Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory lymphocytes

Antigen-induced regulatory T cells in autoimmunity

Key Points

  • It is possible that antigen-specific regulatory T (TReg) cells can be induced to prevent or treat autoimmune diseases.

  • The effector functions of antigen-induced TReg cells cannot be defined uniformly and have to be analysed in relation to the disease process that they suppress.

  • So far, TReg cells can only be classified and detected according to their in vivo regulatory effector functions, such as cytokine production, and not by the expression of specific cell-surface markers.

  • Bystander suppression mediated by interleukin-4 (IL-4) and IL-10 (and possibly other cytokines) that can lead to the modulation of antigen-presenting cell function seems to be the main effector mechanism of antigen-induced TReg cells for suppressing autoaggressive T cells in vivo.

  • Although clinical applications of TReg cells are feasible, conditions for their induction need to be better defined, in part to avoid the concomitant augmentation of autoaggressive T cells. The ability to track TReg cells in peripheral blood will be essential.

  • Both mucosal and systemic routes of immunization can induce TReg cells.

  • Antigen-induced TReg cells might contribute to the homeostatic balance of the immune system.

  • Antigen-induced TReg cells escape thymic negative selection and recognize autoantigens, but they proliferate poorly compared with autoaggressive effector T cells.

  • Antigen-induced TReg cells do not necessarily express CD25 and are, therefore, distinct from CD4+CD25+ 'naturally occurring' TReg cells.

  • The use of immunodeficient hosts to 'read-out' TReg-cell function in vivo makes it difficult to distinguish between active regulatory function and homeostatic effects.

Abstract

The ultimate goal of any treatment for autoimmune diseases is antigen- and/or site-specific suppression of pathology. Autoaggressive lymphocytes need to be eliminated or controlled to prevent tissue damage and halt the progression of clinical disease. Strong evidence is emerging that the induction of regulatory T (TReg) cells by autoantigens can suppress disease, even if the primary, initiating autoantigens are unknown and if inflammation is progressive. An advantage of these autoreactive TReg cells is their ability to act as bystander suppressors and dampen inflammation in a site-specific manner in response to cognate antigen expressed locally by affected tissues. In this review, we consider the nature and function of such antigen-specific TReg cells, and strategies for their therapeutic induction are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antigen presentation and pathways to functional tolerance.
Figure 2: Difficulties in identifying CD25+-lineage-derived TReg cells in immune hosts and with equating expression of CD25 with TReg-cell function.
Figure 3: Local bystander suppression.
Figure 4: Hypothetical model of the balance between autoaggressor and autoregulator T cells in autoimmune disease.

Similar content being viewed by others

References

  1. Ashton-Rickardt, P. G. et al. Evidence for a differential avidity model of T-cell selection in the thymus. Cell 76, 651–663 (1994).

    CAS  PubMed  Google Scholar 

  2. Klein, L., Klugmann, M., Nave, K. A., Tuohy, V. K. & Kyewski, B. Shaping of the autoreactive T-cell repertoire by a splice variant of self-protein expressed in thymic epithelial cells. Nature Med. 6, 56–61 (2000).

    CAS  PubMed  Google Scholar 

  3. Heath, V. L., Moore, N. C., Parnell, S. M. & Mason, D. W. Intrathymic expression of genes involved in organ-specific autoimmune disease. J. Autoimmun. 11, 309–318 (1998).

    CAS  PubMed  Google Scholar 

  4. Burns, J., Rosenzweig, A., Zweiman, B. & Lisak, R. P. Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cell. Immunol. 81, 435–440 (1983).

    CAS  PubMed  Google Scholar 

  5. Arnold, B., Schonrich, G. & Hammerling, G. J. Multiple levels of peripheral tolerance. Immunol. Today 14, 12–14 (1993).

    CAS  PubMed  Google Scholar 

  6. Saoudi, A., Seddon, B., Heath, V., Fowell, D. & Mason, D. The physiological role of regulatory T cells in the prevention of autoimmunity: the function of the thymus in the generation of the regulatory T-cell subset. Immunol. Rev. 149, 195–216 (1996).

    CAS  PubMed  Google Scholar 

  7. Zinkernagel, R. M. Localization, dose and time of antigens determine immune reactivity. Semin. Immunol. 12, 163–171 (2000).

    CAS  PubMed  Google Scholar 

  8. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I–peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dooms, H. & Abbas, A. K. Life and death in effector T cells. Nature Immunol. 3, 797–798 (2002).

    CAS  Google Scholar 

  10. Lamb, J. R., Skidmore, B. J., Green, N., Chiller, J. M. & Feldman, M. Induction of tolerance in influenza virus-immune T-lymphocyte clones with synthetic peptides of influenza hemagglutinin. J. Exp. Med. 157, 1434–1447 (1983).

    CAS  PubMed  Google Scholar 

  11. Quill, H. & Schwartz, R. H. Stimulation of normal inducer T-cell clones with antigen presented by purified Ia molecules in planar lipid membranes: specific induction of a long-lived state of proliferative non-responsiveness. J. Immunol. 138, 3704–3709 (1987).

    CAS  PubMed  Google Scholar 

  12. Sloan-Lancaster, J., Evavold, B. D. & Allen, P. M. Induction of T-cell anergy by altered T-cell receptor ligand on live antigen-presenting cells. Nature 363, 156–159 (1993).

    CAS  PubMed  Google Scholar 

  13. Powell, J. D., Lerner, C. G. & Schwartz, R. H. Inhibition of cell-cycle progression by rapamycin induces T-cell clonal anergy even in the presence of costimulation. J. Immunol. 162, 2775–2784 (1999).

    CAS  PubMed  Google Scholar 

  14. Groux, H., Bigler, M., de Vries, J. E. & Roncarolo, M. -G. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J. Exp. Med. 184, 19–29 (1996).

    CAS  PubMed  Google Scholar 

  15. Zeller, J. C. et al. Induction of CD4+ T-cell alloantigen-specific hyporesponsiveness by IL-10 and TGF-β. J. Immunol. 163, 3684–3691 (1999).

    CAS  PubMed  Google Scholar 

  16. Lechler, R., Chai, J. -G., Marelli-Berg, F. & Lombardi, G. The contributions of T-cell anergy to peripheral T-cell tolerance. Immunology 103, 262–269 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sayegh, M. H., Khoury, S. J., Hancock, W. W., Weiner, H. L. & Carpenter, C. B. Mechanisms of oral tolerance by MHC peptides. Ann. NY Acad. Sci. 778, 338–345 (1996).

    CAS  PubMed  Google Scholar 

  18. Miller, A., al-Sabbagh, A., Santos, L. M., Das, M. P. & Weiner, H. L. Epitopes of myelin basic protein that trigger TGF-β release after oral tolerization are distinct from encephalitogenic epitopes and mediate epitope-driven bystander suppression. J. Immunol. 151, 7307–7315 (1993).

    CAS  PubMed  Google Scholar 

  19. McGuirk, P. & Mills, L. Pathogen-specific regulatory T cells provoke a shift in the TH1/TH2 paradigm in immunity to infectious diseases. Trends Immunol. 9, 450–455 (2002).

    Google Scholar 

  20. Suri-Payer, E., Amar, A. Z., Thornton, A. M. & Shevach, E. M. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160, 1212–1218 (1998).

    CAS  PubMed  Google Scholar 

  21. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol. 3, 135–142 (2002).

    CAS  Google Scholar 

  22. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    CAS  PubMed  Google Scholar 

  23. Gershon, R. K. & Kondo, K. Infectious immunological tolerance. Immunology 21, 903–914 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hall, B. M., Jelbart, M. E., Gurley, K. E. & Dorsch, S. E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. Mediation of specific suppression by T helper/inducer cells. J. Exp. Med. 162, 1683–1694 (1985).

    CAS  PubMed  Google Scholar 

  25. Hall, B. M., Pearce, N. W., Gurley, K. E. & Dorsch, S. E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J. Exp. Med. 171, 141–157 (1990).

    CAS  PubMed  Google Scholar 

  26. Qin, S. X. et al. Induction of tolerance in peripheral T cells with monoclonal antibodies. Eur. J. Immunol. 20, 2737–2745 (1990).

    CAS  PubMed  Google Scholar 

  27. Qin, S. et al. 'Infectious' transplantation tolerance. Science 259, 974–977 (1993).

    CAS  PubMed  Google Scholar 

  28. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol. 3, 135–142 (2002).

    CAS  Google Scholar 

  29. Kawaguchi-Miyashita, M. et al. Development and cytolytic function of intestinal intraepithelial lymphocytes in antigen-minimized mice. Immunology 89, 268–273 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Waldmann, H. Reprogramming the immune system. Immunol. Rev. 185, 227–235 (2002).

    CAS  PubMed  Google Scholar 

  31. Hong, S. et al. The natural killer T-cell lligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Med. 7, 1052–1056 (2001).

    CAS  PubMed  Google Scholar 

  32. Zhang, X., Izikson, L., Liu, L. & Weiner, H. L. Activation of CD25+CD4+ regulatory T cells by oral antigen administration. J. Immunol. 167, 4245–4253 (2001).

    CAS  PubMed  Google Scholar 

  33. Thorstenson, K. M. & Khoruts, A. Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J. Immunol. 167, 188–195 (2001).

    CAS  PubMed  Google Scholar 

  34. Harrison, L. C. & Hafler, D. A. Antigen-specific therapy for autoimmune disease. Curr. Opin. Immunol. 12, 704–711 (2000).

    CAS  PubMed  Google Scholar 

  35. Faria, A. M. & Weiner, H. L. Oral tolerance: mechanisms and therapeutic applications. Adv. Immunol. 73, 153–264 (1999).

    CAS  PubMed  Google Scholar 

  36. Hanninen, A. & Harrison, L. C. γδ T cells as mediators of mucosal tolerance: the autoimmune diabetes model. Immunol. Rev. 173, 109–119 (2000).

    CAS  PubMed  Google Scholar 

  37. Harrison, L. C., Dempsey-Collier, M., Kramer, D. R. & Takahashi, K. Aerosol insulin induces regulatory CD8 γδ T cells that prevent murine insulin-dependent diabetes. J. Exp. Med. 184, 2167–2174 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Matzinger, P. Tolerance, danger and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    CAS  PubMed  Google Scholar 

  39. McHugh, R. S. et al. CD4+CD25+ immunoregulatory T cells: gene-expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311–323 (2002).

    CAS  PubMed  Google Scholar 

  40. Sundstedt, A., O'Neill, E. J., Nicolson, K. S. & Wraith, D. C. Role for IL-10 in suppression mediated by peptide-induced regulatory T cells in vivo. J. Immunol. 170, 1240–1248 (2003).

    CAS  PubMed  Google Scholar 

  41. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    PubMed  Google Scholar 

  42. Zelenika, D. et al. Regulatory T cells overexpress a subset of TH2 gene transcripts. J. Immunol. 168, 1069–1079 (2002).

    CAS  PubMed  Google Scholar 

  43. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    CAS  PubMed  Google Scholar 

  44. Gavin, M. A., Clarke, S. R., Negrou, E., Gallgos, A. & Reudnsky, A. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nature Immunol. 3, 33–41 (2002).

    CAS  Google Scholar 

  45. Bach, J. F. Regulatory T cells under scrutiny. Nature Rev. Immunol. 3, 189–198 (2003).

    Google Scholar 

  46. Kassiotis, G., Garcia, S., Simpson, E. & Stockinger, B. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nature Immunol. 3, 244–250 (2002). References 45 and 46 highlight the issue that regulation might occur as a function of competition for space in immunodeficient hosts, which should be taken into account when interpreting data from the transfer of T Reg cells into irradiated or SCID mice.

    CAS  Google Scholar 

  47. Homann, D. et al. Autoreactive CD4+ T cells protect from autoimmune diabetes via bystander suppression using the IL-4/Stat6 pathway. Immunity 11, 463–472 (1999). This article provides evidence that the bystander-suppressor function of antigen-specific T Reg cells depends on IL-4 and STAT6. Such cells are induced by oral administration of insulin B-chain and they locally suppress aggressive lymphocytes in the pancreatic draining lymph nodes, thereby preventing diabetes.

    CAS  PubMed  Google Scholar 

  48. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T-cell subpopulation. J. Exp. Med. 184, 387–396 (1996).

    CAS  PubMed  Google Scholar 

  49. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nature Immunol. 3, 756–763 (2002).

    CAS  Google Scholar 

  50. Olivares-Villagomez, D., Wensky, A. K., Wang, Y. & Lafaille, J. J. Repertoire requirements of CD4+ T cells that prevent spontaneous autoimmune encephalomyelitis. J. Immunol. 164, 5499–5507 (2000).

    CAS  PubMed  Google Scholar 

  51. Stephens, L. A. & Mason, D. CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25 subpopulations. J. Immunol. 165, 3105–3110 (2000).

    CAS  PubMed  Google Scholar 

  52. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shevach, E. M. CD4+CD25+ suppressor T cells: more questions than answers. Nature Rev. Immunol. 2, 389–400 (2002).

    CAS  Google Scholar 

  54. Baecher-Allan, C., Brown, J. A., Freeman, G. J. & Hafler, D. A. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 167, 1245–1253 (2001).

    CAS  PubMed  Google Scholar 

  55. Lehmann, J. et al. Expression of the integrin αEβ7 identifies unique subsets of CD25+ as well as CD25 regulatory T cells. Proc. Natl Acad. Sci. USA 99, 13031–13036 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Aseffa, A. et al. The early IL-4 response to Leishmania major and the resulting TH2-cell maturation steering progressive disease in BALB/c mice are subject to the control of regulatory CD4+CD25+ T cells. J. Immunol. 169, 3232–3241 (2002).

    CAS  PubMed  Google Scholar 

  57. Trinchieri, G. Regulatory role of T cells producing both interferon-γ and interleukin-10 in persistent infection. J. Exp. Med. 194, F53–F57 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. & Sacks, D. L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    CAS  PubMed  Google Scholar 

  59. Iwashiro, M. et al. Immunosuppression by CD4+ regulatory T cells induced by chronic retroviral infection. Proc. Natl Acad. Sci. USA 98, 9226–9230 (2001). This study provides the first evidence of an important role for T Reg cells in controlling the immunopathology of infectious disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lepault, F. & Gagnerault, M. C. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J. Immunol. 164, 240–247 (2000).

    CAS  PubMed  Google Scholar 

  61. Boitard, C., Yasunami, R., Dardenne, M. & Bach, J. F. T-cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice. J. Exp. Med. 169, 1669–1680 (1989).

    CAS  PubMed  Google Scholar 

  62. Bach, J. F. Immunotherapy of insulin-dependent diabetes mellitus. Curr. Opin. Immunol. 13, 601–605 (2001).

    CAS  PubMed  Google Scholar 

  63. Martinez, N. R. & Harrison, L. C. Disabling a constitutive CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. J. Clin. Invest. (in the press).

  64. Weiner, H. L. Induction and mechanism of action of transforming growth factor-β-secreting TH3 regulatory cells. Immunol. Rev. 182, 207–214 (2001).

    CAS  PubMed  Google Scholar 

  65. Dhodapkar, M. V. & Steinman, R. M. Antigen-bearing immature dendritic cells induce peptide-specific CD8+ regulatory T cells in vivo in humans. Blood 100, 174–177 (2002).

    CAS  PubMed  Google Scholar 

  66. Viney, J. L., Mowat, A. M., O'Malley, J. M., Williamson, E. & Fanger, N. A. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J. Immunol. 160, 5815–5825 (1998).

    CAS  PubMed  Google Scholar 

  67. Tarbell, K. V. et al. CD4+ T cells from glutamic acid decarboxylase (GAD)65-specific T-cell receptor-transgenic mice are not diabetogenic and can delay diabetes transfer. J. Exp. Med. 196, 481–492 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 2, 301–306 (2001).

    CAS  Google Scholar 

  69. Weiner, H. L. The mucosal milieu creates tolerogenic dendritic cells and TR1 and TH3 regulatory cells. Nature Immunol. 2, 671–672 (2001).

    CAS  Google Scholar 

  70. Mayrhofer, G. & Schon-Hegrad, M. A. Ia antigens in rat kidney, with special reference to their expression in tubular epithelium. J. Exp. Med. 157, 2097–2109 (1983).

    CAS  PubMed  Google Scholar 

  71. Mayer, L. & Shlien, R. Evidence for function of Ia molecules on gut epithelial cells in man. J. Exp. Med. 166, 1471–1483 (1987).

    CAS  PubMed  Google Scholar 

  72. Kaiserlian, D., Vidal, K. & Revillard, J. P. Murine enterocytes can present soluble antigen to specific class II-restricted CD4+ T cells. Eur. J. Immunol. 19, 1513–1516 (1989).

    CAS  PubMed  Google Scholar 

  73. Massey, E. J. et al. Intranasal peptide-induced peripheral tolerance: the role of IL-10 in regulatory T-cell function within the context of experimental autoimmune encephalomyelitis. Vet. Immunol. Immunopathol. 87, 357–372 (2002).

    CAS  PubMed  Google Scholar 

  74. Anderton, S. M. & Wraith, D. C. Selection and fine-tuning of the autoimmune T-cell repertoire. Nature Rev. Immunol. 2, 487–498 (2002).

    CAS  Google Scholar 

  75. Bergerot, I., Fabien, N., Maguer, V. & Thivolet, C. Oral administration of human insulin to NOD mice generates CD4+ T cells that suppress adoptive transfer of diabetes. J. Autoimmun. 7, 655–663 (1994).

    CAS  PubMed  Google Scholar 

  76. Zang, J. A., Davidson, L., Eisenbarth, G. & Weiner, H. Suppression of diabetes in NOD mice by oral administration of porcine insulin. Proc. Natl Acad. Sci. USA 88, 10252–10256 (1991).

    Google Scholar 

  77. Daniel, D. & Wegmann, D. R. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9-23). Proc. Natl Acad. Sci. USA 93, 956–960 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Martinez, N. R. et al. Disabling a constitutive CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. J. Clin. Invest. (in the press).

  79. Harrison, L. C. et al. A peptide-binding motif for I-A(g7), the class II major histocompatibility complex (MHC) molecule of NOD and Biozzi AB/H mice. J. Exp. Med. 185, 1013–1021 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pozzilli, P., Signore, A., Williams, A. J. & Beales, P. E. NOD mouse colonies around the world — recent facts and figures. Immunol. Today 14, 193–196 (1993).

    CAS  PubMed  Google Scholar 

  81. Suzuki, T. in Immune-Deficient Animals in Biomedical Research (eds Rygaard, J., Brunner, N., Graem, N. & Spang-Thomsen, M.) 112–116 (Karger, Basel, 1987).

    Google Scholar 

  82. Imaoka, A., Matsumoto, S., Setoyama, H., Okada, Y. & Umesaki, Y. Proliferative recruitment of intestinal intraepithelial lymphocytes after microbial colonization of germ-free mice. Eur. J. Immunol. 26, 945–948 (1996).

    CAS  PubMed  Google Scholar 

  83. Mengel, J. et al. Anti-γδ T-cell antibody blocks the induction and maintenance of oral tolerance to ovalbumin in mice. Immunol. Lett. 48, 97–102 (1995).

    CAS  PubMed  Google Scholar 

  84. Ke, Y., Pearce, K., Lake, J. P., Ziegler, H. K. & Kapp, J. A. γδ T lymphocytes regulate the induction and maintenance of oral tolerance. J. Immunol. 158, 3610–3618 (1997).

    CAS  PubMed  Google Scholar 

  85. Kearney, E. R., Pape, K. A., Loh, D. Y. & Jenkins, M. K. Visualization of peptide-specific T-cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    CAS  PubMed  Google Scholar 

  86. Pape, K. A., Merica, R., Mondino, A., Khoruts, A. & Jenkins, M. K. Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance. J. Immunol. 160, 4719–4729 (1998).

    CAS  PubMed  Google Scholar 

  87. Weaver, D. J. Jr, Liu, B. & Tisch, R. Plasmid DNAs encoding insulin and glutamic acid decarboxylase 65 have distinct effects on the progression of autoimmune diabetes in nonobese diabetic mice. J. Immunol. 167, 586–592 (2001).

    CAS  PubMed  Google Scholar 

  88. Coon, B., An, L. L., Whitton, J. L. & von Herrath, M. G. DNA immunization to prevent autoimmune diabetes. J. Clin. Invest. 104, 189–194 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bot, A. et al. Plasmid vaccination with insulin B-chain prevents autoimmune diabetes in nonobese diabetic mice. J. Immunol. 167, 2950–2955 (2001).

    CAS  PubMed  Google Scholar 

  90. Wolfe, T. et al. Endogenous expression levels of autoantigens influence success or failure of DNA immunizations to prevent type 1 diabetes: addition of IL-4 increases safety. Eur. J. Immunol. 32, 113–121 (2002).

    CAS  PubMed  Google Scholar 

  91. Garren, H. et al. Combination of gene delivery and DNA vaccination to protect from and reverse TH1 autoimmune disease via deviation to the TH2 pathway. Immunity 15, 15–22 (2001). This study validates the concept that vaccination with autoantigen-encoding DNA can induce a shift towards T H 2 cytokines and prevent disease of the central nervous system. Importantly, the addition of cytokines such as IL-4 enhanced the efficacy of this approach.

    CAS  PubMed  Google Scholar 

  92. Liu, E. et al. Anti-peptide autoantibodies and fatal anaphylaxis in NOD mice in response to insulin self-peptides B:9-23 and B:13-23. J. Clin. Invest. 110, 1021–1027 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Weiner, H. L. et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259, 1321–1324 (1993).

    CAS  PubMed  Google Scholar 

  94. Levings, M. K. et al. IFN-α and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol. 166, 5530–5539 (2001).

    CAS  PubMed  Google Scholar 

  95. Van Regenmortel, M. H. V. Synthetic peptides help in diagnosing viral infections. ASM News 64, 332 (1998).

    Google Scholar 

  96. Bergerot, I. et al. Insulin B-chain reactive CD4+ regulatory T cells induced by oral insulin treatment protect from type 1 diabetes by blocking the cytokine secretion and pancreatic infiltration of diabetogenic effector T cells. Diabetes 48, 1720–1729 (1999).

    CAS  PubMed  Google Scholar 

  97. Grohmann, U. et al. CTLA-4–Ig regulates tryptophan catabolism in vivo. Nature Immunol. 3, 1097–1101 (2002).

    CAS  Google Scholar 

  98. Munn, D. H. et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297, 1867–1870 (2002). References 97 and 98 show a new mechanism by which antigen-presenting cells can induce tolerance in their local microenvironment by depleting tryptophane. CTLA4 and IFN-γ can induce the expression of IDO, which catabolizes tryptophane and mediates tolerance.

    CAS  PubMed  Google Scholar 

  99. Steinman, R. M. & Nussenzweig, M. C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T-cell tolerance. Proc. Natl Acad. Sci. USA 99, 351–358 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Belz, G. T. et al. The CD8α+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med. 196, 1099–1104 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Guillot, C. et al. Active suppression of allogeneic proliferative responses by dendritic cells after induction of long-term allograft survival by CTLA4Ig. Blood 19 December 2002 (DOI: 10.1182/blood-2002-07-2076).

  102. Homann, D. et al. CD40L blockade prevents autoimmune diabetes by induction of bitypic NK/DC regulatory cells. Immunity 16, 403–415 (2002).

    CAS  PubMed  Google Scholar 

  103. Tompkins, S. M., Fuller, K. G. & Miller, S. D. Theiler's virus-mediated autoimmunity: local presentation of CNS antigens and epitope spreading. Ann. NY Acad. Sci. 958, 26–38 (2002).

    CAS  PubMed  Google Scholar 

  104. von Herrath, M., Coon, B. & Wolfe, T. Tolerance induction with agonist peptides recognized by autoaggressive lymphocytes is transient: therapeutic potential for type 1 diabetes is limited and depends on time-point of administration, choice of epitope and adjuvant. J. Autoimmun. 16, 193–199 (2001).

    CAS  PubMed  Google Scholar 

  105. Trentham, D. E. et al. Effects of oral administration of type II collagen on rheumatoid arthritis. Science 261, 1727–1730 (1993).

    CAS  PubMed  Google Scholar 

  106. Thurau, S. R., Diedrichs-Mohring, M., Fricke, H., Arbogast, S. & Wildner, G. Molecular mimicry as a therapeutic approach for an autoimmune disease: oral treatment of uveitis patients with an MHC–peptide crossreactive with autoantigen — first results. Immunol. Lett. 57, 193–201 (1997).

    CAS  PubMed  Google Scholar 

  107. Lee, S., Scherberg, N. & DeGroot, L. J. Induction of oral tolerance in human autoimmune thyroid disease. Thyroid 8, 229–234 (1998).

    CAS  PubMed  Google Scholar 

  108. Pozzilli, P. et al. No effect of oral insulin on residual β-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia 43, 1000–1004 (2000).

    CAS  PubMed  Google Scholar 

  109. Chaillous, L. et al. Oral insulin administration and residual β-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabete Insuline Orale group. Lancet 356, 545–549 (2000).

    CAS  PubMed  Google Scholar 

  110. Fukaura, H. et al. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-β1-secreting TH3 T cells by oral administration of myelin in multiple sclerosis patients. J. Clin. Invest. 98, 70–77 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hanninen, A., Braakhuis, A., Heath, W. R. & Harrison, L. C. Mucosal antigen primes diabetogenic cytotoxic T-lymphocytes regardless of dose or delivery route. Diabetes 50, 771–775 (2001).

    CAS  PubMed  Google Scholar 

  112. Hanninen, A., Martinez, N. R., Davey, G. M., Heath, W. R. & Harrison, L. C. Transient blockade of CD40 ligand dissociates pathogenic from protective mucosal immunity. J. Clin. Invest. 109, 261–267 (2002). Mucosal administration of antigen is a 'double-edged sword' because of the potential to induce autoaggressive T cells as well as tolerance. This study shows that co-induction of autoaggressive T cells can be prevented by transient co-stimulation blockade. It has important implications for enhancing the efficacy and safety of antigen-specific tolerance in clinical trials.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Metzler, B. & Wraith, D. C. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int. Immunol. 5, 1159–1165 (1993).

    CAS  PubMed  Google Scholar 

  114. Homann, D., Dyrberh, T., Petersen, J., Oldstone, M. B. & von Herrath, M. G. Insulin in oral immune 'tolerance': a one-amino acid change in the B chain makes the difference. J. Immunol. 163, 1833–1888 (1999).

    CAS  PubMed  Google Scholar 

  115. Waldo, F. B., van den Wall Bake, A. W., Mestecky, J. & Husby, S. Suppression of the immune response by nasal immunization. Clin. Immunol. Immunopathol. 72, 30–34 (1994).

    CAS  PubMed  Google Scholar 

  116. Genain, C. P. et al. Late complications of immune deviation therapy in a nonhuman primate. Science 274, 2054–2057 (1996).

    CAS  PubMed  Google Scholar 

  117. Eisenbarth, G. S. & Kotzin, B. L. Enumerating autoreactive T cells in peripheral blood: a big step in diabetes prediction. J. Clin. Invest. 111, 179–181 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Reijonen, H. et al. Detection of GAD65-specific T cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 51, 1375–1382 (2002).

    CAS  PubMed  Google Scholar 

  119. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    CAS  PubMed  Google Scholar 

  120. Somasundaram, R. et al. Inhibition of cytolytic T-lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-β. Cancer Res. 62, 5267–5272 (2002).

    CAS  PubMed  Google Scholar 

  121. Kumar, V. & Sercarz, E. Induction or protection from experimental autoimmune encephalomyelitis depends on the cytokine secretion profile of TCR peptide-specific regulatory CD4 T cells. J. Immunol. 161, 6585–6591 (1998).

    CAS  PubMed  Google Scholar 

  122. Zhang, Z. Y. & Michael, J. G. Orally inducible immune unresponsiveness is abrogated by IFN-γ treatment. J. Immunol. 144, 4163–4165 (1990).

    CAS  PubMed  Google Scholar 

  123. Gilliet, M. & Liu, Y. -J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 195, 695–704 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Rissoan, M. C. et al. Reciprocal control of T-helper cell and dendritic-cell differentiation. Science 283, 1183–1186 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Frye and C. O'Shea for excellent help with manuscript preparation. M.G.V. is supported by grants from the National Institutes of Health and the Juvenile Diabetes Research Foundation (JDRF). L.C.H. is supported by grants from the JDRF and the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

CD1

CD3

CD4

CD8

CD25

CD45

CD62L

CD154

CTLA4

GAD

GITR

IL-2

IL-4

IL-10

MBP

TGF-β

OMIM

multiple sclerosis

rheumatoid arthritis

type 1 diabetes

FURTHER INFORMATION

Leonard Harrison's lab

Matthias von Herrath's lab

Glossary

CO-STIMULATORY SIGNAL

Signalling through an additional molecule that contributes to complete T-cell activation after the T-cell receptor recognizes the peptide–MHC complex.

ALTERED PEPTIDE LIGAND

(APL). A peptide ligand with a different sequence to the native ligand that can alter the interaction between the peptide–MHC complex and the T-cell receptor, and thereby affect lymphocyte activation and effector functions.

BYSTANDER SUPPRESSION

The ability of a lymphocyte with specificity for antigen A to suppress immune responses to an unrelated antigen B.

TR1 cells

Interleukin-10 (IL-10)-secreting human CD4+ cells, the in vitro propagation of which is enhanced by IL-10 and interferon-α TR1 cells have been shown to regulate alloreactive lymphocyte responses in vitro and they are currently being used in clinical trials for the treatment of graft-versus-host disease. However, the mechanisms of their antigen-specific induction remain unclear.

IMMUNE SYNAPSE

A structure that is formed at the cell surface between a T cell and an antigen-presenting cell; also known as a supra-molecular activation cluster (SMAC). The T-cell receptor and numerous signal-transduction molecules and molecular adaptors accumulate at this site. Mobilization of the actin cytoskeleton of the cell is required for formation of the synapse.

PROFESSIONAL ANTIGEN-PRESENTING CELL

A cell that is capable of providing co-stimulation through CD80/CD86, CD40 and other molecules, in addition to presenting antigen in the context of MHC molecules. This category includes dendritic cells, B cells and macrophages.

INTRAEPITHELIAL LYMPHOCYTES

(IELs). Lymphocytes that are found in the epithelial lining of the gut.

ORAL TOLERANCE

The suppression of systemic immune responses to an antigen after its prior administration through a mucosal (classically oral) route.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Herrath, M., Harrison, L. Antigen-induced regulatory T cells in autoimmunity. Nat Rev Immunol 3, 223–232 (2003). https://doi.org/10.1038/nri1029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing