Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunological and genetic basis of inflammatory bowel disease

Key Points

  • Crohn's disease and ulcerative colitis are chronic inflammatory disorders of the gastrointestinal tract. Although clinically there are some similarities between the two diseases, there are also marked differences.

  • The aetiology of both forms has not been entirely elucidated however, marked progress has been made recently in understanding the immunopathogenesis and genetic susceptibility of these diseases.

  • Through the study of patients and mouse models, it seems that disease occurs as the consequence of a dysregulated immune response to normal constituents of the intestinal flora in a genetically predisposed host. Such mucosal inflammation can be attributed to either increased effector-cell function or decreased regulatory-cell function.

  • Crohn's disease seems to be driven by interleukin-12 (IL-12) and interferon-γ (IFN-γ), whereas a mouse model of ulcerative colitis has been shown to be driven by natural killer T (NKT) cells that produce IL-13.

  • Mutations in the gene encoding the NOD2 (nucleotide-binding oligomerization domain) protein have been identified in a subgroup of patients with Crohn's disease. This opens up the possibility that Crohn's disease is due, at least in some instances, to defects in innate immunity.

  • Recent findings will facilitate the development of new and specific therapies for patients with these diseases.

Abstract

The inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis, are chronic inflammatory disorders of the gastrointestinal tract. Enormous progress has been made recently in understanding the pathogenesis of these diseases. Through the study of patients and mouse models, it has emerged that Crohn's disease is driven by the production of interleukin-12 (IL-12) and interferon-γ (IFN-γ), whereas ulcerative colitis is probably driven by the production of IL-13. A second area of progress is in the identification of specific genetic abnormalities that are responsible for disease. The most important finding is the identification of mutations in the gene that encodes NOD2 (nucleotide-binding oligomerization domain 2) protein in a subgroup of patients with Crohn's disease. Here, we discuss these recent findings and the implications for therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways to mucosal inflammation.
Figure 2: TH1- and TH2-mediated colitis.
Figure 3: NKT cells and IL-13 in oxazalone-induced colitis.
Figure 4: Possible mechanisms of Crohn's disease caused by NOD2 mutations.
Figure 5: Anatomy of mucosal inflammation and points of therapeutic attack.

Similar content being viewed by others

References

  1. Podolsky, D. K. Inflammatory bowel disease. N. Engl. J. Med. 347, 417–429 (2002).

    CAS  PubMed  Google Scholar 

  2. Blumberg, R. S., Saubermann, L. J. & Strober, W. Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr. Opin. Immunol. 11, 648–656 (1999).

    CAS  PubMed  Google Scholar 

  3. Strober, W., Fuss, I. J. & Blumberg, R. S. The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 20, 495–549 (2002).

    CAS  PubMed  Google Scholar 

  4. Mahler, M. & Leiter, E. H. Genetic and environmental context determines the course of colitis developing in IL-10 deficient mice. Inflammatory Bowel Diseases 8, 347–355 (2002).

    PubMed  Google Scholar 

  5. Sartor, R. B. The influence of normal bacterial flora in the development of chronic mucosal inflammation. Res. Immunol. 148, 467–476 (1997).

    Google Scholar 

  6. Cong, Y. et al. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease. J. Exp. Med. 187, 855–864 (1998). This study shows that T cells that are reactive with conventional antigens of the enteric bacterial flora can mediate chronic inflammatory bowel disease (IBD).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sartor, R. B. in Inflammatory Bowel Diseases (ed. Kirshner, J. B.) 153–178 (Saunders, Philadelphia/London, 1999).

    Google Scholar 

  8. Madsen, K. L., Doyle, J. S., Jewell, L. D., Tavernini, M. M. & Fedorak, R. N. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116, 1107–14 (1999).

    CAS  PubMed  Google Scholar 

  9. Karlsson, M. R., Kahu, H., Hanson, L. A., Telemo, E. & Dahlgren, U. I. Neonatal colonization of rats induces immunological tolerance to bacterial antigens. Eur. J. Immunol. 29, 109–118 (1999).

    CAS  PubMed  Google Scholar 

  10. Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).

    CAS  PubMed  Google Scholar 

  11. Wirtz, S. et al. Cutting edge: chronic intestinal inflammation in STAT-4 transgenic mice: characterization of disease and adoptive transfer by TNF- plus IFN-γ-producing CD4+ T cells that respond to bacterial antigens. J. Immunol. 162, 1884–1888 (1999).

    CAS  PubMed  Google Scholar 

  12. Bouma, G., Kaushiva, A. & Strober, W. Experimental murine colitis is regulated by two genetic loci, including one on chromosome 11 that regulates IL-12 responses. Gastroenterol. 123, 554–565 (2002). This study shows that the intrinsic ability to mount a high interleukin-12 (IL-12) response to constituents of the enteric flora is genetically linked to colitis susceptibility.

    CAS  Google Scholar 

  13. Strober, W., Kelsall, B. & Marth, T. Oral tolerance. J. Clin. Immunol. 18, 1–30 (1998).

    CAS  PubMed  Google Scholar 

  14. Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. & Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol. 5, 1461–1471 (1993). This study, together with reference 15, shows that the CD45RBlow population of T cells can suppress colitis-inducing T helper 1 (T H 1)-cell responses, and that colitis can occur as the consequence of deficient or absent T-cell regulatory function.

    CAS  PubMed  Google Scholar 

  15. Powrie, F., Correa-Oliveira, R., Mauze, S. & Coffman, R. L. Regulatory interactions between CD45RBhi and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J. Exp. Med. 179, 589–600 (1994).

    CAS  PubMed  Google Scholar 

  16. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993). This study was published together with references 117 and 124 in the same issue of Cell , and showed that inactivation of entirely different immune genes can lead to spontaneous intestinal inflammation, providing strong evidence for the presence of genetic heterogeneity in IBD.

    CAS  PubMed  Google Scholar 

  17. Gorelik, L. & Flavell, R. A. Abrogation of TGF-β signalling in T cells leads to spontaneous T cell differentiation of autoimmune disease. Immunity 12, 171–181 (2000).

    CAS  PubMed  Google Scholar 

  18. Hollander, G. A. et al. Severe colitis in mice with aberrant thymic selection. Immunity 3, 27–38 (1995). This study showed that T cells selected in an aberrant thymic microenvironment contain a population of cells that can induce severe colitis that can be prevented by T cells that have undergone normal thymic development, and so emphasizes the role of the thymus in the development of T regulatory cells.

    CAS  PubMed  Google Scholar 

  19. Mottet, C., Uhlig, H. H. & Powrie, F. Cure of colitis by CD4+CD25+ regulatory T cells. J. Immunol. 170, 3939–3943 (2003).

    CAS  PubMed  Google Scholar 

  20. Neurath, M. F., Fuss, I., Kelsall, B. L., Stuber, E. & Strober, W. Antibodies to interleukin-12 abrogate established experimental colitis in mice. J. Exp. Med. 182, 1281–1290 (1995). This study describes the importance of IL-12 in chronic granulomatous colitis, and the effectiveness of antibodies specific for IL-12 in these diseases.

    CAS  PubMed  Google Scholar 

  21. Boirivant, M., Fuss, I. J., Chu, A. & Strober, W. Oxazalone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J. Exp. Med. 188, 129–139 (1998).

    Google Scholar 

  22. Heller, F., Fuss, I. J., Nieuwenhuis, E. E., Blumberg, R. S. & Strober, W. Oxazolone colitis, a TH2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17, 629–638 (2002). This study shows that production of IL-13 is a important pathological factor in a mouse model for ulcerative colitis, and shows that such colitis is mediated by natural killer T (NKT) cells.

    CAS  PubMed  Google Scholar 

  23. Cario, E. et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J. Immunol. 164, 966–972 (2000).

    CAS  PubMed  Google Scholar 

  24. Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. & Madara, J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001).

    CAS  PubMed  Google Scholar 

  25. Maaser, C. & Kagnoff, M. F. Role of the intestinal epithelium in orchestrating innate and adaptive mucosal immunity. Gastroenterol. 40, 525–529 (2002).

    CAS  Google Scholar 

  26. Cario, E. & Podolsky, D. K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68, 7010–7017 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Podolsky, D. K. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am. J. Physiol. 277, G495–G499 (1999).

    CAS  PubMed  Google Scholar 

  28. Hermiston, M. L. & Gordon, J. I. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 270, 1203–1207 (1995). The possibility that defects that change the physical relationship between the mucosal immune system and the microflora can lead to mucosal inflammation was shown in this paper.

    CAS  PubMed  Google Scholar 

  29. Takeda, K. et al. Enhanced TH1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).

    CAS  PubMed  Google Scholar 

  30. Monteleone, G. et al. Interleukin 12 is expressed and actively released by Crohn's disease intestinal lamina propria mononuclear cells. Gastroenterol. 112, 1169–1178 (1997).

    CAS  Google Scholar 

  31. Parronchi, P. et al. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn's disease. Am. J. Pathol. 150, 823–832 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, Z. et al. Hyperexpression of CD40 ligand (CD154) in inflammatory bowel disease and its contribution to pathogenic cytokine production. J. Immunol. 163, 4049–4057 (1999).

    CAS  PubMed  Google Scholar 

  33. Parrello, T. et al. Upregulation of the IL-12 receptor β2 chain in Crohn's disease. J. Immunol. 165, 7234–7239 (2000).

    CAS  PubMed  Google Scholar 

  34. Neurath, M. F. et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J. Exp. Med. 159, 1129–1133 (2002).

    Google Scholar 

  35. Fuss, I. J. et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-γ, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J. Immunol. 157, 1261–1270 (1996). This study provides strong evidence that the immunopathological process that is characteristic of the two main forms of IBD — Crohn's disease and ulcerative colitis — is associated with different cytokine-secretion patterns.

    CAS  PubMed  Google Scholar 

  36. Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    CAS  PubMed  Google Scholar 

  37. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    CAS  PubMed  Google Scholar 

  38. Saxon, A., Shanahan, F., Landers, C., Ganz, T. & Targan, S. A distinct subset of antineutrophil cytoplasmic antibodies is associated with inflammatory bowel disease. J. Allergy Clin. Immunol. 86, 202–210 (1990).

    CAS  PubMed  Google Scholar 

  39. Das, K. M., Dasgupta, A., Mandal, A. & Geng, X. Autoimmunity to cytoskeletal protein tropomyosin. A clue to the pathogenetic mechanism for ulcerative colitis. J. Immunol. 150, 2487–2493 (1993).

    CAS  PubMed  Google Scholar 

  40. Kett, K., Rognum, T. O. & Brandtzaeg, P. Mucosal subclass distribution of immunoglobulin G-producing cells is different in ulcerative colitis and Crohn's disease of the colon. Gastroenterol. 93, 919–924 (1987).

    CAS  Google Scholar 

  41. Christ, A. D. et al. An interleukin 12-related cytokine is upregulated in ulcerative colitis but not in Crohn's disease. Gastroenterol. 115, 307–313 (1998).

    CAS  Google Scholar 

  42. Liu, Z. et al. IL-15 is highly expressed in inflammatory bowel disease and regulates local T cell-dependent cytokine production. J. Immunol. 164, 3608–3615 (2000).

    CAS  PubMed  Google Scholar 

  43. Seegert, D. et al. Increased expression of IL-16 in inflammatory bowel disease. Gut 48, 326–332 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pages, F. et al. et al. Analysis of interleukin-18. interleukin-1 converting enzyme (ICE) and interleukin-18-related cytokines in Crohn's disease lesions. Eur. Cytokine Netw. 12, 97–104 (2001).

    CAS  PubMed  Google Scholar 

  45. Breese, E. J. et al. Tumor necrosis factor α-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterol. 106, 1455–1466 (1994).

    CAS  Google Scholar 

  46. Reinecker, H. C. et al. Enhanced secretion of tumour necrosis factor-α. IL-6. and IL-1β by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn's disease. Clin. Exp. Immunol. 94, 174–181 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    CAS  PubMed  Google Scholar 

  48. Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets: TH1, TH2 and more. Immunol. Today 17, 138–146 (1996).

    CAS  PubMed  Google Scholar 

  49. Duchmann, R. et al. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 102, 448–455 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  51. Sakaguchi, S. et al. T cell-mediated maintenance of natural self-tolerance: its breakdown as a possible cause of various autoimmune diseases. J. Autoimmun. 9, 211–220 (1996).

    CAS  PubMed  Google Scholar 

  52. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol. 3, 135–142 (2002).

    CAS  Google Scholar 

  53. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 2, 301–306 (2001).

    CAS  Google Scholar 

  54. Hori, S., Nomura, T. & Sakaguchi, N. Control of regulatory T cell development by the transcription factor FoxP3. Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  55. Wildin, R. S., Smyk-Pearson, S. & Filipovich, A. H. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet. 39, 537–545 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Thornton, A. M. & Shevach, E. M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol. 164, 183–190 (2000).

    CAS  PubMed  Google Scholar 

  57. Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor-β. J. Exp. Med. 194, 629–644 (2001). Evidence provided in this study indicates for the first time that CD4+CD25+ T cells exert immunosuppression by a cell–cell interaction that involves cell surface transforming-growth factor-β (TGF-β)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Annunziato, F. et al. Phenotype, localization, and mechanism of suppression of CD4+CD25+ human thymocytes. J. Exp. Med. 196, 379–387 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Powrie, F., Carlino, J., Leach, M. W., Mauze, S. & Coffman, R. L. A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4+ T cells. J. Exp. Med. 183, 2669–2674 (1996).

    CAS  PubMed  Google Scholar 

  60. Piccirillo, C. A. et al. CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor-β1 production and responsiveness. J. Exp. Med. 196, 237–246 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, X., Izikson, L., Liu, L. & Weiner, H. L. Activation of CD25+CD4+ regulatory T cells by oral antigen administration. J. Immunol. 167, 425–435 (2001).

    Google Scholar 

  62. Thorstenson, K. M. & Khoruts, A. Generation of anergic and potentially immunoregulatory CD25+ CD4+ T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J. Immunol. 167, 188–195 (2001).

    CAS  PubMed  Google Scholar 

  63. Monteleone, G. et al. Blocking Smad7 restores TGF-β1 signaling in chronic inflammatory bowel disease. J. Clin. Invest. 108, 601–609 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997). This study describes the identification of T regulatory 1 (T R 1) cells, a CD4+ T-cell subset that develops under the influence of IL-10, which can suppress antigen-specific immune responses.

    CAS  PubMed  Google Scholar 

  65. Levings, M. K., Bacchetta, R., Schulz, U. & Roncarolo, M. G. The role of IL-10 and TGF-β in the differentiation and effector function of T regulatory cells. Int. Arch. Allergy Immunol. 129, 263–276 (2002).

    CAS  PubMed  Google Scholar 

  66. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nature Immunol. 3, 756–763 (2002).

    CAS  Google Scholar 

  67. Levings, M. K. et al. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor-β, but not interleukin 10, and are distinct from type 1 T regulatory cells. J. Exp Med. 196, 1335–1346 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bacchetta, R. et al. Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur. J. Immunol. 32, 2237–2245 (2002).

    CAS  PubMed  Google Scholar 

  69. McGuirk, P., McCann, C. & Mills, K. H. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J. Exp. Med. 195, 221–231 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kullberg, M. C. et al. Bacteria-triggered CD4+ T regulatory cells suppress Helicobacter hepaticus-induced colitis. J. Exp. Med. 196, 505–515 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Iwasaki, A. & Kelsall, B. L. Unique functions of CD11b+, CD8α+, and double-negative Peyer's patch dendritic cells. J. Immunol. 166, 4884–4890 (2001).

    CAS  PubMed  Google Scholar 

  72. Akbari, O., DeKruyff, R. H. & Umetsu, D. T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature Immunol. 2, 725–731 (2001).

    CAS  Google Scholar 

  73. Fuss, I. J., Boirivant, M., Lacy, B. & Strober, W. The interrelated roles of TGF-β and IL-10 in the regulation of experimental colitis. J. Immunol. 168, 900–908 (2002).

    CAS  PubMed  Google Scholar 

  74. Allez, M., Brimnes, J., Dotan, I. & Mayer, L. Expansion of CD8+ T cells with regulatory function after interaction with intestinal epithelial cells. Gastroenterol. 123, 1516–1526 (2002).

    Google Scholar 

  75. Campbell, N. A. et al. A non-class I MHC intestinal epithelial surface glycoprotein, gp180, binds to CD8. Clin. Immunol. 102, 267–274 (2002).

    CAS  PubMed  Google Scholar 

  76. Mayer, L. & Eisenhardt, D. Lack of induction of suppressor T cells by intestinal epithelial cells from patients with inflammatory bowel disease. J. Clin. Invest. 86, 1255–1260 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Toy, L. S., Yio, X. Y., Lin, A., Honig, S. & Mayer, L. Defective expression of gp180, a novel CD8 ligand on intestinal epithelial cells, in inflammatory bowel disease. J. Clin. Invest. 100, 2062–2071 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bonen, K. B. & Cho, J. H. The genetics of inflammatory bowel disease. Gastroenterol. 124, 532–536 (2003).

    Google Scholar 

  79. Yang, H. & Rotter, J. I. in Inflammatory Bowel Disease: From Bench to Bedside (eds Targan, S. R. & Shanahan, F.) 32–64 (Milliam and Wilkins, Baltimore, 1994).

    Google Scholar 

  80. Tysk, C., Lindberg, E., Jarnerot, G. & Floderus-Myrhed, B. Ulcerative colitis and Crohn's disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 29, 990–996 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Orholm, M., Binder, V., Sorensen, T. I., Rasmussen, L. P. & Kyvik, K. O. Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand. J. Gastroenterol. 35, 1075–1081 (2000).

    CAS  PubMed  Google Scholar 

  82. Thompson, N. P., Driscoll, R., Pounder, R. E. & Wakefield, A. J. Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ 312, 95–96 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hugot, J. P. et al. Mapping of a susceptibility locus for Crohn's disease on chromosome 16. Nature 379, 821–823 (1996).

    CAS  PubMed  Google Scholar 

  84. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001). This study was published concomitantly with reference 87, describing mutations in the gene encoding NOD2 (nucleotide-binding oligomerization domain 2) protein as the cause of Crohn's disease in a subgroup of patients.

    CAS  PubMed  Google Scholar 

  85. Girardin, S. E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    CAS  PubMed  Google Scholar 

  86. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512 (2003).

    CAS  PubMed  Google Scholar 

  87. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    CAS  PubMed  Google Scholar 

  88. Hampe, J. et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet 357, 1925–1928 (2001).

    CAS  PubMed  Google Scholar 

  89. van der Linde, K. et al. CARD15 and Crohn's disease: healthy homozygous carriers of the 3020insC frameshift mutation. Am. J. Gastroenterol. 98, 613–617 (2002).

    Google Scholar 

  90. Yamazaki, K., Takazoe, M., Tanaka, T., Kazumori, T. & Nakamura, Y. Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn's disease. J. Hum. Genet. 47, 469–472 (2002).

    CAS  PubMed  Google Scholar 

  91. Inohara, N., Ogura, Y. & Nunez, G. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr. Opin. Microbiol. 5, 76–80 (2002).

    CAS  PubMed  Google Scholar 

  92. Inohara, N. & Nunez, G. The NOD: a signaling module that regulates apoptosis and host defense against pathogens. Oncogene 20, 6473–6481 (2001).

    CAS  PubMed  Google Scholar 

  93. Gutierrez, O. et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-κB. J. Biol. Chem. 277, 41701–41705 (2002).

    CAS  PubMed  Google Scholar 

  94. Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194–199 (2002).

    CAS  PubMed  Google Scholar 

  95. Ogura, Y. et al. Genetic variation and activity of mouse Nod2, a susceptibility gene for Crohn's disease small star, filled. Genomics 81, 369–377 (2003).

    CAS  PubMed  Google Scholar 

  96. Rioux, J. D. et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am. J. Hum. Genet. 66, 1863–1870 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kobayashi, M. et al. Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J. Clin. Invest. 111, 1297–1308 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mahler, M. et al. Genetic analysis of susceptibility to dextran sulfate sodium-induced colitis in mice. Genomics 55, 147–156 (1999).

    CAS  PubMed  Google Scholar 

  99. Mahler, M. et al. Genetics of colitis susceptibility in IL-10-deficient mice: backcross versus F2 results contrasted by principal component analysis. Genomics 80, 274–282 (2002).

    PubMed  Google Scholar 

  100. Farmer, M. A. et al. A major quantitative trait locus on chromosome 3 controls colitis severity in IL-10-deficient mice. Proc. Natl Acad. Sci. USA 98, 13820–13825 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kozaiwa, K. et al. Genetic analysis of susceptibility to ileitis in a spontaneous mouse model of Crohn's disease. Gastroenterol. 120, A186 (2001).

    Google Scholar 

  102. Targan, S. R. Biology of inflammation in Crohn's disease: mechanisms of action of anti-TNF-α therapy. Can. J. Gastroenterol. 14, C13–C16 (2000).

    Google Scholar 

  103. Neurath, M. F. et al. Regulation of T-cell apoptosis in inflammatory bowel disease: to die or not to die, that is the mucosal question. Trends Immunol. 22, 21–26 (2001).

    CAS  PubMed  Google Scholar 

  104. Fuss, I. J. et al. Anti-interleukin 12 treatment regulates apoptosis of TH1 T cells in experimental colitis in mice. Gastroenterol. 117, 1078–1088 (1999).

    CAS  Google Scholar 

  105. Atreya, R. et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nature Med. 6, 583–588 (2000).

    CAS  PubMed  Google Scholar 

  106. Tiede, I. et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J. Clin. Invest. 111, 1133–1145 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. van Assche, G. & Rutgeerts, P. Antiadhesion molecule therapy in inflammatory bowel disease. Inflamm. Bowel Dis. 8, 291–300 (2002).

    PubMed  Google Scholar 

  108. Ghosh, S. et al. Natalizumab for active Crohn's disease. N. Engl. J. Med. 348, 24–32 (2003).

    CAS  PubMed  Google Scholar 

  109. Steidler, L. et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352–1355 (2000).

    CAS  PubMed  Google Scholar 

  110. Kitani, A. et al. Treatment of experimental (Trinitrobenzene sulfonic acid) colitis by intranasal administration of transforming growth factor (TGF)-β1 plasmid: TGF-β1-mediated suppression of T helper cell type 1 response occurs by interleukin (IL)-10 induction and IL-12 receptor-β2 chain downregulation. J. Exp. Med. 192, 41–52 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Madara, J. L. et al. Characterization of spontaneous colitis in cotton-top tamarins (Saguinus oedipus) and its response to sulfasalazine. Gastroenterol. 88, 13–19 (1985).

    CAS  Google Scholar 

  112. Matsumoto, S. et al. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut 43, 71–78 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Rivera-Nieves, J. et al. Emergence of perianal fistulizing disease in the SAMP1/YitFc mouse, a spontaneous model of chronic ileitis. Gastroenterol. 124, 972–982 (2003). The model of spontaneous intestinal inflammation used in references 112 and 113 has a macroscopic and microscopic appearance that is markedly similar to that of Crohn's disease, including predominant small-bowel involvement and the development of peri-anal fistulas

    Google Scholar 

  114. Sundberg, J. P., Elson, C. O., Bedigian, H. & Birkenmeier, E. H. Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterol. 107, 1726–1735 (1994).

    CAS  Google Scholar 

  115. Panwala, C. M., Jones, J. C. & Viney, J. L. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J. Immunol. 161, 5733–5744 (1998).

    CAS  PubMed  Google Scholar 

  116. Mashimo, H., Wu, D. C., Podolsky, D. K. & Fishman, M. C. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274, 262–265 (1996).

    CAS  PubMed  Google Scholar 

  117. Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261 (1993).

    CAS  PubMed  Google Scholar 

  118. Willerford, D. M. et al. Interleukin-2 receptor-α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    CAS  PubMed  Google Scholar 

  119. Spencer, S. D. et al. The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J. Exp. Med. 187, 571–578 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hahm, K. B. et al. Loss of transforming growth factor-β signalling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut 49, 190–198 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Rudolph, U. et al. Ulcerative colitis and adenocarcinoma of the colon in Gαi2-deficient mice. Nature Genet. 10, 143–150 (1995).

    CAS  PubMed  Google Scholar 

  123. Watanabe, M. et al. The serum factor from patients with ulcerative colitis that induces T cell proliferation in the mouse thymus is interleukin-7. J. Clin. Immunol. 17, 282–292 (1997).

    CAS  PubMed  Google Scholar 

  124. Mombaerts, P. et al. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 75, 274–282 (1993).

    CAS  PubMed  Google Scholar 

  125. Erdman, S., Fox, J. G., Dangler, C. A., Feldman, D. & Horwitz, B. H. Typhlocolitis in NF-κB-deficient mice. J. Immunol. 166, 1443–1447 (2001).

    CAS  PubMed  Google Scholar 

  126. Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376, 167–170 (1995).

    CAS  PubMed  Google Scholar 

  127. Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hammer, R. E., Maika, S. D., Richardson, J. A., Tang, J. P. & Taurog, J. D. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 63, 1099–1112 (1990).

    CAS  PubMed  Google Scholar 

  129. Snapper, S. B. et al. Wiskott–Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9, 81–91 (1998).

    CAS  PubMed  Google Scholar 

  130. Morris, G. P. et al. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterol. 96, 795–803 (1989).

    CAS  Google Scholar 

  131. MacPherson, B. R. & Pfeiffer, C. J. Experimental production of diffuse colitis in rats. Digestion 17, 135–150 (1978).

    CAS  PubMed  Google Scholar 

  132. Yamada, T., Sartor, R. B., Marshall, S., Specian, R. D. & Grisham, M. B. Mucosal injury and inflammation in a model of chronic granulomatous colitis in rats. Gastroenterol. 104, 759–771 (1993).

    CAS  Google Scholar 

  133. Okayasu, I. et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterol. 98, 694–702 (1990).

    CAS  Google Scholar 

  134. Stewart, T. H., Hetenyi, C., Rowsell, H. & Orizaga, M. Ulcerative enterocolitis in dogs induced by drugs. J. Pathol. 131, 363–378 (1980).

    CAS  PubMed  Google Scholar 

  135. Watt, J. & Marcus, R. Ulcerative colitis in the guinea-pig caused by seaweed extract. J. Pharm. Pharmacol. 21, S187 (1969).

    Google Scholar 

  136. Steinhoff, U. et al. Autoimmune intestinal pathology induced by hsp60-specific CD8 T cells. Immunity 11, 349–358 (1999).

    CAS  PubMed  Google Scholar 

  137. Teuscher, C. et al. Sequence polymorphisms in the chemokines Scya1 (TCA-3), Scya2 (monocyte chemoattractant protein (MCP)-1), and Scya12 (MCP-5) are candidates for eae7, a locus controlling susceptibility to monophasic remitting/nonrelapsing experimental allergic encephalomyelitis. J. Immunol. 163, 2262–2266 (1999).

    CAS  PubMed  Google Scholar 

  138. Morahan, G. et al. Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL12B allele. Nature Genet. 27, 218–221 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G. Bouma is a fellow of the Royal Netherlands Academy of Arts and Sciences and is supported by funding from the Crohn's and Colitis Foundation of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Strober.

Related links

Related links

DATABASE LINKS

LocusLink

CD25

IFN-γ

IL-1β

IL-2

IL-4

IL-5

IL-6

IL-10

IL-12

IL-12Rβ2

IL-13

IL-15

IL-16

IL-18

IL-23p19

IL-12p35

IL-12p40

NF-κB

NOD2

Rag1

RICK

SMAD7

Stat4

Stat3

TGF-β

TNF

Omin

Crohn's disease

ulcerative colitis

FURTHER INFORMATION

Mouse genome database

Crohn's and colitis foundation of America

Glossary

HAPTENATING AGENT

Small organic molecules that do not provoke an immune response by themselves, but do so when covalently attached to a carrier protein.

TOLL-LIKE RECEPTORS

(TLRs). A family of receptors that recognize conserved products that are unique to microorganisms, such as lipopolysaccharide. TLR-mediated events signal to the host that a microbial pathogen is present.

MICROSATELLITE MARKERS

A class of polymorphic markers (di-, tri- or tetra-nucleotide repeats) that are scattered throughout the genome. Individuals differ in the number of repeats, which can be used in determining the position of disease-susceptibility genes in the genome by studying the co-segregation of these markers with disease in families.

RELATIVE RISK

The probability of an event in the active group divided by the probability of the event in the control group. In this case, the risk of developing Crohn's disease in homozygous or heterozygous carriers of the NOD2 mutation divided by the risk in non-carriers of the mutation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouma, G., Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3, 521–533 (2003). https://doi.org/10.1038/nri1132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing