. L. et al. Cost-effectiveness of surgically induced weight loss for the management of type 2 diabetes: modeled lifetime analysis. Diabetes Care 32, 567–574 (2009).

    PubMed  PubMed Central  Google Scholar 

  130. Dixon, J. B., Eaton, L. L., Vincent, V. & Michaelson, R. LAP-BAND for BMI 30-40: 5-year health outcomes from the multicenter pivotal study. Int. J. Obes. (Lond.) 40, 291–298 (2016).

    CAS  Google Scholar 

  131. Michaelson, R., Murphy, D. K., Gross, T. M., Whitcup, S. M. & LAP-BAND Lower BMI Study Group. LAP-BAND for lower BMI: 2-year results from the multicenter pivotal study. Obesity (Silver Spring) 21, 1148–1158 (2013).

    Google Scholar 

  132. Phillips, E. et al. Safety and effectiveness of Realize adjustable gastric band: 3-year prospective study in the United States. Surg. Obes. Relat. Dis. 5, 588–597 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

J.D. acknowledges the support of the National Health and Medical Research Council through a senior research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this manuscript

Corresponding author

Correspondence to John Dixon.

Ethics declarations

Competing interests

J.D. has provided consultancy services to Apollo Endosurgery, Bariatric Advantage, Covidien, Nestle Health Science, iNova Pharmaceuticals and Novo Nordisk. P.C.L. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, P., Dixon, J. Medical devices for the treatment of obesity. Nat Rev Gastroenterol Hepatol 14, 553–564 (2017). https://doi.org/10.1038/nrgastro.2017.80

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing