Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging insights into natural killer cells in human peripheral tissues

Key Points

  • Natural killer (NK) cells are present in most human tissues. A high frequency of NK cells can be found in peripheral blood, the lungs, the uterus and the liver, whereas NK cells are scarce in lymph nodes and tonsils, as well as some other peripheral organs.

  • NK cells in humans are highly diverse. This diversity is generated by developmentally distinct NK cell subsets, killer cell immunoglobulin-like receptor (KIR) expression, NK cell differentiation, clonal-like expansion in response to pathogens and tissue distribution.

  • The current paradigm holds that NK cells develop in the bone marrow and secondary lymphoid tissues. However, emerging evidence also supports a 'peripheral view' of NK cell development with precursors capable of progressing into mature NK cells present in many peripheral tissues.

  • Tissue-resident NK cells are characterized by surface expression of CD69, CD103 and CD49a; however, a detailed characterization of tissue-resident NK cells is still lacking for many human tissues.

  • Tissue-resident NK cells exhibiting a CD56bright phenotype dominate certain peripheral tissues, such as the gut, tonsils, lymph nodes and skin, whereas other sites, such as the lungs and the liver, contain higher frequencies of CD56dim cells. The uterus contains a unique subset of NK cells sharing features of both CD56bright and CD56dim cells.

  • It is clear that many peripheral tissues contain tissue-resident NK cells. However, we currently lack knowledge of the role of these cells in numerous human diseases.

Abstract

Natural killer (NK) cells have long been considered to be a homogenous population of innate lymphocytes with limited phenotypic and functional diversity. However, recent findings have revealed that these cells comprise a large number of distinct populations with diverse characteristics. Some of these characteristics may relate to their developmental origin, and others represent differences in differentiation that are influenced by factors such as tissue localization and imprints by viral infections. In this Review, we provide a comprehensive overview of the emerging knowledge about the development, differentiation and function of human NK cell populations, with a particular focus on NK cells in peripheral tissues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity of human NK cell populations.
Figure 2: Characteristics of human NK cells in circulation and peripheral tissues.
Figure 3: Proposed model for development of NK cells in human peripheral tissues.

Similar content being viewed by others

References

  1. Kiessling, R., Klein, E. & Wigzell, H. 'Natural' killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Moffett, A. & Colucci, F. Uterine NK cells: active regulators at the maternal-fetal interface. J. Clin. Invest. 124, 1872–1879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bryceson, Y. T. et al. Molecular mechanisms of natural killer cell activation. J. Innate Immun. 3, 216–226 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Ljunggren, H. G. & Kärre, K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Cooper, M. A. et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 97, 3146–3151 (2001). This is the first paper to show the distinct immunoregulatory role of CD56bright NK cells.

    Article  CAS  PubMed  Google Scholar 

  9. Fauriat, C., Long, E. O., Ljunggren, H.-G. & Bryceson, Y. T. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 115, 2167–2176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lanier, L. L., Le, A. M., Civin, C. I., Loken, M. R. & Phillips, J. H. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J. Immunol. 136, 4480–4486 (1986).

    CAS  PubMed  Google Scholar 

  11. Juelke, K. et al. CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 116, 1299–1307 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Romagnani, C. et al. CD56brightCD16 killer Ig-like receptor NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J. Immunol. 178, 4947–4955 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Carson, W. E., Fehniger, T. A. & Caligiuri, M. A. CD56bright natural killer cell subsets: characterization of distinct functional responses to interleukin-2 and the c-kit ligand. Eur. J. Immunol. 27, 354–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    CAS  PubMed  Google Scholar 

  15. Wu, C. et al. Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell 14, 486–499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tomasello, E. et al. Mapping of NKp46+ cells in healthy human lymphoid and non-lymphoid tissues. Front. Immunol. 3, 344 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fehniger, T. A. et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101, 3052–3057 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Manser, A. R., Weinhold, S. & Uhrberg, M. Human KIR repertoires: shaped by genetic diversity and evolution. Immunol. Rev. 267, 178–196 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Horowitz, A. et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl Med. 5, 208ra145 (2013). This study is the most comprehensive analysis of human NK cell diversity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Marquardt, N. et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J. Immunol. 194, 2467–2471 (2015). This is the first report on tissue-specific clonal-like human NK cells.

    Article  CAS  PubMed  Google Scholar 

  21. Hudspeth, K. et al. Human liver-resident CD56bright/CD16neg NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways. J. Autoimmun. 66, 40–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Male, V. et al. The effect of pregnancy on the uterine NK cell KIR repertoire. Eur. J. Immunol. 41, 3017–3027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Björkström, N. K. et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 116, 3853–3864 (2010).

    Article  PubMed  CAS  Google Scholar 

  24. Lopez-Vergès, S. et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 116, 3865–3874 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yu, J. et al. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood 115, 274–281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gumá, M. et al. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104, 3664–3671 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. Lopez-Vergès, S. et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl Acad. Sci. USA 108, 14725–14732 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Béziat, V. et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121, 2678–2688 (2013). This study is the most comprehensive characterization of clonal-like NK cell expansions.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Schlums, H. et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42, 443–456 (2015). This is the first paper showing CMV-driven global epigenetic reprogramming in clonal-like NK cell expansions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Björkström, N. K. et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J. Exp. Med. 208, 13–21 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hendricks, D. W. et al. Cutting edge: NKG2ChiCD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein-Barr virus. J. Immunol. 192, 4492–4496 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Lee, J. et al. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42, 431–442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9, 209–222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Farber, D. L., Yudanin, N. A. & Restifo, N. P. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14, 24–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mackay, L. K. et al. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol. 194, 2059–2063 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carbone, F. R. Tissue-resident memory T cells and fixed immune surveillance in nonlymphoid organs. J. Immunol. 195, 17–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Cortez, V. S., Fuchs, A., Cella, M., Gilfillan, S. & Colonna, M. Cutting edge: salivary gland NK cells develop independently of Nfil3 in steady-state. J. Immunol. 192, 4487–4491 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Sojka, D. K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3, e01659 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tang, L. et al. Differential phenotypic and functional properties of liver-resident NK cells and mucosal ILC1s. J. Autoimmun. 67, 29–35 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Shiow, L. R. et al. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006).

    CAS  PubMed  Google Scholar 

  45. Walzer, T. et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat. Immunol. 8, 1337–1344 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Mayol, K., Biajoux, V., Marvel, J., Balabanian, K. & Walzer, T. Sequential desensitization of CXCR4 and S1P5 controls natural killer cell trafficking. Blood 118, 4863–4871 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Speak, A. O. et al. Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1. Blood 123, 51–60 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ottaviani, C. et al. CD56brightCD16 NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur. J. Immunol. 36, 118–128 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Burt, B. M. et al. The lytic potential of human liver NK cells is restricted by their limited expression of inhibitory killer Ig-like receptors. J. Immunol. 183, 1789–1796 (2009). This is the first description of NK cell education outside peripheral blood.

    Article  CAS  PubMed  Google Scholar 

  50. Siewiera, J. et al. Human cytomegalovirus infection elicits new decidual natural killer cell effector functions. PLoS Pathog. 9, e1003257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mselle, T. F. et al. Unique characteristics of NK cells throughout the human female reproductive tract. Clin. Immunol. 124, 69–76 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Ali, T. H. et al. Enrichment of CD56dimKIR + CD57 + highly cytotoxic NK cells in tumour-infiltrated lymph nodes of melanoma patients. Nat. Commun. 5, 5639 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Takayama, T. et al. Imbalance of NKp44+NKp46 and NKp44NKp46+ natural killer cells in the intestinal mucosa of patients with Crohn's disease. Gastroenterology 139, 882–892–892.e1–3 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Ray, S. J. et al. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20, 167–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Morgan, A. J. et al. CXCR6 identifies a putative population of retained human lung T cells characterised by co-expression of activation markers. Immunobiology 213, 599–608 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. van der Molen, R. G. et al. Menstrual blood closely resembles the uterine immune micro-environment and is clearly distinct from peripheral blood. Hum. Reprod. 29, 303–314 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Geiselhart, A. et al. Comparative analysis of the immunophenotypes of decidual and peripheral blood large granular lymphocytes and T cells during early human pregnancy. Am. J. Reprod. Immunol. 33, 315–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Cepek, K. L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature 372, 190–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Hadley, G. A. & Higgins, J. M. G. Integrin αEβ7: molecular features and functional significance in the immune system. Adv. Exp. Med. Biol. 819, 97–110 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Kramer, R. H. & Marks, N. Identification of integrin collagen receptors on human melanoma cells. J. Biol. Chem. 264, 4684–4688 (1989).

    CAS  PubMed  Google Scholar 

  63. Cerdeira, A. S. et al. Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors. J. Immunol. 190, 3939–3948 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Siewiera, J. et al. Natural cytotoxicity receptor splice variants orchestrate the distinct functions of human natural killer cell subtypes. Nat. Commun. 6, 10183 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Phillips, J. H. et al. Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3ε,δ proteins. J. Exp. Med. 175, 1055–1066 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Ivarsson, M. A. et al. Differentiation and functional regulation of human fetal NK cells. J. Clin. Invest. 123, 3889–3901 (2013). This is a comprehensive analysis of NK cells in the developing human fetus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Serafini, N., Vosshenrich, C. A. J. & Di Santo, J. P. Transcriptional regulation of innate lymphoid cell fate. Nat. Rev. Immunol. 15, 415–428 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Huntington, N. D., Vosshenrich, C. A. J. & Di Santo, J. P. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat. Rev. Immunol. 7, 703–714 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Freud, A. G. et al. A human CD34+ subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Immunity 22, 295–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Freud, A. G. et al. Evidence for discrete stages of human natural killer cell differentiation in vivo. J. Exp. Med. 203, 1033–1043 (2006). This is the first identification of an extramedullary sequential NK cell developmental pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hughes, T. et al. The transcription factor AHR prevents the differentiation of a stage 3 innate lymphoid cell subset to natural killer cells. Cell Rep. 8, 150–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Renoux, V. M. et al. Identification of a human natural killer cell lineage-restricted progenitor in fetal and adult tissues. Immunity 43, 394–407 (2015). This is the first description of an NKP in humans.

    Article  CAS  PubMed  Google Scholar 

  75. Gordon, S. M. et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36, 55–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Daussy, C. et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 211, 563–577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gascoyne, D. M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10, 1118–1124 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Vosshenrich, C. A. J. et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat. Immunol. 7, 1217–1224 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Moroso, V. et al. NK cells can generate from precursors in the adult human liver. Eur. J. Immunol. 41, 3340–3350 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Vacca, P. et al. CD34+ hematopoietic precursors arepresent in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc. Natl Acad. Sci. USA 108, 2402–2407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Keskin, D. B. et al. TGFβ promotes conversion of CD16+ peripheral blood NK cells into CD16 NK cells with similarities to decidual NK cells. Proc. Natl Acad. Sci. USA 104, 3378–3383 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hao, Q.-L. et al. Human intrathymic lineage commitment is marked by differential CD7 expression: identification of CD7 lympho-myeloid thymic progenitors. Blood 111, 1318–1326 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McClory, S. et al. Evidence for a stepwise program of extrathymic T cell development within the human tonsil. J. Clin. Invest. 122, 1403–1415 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Res, P. et al. CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood 87, 5196–5206 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Mingari, M. C. et al. Interleukin-15-induced maturation of human natural killer cells from early thymic precursors: selective expression of CD94/NKG2-A as the only HLA class I-specific inhibitory receptor. Eur. J. Immunol. 27, 1374–1380 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Chinen, H. et al. Lamina propria c-kit+ immune precursors reside in human adult intestine and differentiate into natural killer cells. Gastroenterology 133, 559–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Wisse, E., van't Noordende, J. M., van der Meulen, J. & Daems, W. T. The pit cell: description of a new type of cell occurring in rat liver sinusoids and peripheral blood. Cell Tissue Res. 173, 423–435 (1976).

    Article  CAS  PubMed  Google Scholar 

  88. Bouwens, L., Remels, L., Baekeland, M., Van Bossuyt, H. & Wisse, E. Large granular lymphocytes or 'pit cells' from rat liver: isolation, ultrastructural characterization and natural killer activity. Eur. J. Immunol. 17, 37–42 (1987).

    Article  CAS  PubMed  Google Scholar 

  89. Racanelli, V. & Rehermann, B. The liver as an immunological organ. Hepatology 43, S54–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Heydtmann, M. et al. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J. Immunol. 174, 1055–1062 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 11, 1127–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Peng, H. & Tian, Z. Re-examining the origin and function of liver-resident NK cells. Trends Immunol. 36, 293–299 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Thomson, A. W. & Knolle, P. A. Antigen-presenting cell function in the tolerogenic liver environment. Nat. Rev. Immunol. 10, 753–766 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Tu, Z. et al. TLR-dependent cross talk between human Kupffer cells and NK cells. J. Exp. Med. 205, 233–244 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jo, J. et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLoS Pathog. 10, e1004210 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Stegmann, K. A. et al. Interferon-α-induced TRAIL on natural killer cells is associated with control of hepatitis C virus infection. Gastroenterology 138, 1885–1897 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Dunn, C. et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J. Exp. Med. 204, 667–680 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Peppa, D. et al. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J. Exp. Med. 210, 99–114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Khakoo, S. I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305, 872–874 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Lunemann, S. et al. Effects of HDV infection and pegylated interferon α treatment on the natural killer cell compartment in chronically infected individuals. Gut 64, 469–482 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Pellicoro, A., Ramachandran, P., Iredale, J. P. & Fallowfield, J. A. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat. Rev. Immunol. 14, 181–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Glässner, A. et al. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab. Invest. 92, 967–977 (2012).

    Article  PubMed  CAS  Google Scholar 

  103. Gur, C. et al. NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis. Gut 61, 885–893 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Wu, Y. et al. Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatology 57, 1107–1116 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Hoechst, B. et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50, 799–807 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Ohira, M. et al. Adoptive immunotherapy with liver allograft-derived lymphocytes induces anti-HCV activity after liver transplantation in humans and humanized mice. J. Clin. Invest. 119, 3226–3235 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wilkens, J. et al. Uterine NK cells regulate endometrial bleeding in women and are suppressed by the progesterone receptor modulator asoprisnil. J. Immunol. 191, 2226–2235 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Björkström, N. K., Kekäläinen, E. & Mjösberg, J. Tissue-specific effector functions of innate lymphoid cells. Immunology 139, 416–427 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. King, A., Balendran, N., Wooding, P., Carter, N. P. & Loke, Y. W. CD3 leukocytes present in the human uterus during early placentation: phenotypic and morphologic characterization of the CD56++ population. Dev. Immunol. 1, 169–190 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Verma, S., King, A. & Loke, Y. W. Expression of killer cell inhibitory receptors on human uterine natural killer cells. Eur. J. Immunol. 27, 979–983 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Sharkey, A. M. et al. Tissue-specific education of decidual NK cells. J. Immunol. 195, 3026–3032 (2015). This is the first report on the education of uterine NK cells and the most comprehensive characterization of KIRs on uterine NK cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ni, F. et al. MicroRNA transcriptomes of distinct human NK cell populations identify miR-362-5p as anessential regulator of NK cell function. Sci. Rep. 5, 9993 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Koopman, L. A. et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J. Exp. Med. 198, 1201–1212 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kopcow, H. D. et al. Human decidual NK cells from gravid uteri and NK cells from cycling endometrium are distinct NK cell subsets. Placenta 31, 334–338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kopcow, H. D. et al. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc. Natl Acad. Sci. USA 102, 15563–15568 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vacca, P. et al. Analysis of natural killer cells isolated from human decidua: Evidence that 2B4 (CD244) functions as an inhibitory receptor and blocks NK-cell function. Blood 108, 4078–4085 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Male, V. et al. Immature NK cells, capable of producing IL-22, are present in human uterine mucosa. J. Immunol. 185, 3913–3918 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Castriconi, R. et al. Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc. Natl Acad. Sci. USA 100, 4120–4125 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Simpson, H., Robson, S. C., Bulmer, J. N., Barber, A. & Lyall, F. Transforming growth factor β expression in human placenta and placental bed during early pregnancy. Placenta 23, 44–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Moffett, A. & Loke, C. Immunology of placentation in eutherian mammals. Nat. Rev. Immunol. 6, 584–594 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Moffett, A. & Colucci, F. Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction. Immunol. Rev. 267, 283–297 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Apps, R. et al. Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127, 26–39 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kalkunte, S. S. et al. Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface. J. Immunol. 182, 4085–4092 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Hanna, J. et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 12, 1065–1074 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Robson, A. et al. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J. 26, 4876–4885 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Carrega, P. et al. Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56bright CD16 cells and display an impaired capability to kill tumor cells. Cancer 112, 863–875 (2008).

    Article  PubMed  Google Scholar 

  127. Freeman, C. M. et al. Human CD56+ cytotoxic lung lymphocytes kill autologous lung cells in chronic obstructive pulmonary disease. PLoS ONE 9, e103840 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Platonova, S. et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 71, 5412–5422 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Robinson, B. W., Pinkston, P. & Crystal, R. G. Natural killer cells are present in the normal human lung but are functionally impotent. J. Clin. Invest. 74, 942–950 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Weissman, D. N., deShazo, R. D. & Banks, D. E. Modulation of natural killer cell function by human alveolar macrophages. J. Allergy Clin. Immunol. 78, 571–577 (1986).

    Article  CAS  PubMed  Google Scholar 

  131. Wang, J. et al. Lung natural killer cells in mice: phenotype and response to respiratory infection. Immunology 137, 37–47 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Katchar, K., Söderström, K., Wahlstrom, J., Eklund, A. & Grunewald, J. Characterisation of natural killer cells and CD56+ T-cells in sarcoidosis patients. Eur. Respir. J. 26, 77–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. & Rudensky, A. Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gazit, R. et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat. Immunol. 7, 517–523 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Zhou, G., Juang, S. W. W. & Kane, K. P. NK cells exacerbate the pathology of influenza virus infection in mice. Eur. J. Immunol. 43, 929–938 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Jegaskanda, S., Weinfurter, J. T., Friedrich, T. C. & Kent, S. J. Antibody-dependent cellular cytotoxicity is associated with control of pandemic H1N1 influenza virus infection of macaques. J. Virol. 87, 5512–5522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Thome, J. J. C. et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Watanabe, R. et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl Med. 7, 279ra39 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Clark, R. A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Transl Med. 4, 117ra7 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Lundin, J. et al. Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100, 768–773 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Moroso, V. et al. Liver grafts contain a unique subset of natural killer cells that are transferred into the recipient after liver transplantation. Liver Transpl. 16, 895–908 (2010).

    Article  PubMed  Google Scholar 

  143. Haniffa, M. et al. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J. Exp. Med. 206, 371–385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mace, E. M. et al. Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56bright subset. Blood 121, 2669–2677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ferlazzo, G. et al. The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J. Immunol. 172, 1455–1462 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Schleypen, J. S. et al. Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin. Cancer Res. 12, 718–725 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Faget, J. et al. Early detection of tumor cells by innate immune cells leads to Treg recruitment through CCL22 production by tumor cells. Cancer Res. 71, 6143–6152 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Dalbeth, N. et al. CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J. Immunol. 173, 6418–6426 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. O'Rourke, R. W., Gaston, G. D., Meyer, K. A., White, A. E. & Marks, D. L. Adipose tissue NK cells manifest an activated phenotype in human obesity. Metab. Clin. Exp. 62, 1557–1561 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Vacca, P. et al. Identification of diverse innate lymphoid cells in human decidua. Mucosal Immunol. 8, 254–264 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank present and past members of their groups for their contributions towards the understanding of human NK cells in health and disease. Their work has been supported by grants from the Swedish Research Council, the Swedish Cancer Society, the Swedish Society for Medical Research, the Cancer Research Foundations of Radiumhemmet, the Swedish Society of Medicine, the Novo Nordisk Foundation, Åke Wiberg's Foundation, Åke Olsson's Foundation, Bengt Ihre's Foundation, Magnus Bergwalls Foundation, the Stockholm County Council, the Tobias Foundation, the Swedish Foundation for Strategic Research and the Karolinska Institutet. The authors apologize to colleagues whose work has not been cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niklas K. Björkström or Jakob Michaëlsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Killer cell immunoglobulin-like receptors

(KIRs). A polygenic and highly polymorphic family of receptor molecules recognizing primarily HLA class I ligands in humans; natural killer (NK) cells are the major KIR-expressing cells. A salient feature of KIRs is their stochastic distribution of cell-surface expression across the NK cell compartment, resulting in highly diverse NK cell KIR repertoires unique for each individual and population.

NK cell education

A functional maturation process of natural killer (NK) cells involving initial interaction between inhibitory NK cell receptors and self-MHC class I molecules. NK cells that express inhibitory receptors only to non-self MHC class I molecules or lack expression of inhibitory receptors are maintained through this mechanism in a hyporesponsive (tolerant) mode, preventing auto-aggression.

Cytomegalovirus

(CMV). A herpesvirus infecting a large proportion of the human population. Natural killer (NK) cells are crucial for the control of CMV; however, the virus also has multiple immune evasion mechanisms that target NK cell functions and establish latency.

Parabiosis

Experimental technique in which two animals are surgically joined to create a shared circulatory system.

Decidua

The endometrium that undergoes changes to support placentation during pregnancy. The decidua, which is in direct contact with the placenta, contains spiral arteries that are remodelled during pregnancy to become less convoluted and develop an enlarged diameter to increase maternal blood flow to the placenta.

Liver sinusoids

A type of sinusoidal blood vessels that contain slow-flowing blood from the oxygen-rich hepatic artery and the nutrient-rich portal venous system.

Kupffer cells

A specialized macrophage population that lines the walls of the liver sinusoids. These antigen-presenting cells remove microbial products and endotoxins from the portal venous blood and regulate intrahepatic immune responses.

Tissue residency

A characteristic of immune cells that occupy non-lymphoid tissues without apparent recirculation via the lymphatic system or blood.

Hepatic stellate cells

A specialized cell type that is present in the perisinusoidal space of the liver, representing the major vitamin A-storing cells of the body. When aberrantly activated, these cells secrete collagen and contribute to liver fibrosis development.

Endometrium

An outer mucosal surface of the uterus consisting of a single layer of epithelium and a lamina propria, which contains tubular glands and spiral arteries. The functional layer of the endometrium is built up during each menstrual cycle.

Alemtuzumab

A medication that depletes CD52-expressing circulating immune cells, including natural killer cells, as a therapy for patients with lymphoma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Björkström, N., Ljunggren, HG. & Michaëlsson, J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol 16, 310–320 (2016). https://doi.org/10.1038/nri.2016.34

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.34

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing