Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent developments in the transcriptional regulation of cytolytic effector cells

Key Points

  • Typically, transcription factors are modular proteins that regulate the expression of genes through their binding to DNA regulatory elements. They can either activate or repress the transcription of genes by RNA polymerase.

  • Cytolytic effector cells of the immune system include CD8+ T cells and natural killer (NK) cells. They mediate the killing of target cells through the exocytosis of cytolytic granules that contain perforin and granzymes or by activation of apoptosis through the FAS–FAS ligand (FASL) pathway.

  • NK cells are components of the innate immune system and develop with pre-formed cytotoxic granules; after maturation, they can attack and kill target cells within 20–30 minutes. By contrast, CD8+ T cells are components of the adaptive immune system and require activation through stimulation of the T-cell receptor for several days before they show cytotoxicity.

  • Transcription factors have crucial roles in both the development and the effector function of cytolytic effector cells, such as CD8+ T cells and NK cells. Some transcription factors — for example, SP1 transcription factor and nuclear factor-κB — are widely expressed by many cell types and drive the expression of several genes. By contrast, tissue-specific factors such as the T-box factors T-bet and eomesodermin (EOMES) have been shown to have important roles in these cytolytic subsets. Such tissue-specific factors function as master regulators to initiate specific gene-expression programmes.

  • T-bet is expressed by the cytolytic cell lineages — CD8+ T cells, NK cells and natural killer T (NKT) cells — as well as by CD4+ T helper 1 cells. The best-defined target gene of T-bet is the gene encoding interferon-γ (IFN-γ), but those encoding the cytolytic effector molecules granzyme B and perforin have also been shown to be direct targets. T-bet also has important roles in the regulation of IFN-γ production and cytotoxicity in the previously mentioned cell types.

  • EOMES has been shown to be highly expressed by CD8+ T cells and NK cells but not by CD4+ T cells and NKT cells. In addition, overexpression of EOMES has been shown to drive the expression of IFN-γ, perforin and granzyme B, thereby indicating that these genes are also direct targets of EOMES.

  • Other transcription factors — such as STAT1, STAT4, RUNX3, REL, MITF, C/EBP-γ, NEMO and IRF2 — also have important roles in the production of IFN-γ and cytotoxic molecules in these cell types. Absence of the ETS-family members ETS1 or MEF (myeloid ELF1 (E74-like factor 1)-like factor) results in defective NK-cell development and cytotoxicity, and MEF has been shown to directly regulate expression of the perforin gene.

  • The genes encoding perforin, granzyme B and FASL are regulated by multiple transcription factors, many of which are widely expressed. The ongoing challenges are to identify the tissue-specific transcription factors that are master regulators of expression of the cytolytic effector machinery and to understand how they interact with the other more-ubiquitously expressed transcription factors. In addition, identification of important regulatory elements in the promoters and upstream or downstream enhancer elements, together with assessment of the chromatin structure of these cytolytic genes in different cell types, provides mechanistic explanations for how the expression of these genes is controlled.

Abstract

Transcription factors have a profound influence on both the differentiation and effector function of cells of the immune system. T-bet controls the cytotoxicity of CD8+ T cells and the production of interferon-γ, and it also affects the development and function of natural killer cells and natural killer T cells. Other factors such as eomesodermin, MEF, ETS1 and members of the interferon-regulatory factor family also contribute to the effector function of immune cells. In this review, we focus on recent studies that have shed light on the transcriptional mechanisms that regulate cellular effector function in the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main transcriptional pathways in CD8+ effector T cells.
Figure 2: Overview of the transcriptional pathways in natural killer cells.
Figure 3: General organization of the perforin, granzyme B and FAS ligand gene promoters.

Similar content being viewed by others

References

  1. Kadonaga, J. T. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116, 247–257 (2004). This review provides a general overview of the control of gene expression by transcription factors.

    CAS  PubMed  Google Scholar 

  2. Latchman, D. S. Eukaryotic Transcription Factors (Academic Press, Boston, 1998).

    Google Scholar 

  3. Pearce, E. L. et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041–1043 (2003). This paper describes the identification of EOMES as an important transcription factor in CD8+ T cells, driving effector function and IFN-γ production.

    CAS  PubMed  Google Scholar 

  4. Townsend, M. J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT Cells. Immunity 20, 477–494 (2004). This paper describes NK- and Vα14 i NKT-cell defects in T-bet−/− mice. The NK-cell defect was partial and mostly developmental, whereas the Vα14 i NKT-cell defect was more profound. This difference might be explained by the expression of EOMES by NK cells but not Vα14 i NKT cells.

    CAS  PubMed  Google Scholar 

  5. Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    CAS  PubMed  Google Scholar 

  6. Szabo, S. J., Sullivan, B. M., Peng, S. L. & Glimcher, L. H. Molecular mechanisms regulating TH1 immune responses. Annu. Rev. Immunol. 21, 713–758 (2003).

    CAS  PubMed  Google Scholar 

  7. Kaech, S. M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002). This paper provides a comprehensive analysis of the changes in gene expression in CD8+ T cells during differentiation and memory-cell formation.

    CAS  PubMed  Google Scholar 

  8. Harty, J. T., Tvinnereim, A. R. & White, D. W. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol. 18, 275–308 (2000).

    CAS  PubMed  Google Scholar 

  9. Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    CAS  PubMed  Google Scholar 

  10. Lu, B. et al. Targeted disruption of the interferon-γ receptor 2 gene results in severe immune defects in mice. Proc. Natl Acad. Sci. USA 95, 8233–8238 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Boehm, U., Klamp, T., Groot, M. & Howard, J. C. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15, 749–795 (1997).

    CAS  PubMed  Google Scholar 

  12. Leonard, W. J. & O'Shea, J. J. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).

    CAS  PubMed  Google Scholar 

  13. Penix, L. A. et al. The proximal regulatory element of the interferon-γ promoter mediates selective expression in T cells. J. Biol. Chem. 271, 31964–31972 (1996).

    CAS  PubMed  Google Scholar 

  14. Aune, T. M., Penix, L. A., Rincon, M. R. & Flavell, R. A. Differential transcription directed by discrete γ interferon promoter elements in naive and memory (effector) CD4 T cells and CD8 T cells. Mol. Cell. Biol. 17, 199–208 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Campbell, P. M., Pimm, J., Ramassar, V. & Halloran, P. F. Identification of a calcium-inducible, cyclosporine sensitive element in the IFN-γ promoter that is a potential NFAT binding site. Transplantation 61, 933–939 (1996).

    CAS  PubMed  Google Scholar 

  16. Sweetser, M. T. et al. The roles of nuclear factor of activated T cells and ying-yang 1 in activation-induced expression of the interferon-γ promoter in T cells. J. Biol. Chem. 273, 34775–34783 (1998).

    CAS  PubMed  Google Scholar 

  17. Sica, A. et al. Interaction of NF-κB and NFAT with the interferon-γ promoter. J. Biol. Chem. 272, 30412–30420 (1997).

    CAS  PubMed  Google Scholar 

  18. Aronica, M. A. et al. Preferential role for NF-κB/Rel signaling in the type 1 but not type 2 T cell-dependent immune response in vivo. J. Immunol. 163, 5116–5124 (1999).

    CAS  PubMed  Google Scholar 

  19. Russell, J. H. & Ley, T. J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 20, 323–370 (2002). This is an excellent review that provides an overview of all known cytotoxic mechanisms.

    CAS  PubMed  Google Scholar 

  20. Cho, J. Y., Grigura, V., Murphy, T. L. & Murphy, K. Identification of cooperative monomeric Brachyury sites conferring T-bet responsiveness to the proximal IFN-γ promoter. Int. Immunol. 15, 1149–1160 (2003).

    CAS  PubMed  Google Scholar 

  21. Lee, D. U., Avni, O., Chen, L. & Rao, A. A distal enhancer in the interferon-γ (IFN-γ) locus revealed by genome sequence comparison. J. Biol. Chem. 279, 4802–4810 (2004).

    CAS  PubMed  Google Scholar 

  22. Lighvani, A. A. et al. T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl Acad. Sci. USA 98, 15137–15142 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nature Immunol. 3, 549–557 (2002).

    CAS  Google Scholar 

  24. Sullivan, B. M., Juedes, A., Szabo, S. J., von Herrath, M. & Glimcher, L. H. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc. Natl Acad. Sci. USA 100, 15818–15823 (2003). This paper was the first to describe a defect in CD8+ T-cell effector function, together with impaired production of IFN-γ, in the absence of T-bet. Increased mortality after infection with LCMV was also observed in T-bet−/− mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Juedes, A. E., Rodrigo, E., Togher, L., Glimcher, L. H. & von Herrath, M. G. T-bet controls autoaggressive CD8 lymphocyte responses in type 1 diabetes. J. Exp. Med. 199, 1153–1162 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Muller, C. W. & Herrmann, B. G. Crystallographic structure of the T domain–DNA complex of the Brachyury transcription factor. Nature 389, 884–888 (1997).

    CAS  PubMed  Google Scholar 

  27. Carter, L. L. & Murphy, K. M. Lineage-specific requirement for signal transducer and activator of transcription (Stat)4 in interferon γ production from CD4+ versus CD8+ T cells. J. Exp. Med. 189, 1355–1360 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Meraz, M. A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK–STAT signaling pathway. Cell 84, 431–442 (1996).

    CAS  PubMed  Google Scholar 

  29. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).

    CAS  PubMed  Google Scholar 

  30. Liou, H. C. et al. c-Rel is crucial for lymphocyte proliferation but dispensable for T cell effector function. Int. Immunol. 11, 361–371 (1999).

    CAS  PubMed  Google Scholar 

  31. Colucci, F., Caligiuri, M. A. & Di Santo, J. P. What does it take to make a natural killer? Nature Rev. Immunol. 3, 413–425 (2003).

    CAS  Google Scholar 

  32. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    CAS  PubMed  Google Scholar 

  33. Lanier, L. L. Natural killer cell receptor signaling. Curr. Opin. Immunol. 15, 308–314 (2003).

    CAS  PubMed  Google Scholar 

  34. Eriksson, M. et al. Inhibitory receptors alter natural killer cell interactions with target cells yet allow simultaneous killing of susceptible targets. J. Exp. Med. 190, 1005–1012 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang, K. et al. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nature Immunol. 1, 419–425 (2000).

    CAS  Google Scholar 

  36. Jiang, K. et al. Syk regulation of phosphoinositide 3-kinase-dependent NK cell function. J. Immunol. 168, 3155–3164 (2002).

    CAS  PubMed  Google Scholar 

  37. Sutherland, C. L. et al. UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. J. Immunol. 168, 671–679 (2002).

    CAS  PubMed  Google Scholar 

  38. Billadeau, D. D., Upshaw, J. L., Schoon, R. A., Dick, C. J. & Leibson, P. J. NKG2D–DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nature Immunol. 4, 557–564 (2003).

    CAS  Google Scholar 

  39. Kim, S. et al. In vivo developmental stages in murine natural killer cell maturation. Nature Immunol. 3, 523–528 (2002).

    Google Scholar 

  40. Wang, J. H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

    CAS  PubMed  Google Scholar 

  41. Barton, K. et al. The Ets-1 transcription factor is required for the development of natural killer cells in mice. Immunity 9, 555–563 (1998).

    CAS  PubMed  Google Scholar 

  42. Lacorazza, H. D. et al. The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 17, 437–449 (2002). This paper shows that the ETS-family transcription factor MEF directly regulates the perforin gene, in addition to being an important factor for NK- and NKT-cell development.

    CAS  PubMed  Google Scholar 

  43. Lohoff, M. et al. Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type 1 cells. J. Exp. Med. 192, 325–336 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Colucci, F. et al. Differential requirement for the transcription factor PU.1 in the generation of natural killer cells versus B and T cells. Blood 97, 2625–2632 (2001).

    CAS  PubMed  Google Scholar 

  45. Samson, S. I. et al. GATA-3 promotes maturation, IFN-γ production, and liver-specific homing of NK Cells. Immunity 19, 701–711 (2003).

    CAS  PubMed  Google Scholar 

  46. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    CAS  PubMed  Google Scholar 

  47. Ito, A. et al. Inhibitory effect on natural killer activity of microphthalmia transcription factor encoded by the mutant mi allele of mice. Blood 97, 2075–2083 (2001).

    CAS  PubMed  Google Scholar 

  48. Kaisho, T. et al. Impairment of natural killer cytotoxic activity and interferon γ production in CCAAT/enhancer binding protein γ-deficient mice. J. Exp. Med. 190, 1573–1582 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Orange, J. S. et al. Deficient natural killer cell cytotoxicity in patients with IKK-γ/NEMO mutations. J. Clin. Invest. 109, 1501–1509 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Metelitsa, L. S. et al. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J. Immunol. 167, 3114–3122 (2001).

    CAS  PubMed  Google Scholar 

  51. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    CAS  PubMed  Google Scholar 

  52. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nature Rev. Immunol. 2, 557–568 (2002).

    CAS  Google Scholar 

  53. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NK T cell lineage. Science 296, 553–555 (2002).

    CAS  PubMed  Google Scholar 

  54. Walunas, T. L., Wang, B., Wang, C. R. & Leiden, J. M. The Ets1 transcription factor is required for the development of NK T cells in mice. J. Immunol. 164, 2857–2860 (2000).

    CAS  PubMed  Google Scholar 

  55. Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    CAS  PubMed  Google Scholar 

  56. Lieberman, J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nature Rev. Immunol. 3, 361–370 (2003). This is a comprehensive review of cell-killing mechanisms, with a focus on granzyme- and perforin-dependent pathways.

    CAS  Google Scholar 

  57. Kischkel, F. C. et al. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611–620 (2000).

    CAS  PubMed  Google Scholar 

  58. Sprick, M. R. et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12, 599–609 (2000).

    CAS  PubMed  Google Scholar 

  59. Balkow, S. et al. Concerted action of the FasL/Fas and perforin/granzyme A and B pathways is mandatory for the development of early viral hepatitis but not for recovery from viral infection. J. Virol. 75, 8781–8791 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Muller, U. et al. Concerted action of perforin and granzymes is critical for the elimination of Trypanosoma cruzi from mouse tissues, but prevention of early host death is in addition dependent on the FasL/Fas pathway. Eur. J. Immunol. 33, 70–78 (2003). References 59 and 60 describe studies that used gene-deficient mice to determine the relative contributions to cytotoxicity of the FAS–FASL pathway and the granule-exocytosis pathway.

    CAS  PubMed  Google Scholar 

  61. Lichtenheld, M. G. & Podack, E. R. Structure and function of the murine perforin promoter and upstream region. Reciprocal gene activation or silencing in perforin positive and negative cells. J. Immunol. 149, 2619–2626 (1992).

    CAS  PubMed  Google Scholar 

  62. Zhang, Y. & Lichtenheld, M. G. Non-killer cell-specific transcription factors silence the perforin promoter. J. Immunol. 158, 1734–1741 (1997).

    CAS  PubMed  Google Scholar 

  63. Smyth, M. J., Kershaw, M. H., Hulett, M. D., McKenzie, I. F. & Trapani, J. A. Use of the 5′-flanking region of the mouse perforin gene to express human Fcγ receptor I in cytotoxic T lymphocytes. J. Leukoc. Biol. 55, 514–522 (1994).

    CAS  PubMed  Google Scholar 

  64. Youn, B. S., Lim, C. L., Shin, M. K., Hill, J. M. & Kwon, B. S. An intronic silencer of the mouse perforin gene. Mol. Cells 13, 61–68 (2002).

    CAS  PubMed  Google Scholar 

  65. Koizumi, H. et al. Identification of a killer cell-specific regulatory element of the mouse perforin gene: an Ets-binding site-homologous motif that interacts with Ets-related proteins. Mol. Cell. Biol. 13, 6690–6701 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Youn, B. S., Kim, K. K. & Kwon, B. S. A critical role of Sp1- and Ets-related transcription factors in maintaining CTL-specific expression of the mouse perforin gene. J. Immunol. 157, 3499–3509 (1996).

    CAS  PubMed  Google Scholar 

  67. Yu, C. R. et al. Role of a STAT binding site in the regulation of the human perforin promoter. J. Immunol. 162, 2785–2790 (1999).

    CAS  PubMed  Google Scholar 

  68. Zhang, J., Scordi, I., Smyth, M. J. & Lichtenheld, M. G. Interleukin 2 receptor signaling regulates the perforin gene through signal transducer and activator of transcription (Stat)5 activation of two enhancers. J. Exp. Med. 190, 1297–1308 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lu, P., Garcia-Sanz, J. A., Lichtenheld, M. G. & Podack, E. R. Perforin expression in human peripheral blood mononuclear cells. Definition of an IL-2-independent pathway of perforin induction in CD8+ T cells. J. Immunol. 148, 3354–3360 (1992).

    CAS  PubMed  Google Scholar 

  70. Yamamoto, K., Shibata, F., Miyasaka, N. & Miura, O. The human perforin gene is a direct target of STAT4 activated by IL-12 in NK cells. Biochem. Biophys. Res. Commun. 297, 1245–1252 (2002).

    CAS  PubMed  Google Scholar 

  71. Zhou, J., Zhang, J., Lichtenheld, M. G. & Meadows, G. G. A role for NF-κB activation in perforin expression of NK cells upon IL-2 receptor signaling. J. Immunol. 169, 1319–1325 (2002).

    CAS  PubMed  Google Scholar 

  72. Kelso, A. et al. The genes for perforin, granzymes A–C and IFN-γ are differentially expressed in single CD8+ T cells during primary activation. Int. Immunol. 14, 605–613 (2002).

    CAS  PubMed  Google Scholar 

  73. Grossman, W. J. et al. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104, 2840–2848 (2004).

    CAS  PubMed  Google Scholar 

  74. Maclvor, D. M., Pham, C. T. & Ley, T. J. The 5′ flanking region of the human granzyme H gene directs expression to T/natural killer cell progenitors and lymphokine-activated killer cells in transgenic mice. Blood 93, 963–973 (1999).

    CAS  Google Scholar 

  75. Pham, C. T., MacIvor, D. M., Hug, B. A., Heusel, J. W. & Ley, T. J. Long-range disruption of gene expression by a selectable marker cassette. Proc. Natl Acad. Sci. USA 93, 13090–13095 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Heusel, J. W., Hanson, R. D., Silverman, G. A. & Ley, T. J. Structure and expression of a cluster of human hematopoietic serine protease genes found on chromosome 14q11.2. J. Biol. Chem. 266, 6152–6158 (1991).

    CAS  PubMed  Google Scholar 

  77. Haddad, P., Wargnier, A., Bourge, J. F., Sasportes, M. & Paul, P. A promoter element of the human serine esterase granzyme B gene controls specific transcription in activated T cells. Eur. J. Immunol. 23, 625–629 (1993).

    CAS  PubMed  Google Scholar 

  78. Wargnier, A. et al. Identification of human granzyme B promoter regulatory elements interacting with activated T-cell-specific proteins: implication of Ikaros and CBF binding sites in promoter activation. Proc. Natl Acad. Sci. USA 92, 6930–6934 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Babichuk, C. K., Duggan, B. L. & Bleackley, R. C. In vivo regulation of murine granzyme B gene transcription in activated primary T cells. J. Biol. Chem. 271, 16485–16493 (1996).

    CAS  PubMed  Google Scholar 

  80. Babichuk, C. K. & Bleackley, R. C. Mutational analysis of the murine granzyme B gene promoter in primary T cells and a T cell clone. J. Biol. Chem. 272, 18564–18571 (1997).

    CAS  PubMed  Google Scholar 

  81. Hanson, R. D., Grisolano, J. L. & Ley, T. J. Consensus AP-1 and CRE motifs upstream from the human cytotoxic serine protease B (CSP-B/CGL-1) gene synergize to activate transcription. Blood 82, 2749–2757 (1993).

    CAS  PubMed  Google Scholar 

  82. Wargnier, A. et al. Down-regulation of human granzyme B expression by glucocorticoids. Dexamethasone inhibits binding to the Ikaros and AP-1 regulatory elements of the granzyme B promoter. J. Biol. Chem. 273, 35326–35331 (1998).

    CAS  PubMed  Google Scholar 

  83. Ito, A. et al. Systematic method to obtain novel genes that are regulated by mi transcription factor: impaired expression of granzyme B and tryptophan hydroxylase in mi/mi cultured mast cells. Blood 91, 3210–3221 (1998).

    CAS  PubMed  Google Scholar 

  84. Kim, D. K. et al. Different effect of various mutant MITF encoded by mi, Mior, or Miwh allele on phenotype of murine mast cells. Blood 93, 4179–4186 (1999).

    CAS  PubMed  Google Scholar 

  85. Manyak, C. L. et al. IL-2 induces expression of serine protease enzymes and genes in natural killer and nonspecific T killer cells. J. Immunol. 142, 3707–3713 (1989).

    CAS  PubMed  Google Scholar 

  86. DeBlaker-Hohe, D. F., Yamauchi, A., Yu, C. R., Horvath-Arcidiacono, J. A. & Bloom, E. T. IL-12 synergizes with IL-2 to induce lymphokine-activated cytotoxicity and perforin and granzyme gene expression in fresh human NK cells. Cell. Immunol. 165, 33–43 (1995).

    CAS  PubMed  Google Scholar 

  87. Ye, W., Young, J. D. & Liu, C. C. Interleukin-15 induces the expression of mRNAs of cytolytic mediators and augments cytotoxic activities in primary murine lymphocytes. Cell. Immunol. 174, 54–62 (1996).

    CAS  PubMed  Google Scholar 

  88. Wallach, D. et al. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 17, 331–367 (1999).

    CAS  PubMed  Google Scholar 

  89. Nagata, S. Fas ligand-induced apoptosis. Annu. Rev. Genet. 33, 29–55 (1999).

    CAS  PubMed  Google Scholar 

  90. Bennett, I. M. et al. Definition of a natural killer NKR-P1A+/CD56/CD16 functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12. J. Exp. Med. 184, 1845–1856 (1996).

    CAS  PubMed  Google Scholar 

  91. Zamai, L. et al. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J. Exp. Med. 188, 2375–2380 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Suda, T. et al. Expression of the Fas ligand in cells of T cell lineage. J. Immunol. 154, 3806–3813 (1995).

    CAS  PubMed  Google Scholar 

  93. Latinis, K. M. et al. Regulation of CD95 (Fas) ligand expression by TCR-mediated signaling events. J. Immunol. 158, 4602–4611 (1997).

    CAS  PubMed  Google Scholar 

  94. Wang, J. K., Zhu, B., Ju, S. T., Tschopp, J. & Marshak-Rothstein, A. CD4+ T cells reactivated with superantigen are both more sensitive to FasL-mediated killing and express a higher level of FasL. Cell. Immunol. 179, 153–164 (1997).

    CAS  PubMed  Google Scholar 

  95. Matsui, K., Fine, A., Zhu, B., Marshak-Rothstein, A. & Ju, S. T. Identification of two NF-κB sites in mouse CD95 ligand (Fas ligand) promoter: functional analysis in T cell hybridoma. J. Immunol. 161, 3469–3473 (1998).

    CAS  PubMed  Google Scholar 

  96. Kasibhatla, S. et al. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-κB and AP-1. Mol. Cell 1, 543–551 (1998).

    CAS  PubMed  Google Scholar 

  97. Kasibhatla, S., Genestier, L. & Green, D. R. Regulation of Fas-ligand expression during activation-induced cell death in T lymphocytes via nuclear factor κB. J. Biol. Chem. 274, 987–992 (1999).

    CAS  PubMed  Google Scholar 

  98. Matsui, K. et al. Proteasome regulation of Fas ligand cytotoxicity. Eur. J. Immunol. 27, 2269–2278 (1997).

    CAS  PubMed  Google Scholar 

  99. Mittelstadt, P. R. & Ashwell, J. D. Cyclosporin A-sensitive transcription factor Egr-3 regulates Fas ligand expression. Mol. Cell. Biol. 18, 3744–3751 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mittelstadt, P. R. & Ashwell, J. D. Role of Egr-2 in up-regulation of Fas ligand in normal T cells and aberrant double-negative lpr and gld T cells. J. Biol. Chem. 274, 3222–3227 (1999).

    CAS  PubMed  Google Scholar 

  101. Droin, N. M., Pinkoski, M. J., Dejardin, E. & Green, D. R. Egr family members regulate nonlymphoid expression of Fas ligand, TRAIL, and tumor necrosis factor during immune responses. Mol. Cell. Biol. 23, 7638–7647 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Latinis, K. M., Norian, L. A., Eliason, S. L. & Koretzky, G. A. Two NFAT transcription factor binding sites participate in the regulation of CD95 (Fas) ligand expression in activated human T cells. J. Biol. Chem. 272, 31427–31434 (1997).

    CAS  PubMed  Google Scholar 

  103. Hodge, M. R. et al. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4, 397–405 (1996).

    CAS  PubMed  Google Scholar 

  104. Ranger, A. M., Oukka, M., Rengarajan, J. & Glimcher, L. H. Inhibitory function of two NFAT family members in lymphoid homeostasis and TH2 development. Immunity 9, 627–635 (1998).

    CAS  PubMed  Google Scholar 

  105. Rengarajan, J. et al. Sequential involvement of NFAT and Egr transcription factors in FasL regulation. Immunity 12, 293–300 (2000).

    CAS  PubMed  Google Scholar 

  106. Gourley, T. S. & Chang, C. H. The class II transactivator prevents activation-induced cell death by inhibiting Fas ligand gene expression. J. Immunol. 166, 2917–2921 (2001).

    CAS  PubMed  Google Scholar 

  107. Gourley, T. S., Patel, D. R., Nickerson, K., Hong, S. C. & Chang, C. H. Aberrant expression of Fas ligand in mice deficient for the MHC class II transactivator. J. Immunol. 168, 4414–4419 (2002).

    CAS  PubMed  Google Scholar 

  108. Eischen, C. M., Schilling, J. D., Lynch, D. H., Krammer, P. H. & Leibson, P. J. Fc receptor-induced expression of Fas ligand on activated NK cells facilitates cell-mediated cytotoxicity and subsequent autocrine NK cell apoptosis. J. Immunol. 156, 2693–2699 (1996).

    CAS  PubMed  Google Scholar 

  109. Furuke, K., Shiraishi, M., Mostowski, H. S. & Bloom, E. T. Fas ligand induction in human NK cells is regulated by redox through a calcineurin–nuclear factors of activated T cell-dependent pathway. J. Immunol. 162, 1988–1993 (1999).

    CAS  PubMed  Google Scholar 

  110. Crist, S. A., Griffith, T. S. & Ratliff, T. L. Structure/function analysis of the murine CD95L promoter reveals the identification of a novel transcriptional repressor and functional CD28 response element. J. Biol. Chem. 278, 35950–35958 (2003).

    CAS  PubMed  Google Scholar 

  111. Norian, L. A. et al. The regulation of CD95 (Fas) ligand expression in primary T cells: induction of promoter activation in CD95LP–Luc transgenic mice. J. Immunol. 164, 4471–4480 (2000).

    CAS  PubMed  Google Scholar 

  112. Xiao, S. et al. FasL promoter activation by IL-2 through SP1 and NFAT but not Egr-2 and Egr-3. Eur. J. Immunol. 29, 3456–3465 (1999).

    CAS  PubMed  Google Scholar 

  113. McClure, R. F., Heppelmann, C. J. & Paya, C. V. Constitutive Fas ligand gene transcription in Sertoli cells is regulated by Sp1. J. Biol. Chem. 274, 7756–7762 (1999).

    CAS  PubMed  Google Scholar 

  114. Kavurma, M. M., Bobryshev, Y. & Khachigian, L. M. Ets-1 positively regulates Fas ligand transcription via cooperative interactions with Sp1. J. Biol. Chem. 277, 36244–36252 (2002).

    CAS  PubMed  Google Scholar 

  115. Kasibhatla, S., Beere, H. M., Brunner, T., Echeverri, F. & Green, D. R. A 'non-canonical' DNA-binding element mediates the response of the Fas-ligand promoter to c-Myc. Curr. Biol. 10, 1205–1208 (2000).

    CAS  PubMed  Google Scholar 

  116. Torgler, R. et al. Regulation of activation-induced Fas (CD95/Apo-1) ligand expression in T cells by the cyclin B1/Cdk1 complex. J. Biol. Chem. 279, 37334–37342 (2004).

    CAS  PubMed  Google Scholar 

  117. Brunner, T. et al. Expression of Fas ligand in activated T cells is regulated by c-Myc. J. Biol. Chem. 275, 9767–9772 (2000).

    CAS  PubMed  Google Scholar 

  118. Mailliard, R. B. et al. Dendritic cells mediate NK cell help for TH1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J. Immunol. 171, 2366–2373 (2003).

    CAS  PubMed  Google Scholar 

  119. Smyth, M. J. et al. Perforin is a major contributor to NK cell control of tumor metastasis. J. Immunol. 162, 6658–6662 (1999).

    CAS  PubMed  Google Scholar 

  120. van den Broek, M. E. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996).

    CAS  PubMed  Google Scholar 

  121. Mullbacher, A. et al. Granzyme A is critical for recovery of mice from infection with the natural cytopathic viral pathogen, ectromelia. Proc. Natl Acad. Sci. USA 93, 5783–5787 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Smyth, M. J., Street, S. E. & Trapani, J. A. Granzymes A and B are not essential for perforin-mediated tumor rejection. J. Immunol. 171, 515–518 (2003).

    CAS  PubMed  Google Scholar 

  123. Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H. & Ley, T. J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977–987 (1994).

    CAS  PubMed  Google Scholar 

  124. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969–976 (1994).

    CAS  PubMed  Google Scholar 

  125. Caldwell, S. A., Ryan, M. H., McDuffie, E. & Abrams, S. I. The Fas/Fas ligand pathway is important for optimal tumor regression in a mouse model of CTL adoptive immunotherapy of experimental CMS4 lung metastases. J. Immunol. 171, 2402–2412 (2003).

    CAS  PubMed  Google Scholar 

  126. Dalton, D. K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1742 (1993).

    CAS  PubMed  Google Scholar 

  127. Flynn, J. L. et al. An essential role for interferon-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    CAS  PubMed  Google Scholar 

  128. Cooper, A. M. et al. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med. 178, 2243–2247 (1993).

    CAS  PubMed  Google Scholar 

  129. Willenborg, D. O., Fordham, S., Bernard, C. C., Cowden, W. B. & Ramshaw, I. A. IFN-γ plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    CAS  PubMed  Google Scholar 

  130. Willenborg, D. O., Fordham, S. A., Staykova, M. A., Ramshaw, I. A. & Cowden, W. B. IFN-γ is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J. Immunol. 163, 5278–5286 (1999).

    CAS  PubMed  Google Scholar 

  131. Bettelli, E. et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J. Exp. Med. 200, 79–87 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Nishibori, T., Tanabe, Y., Su, L. & David, M. Impaired development of CD4+ CD25+ regulatory T Cells in the absence of STAT1: increased susceptibility to autoimmune disease. J. Exp. Med. 199, 25–34 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Stamm, L. M., Satoskar, A. A., Ghosh, S. K., David, J. R. & Satoskar, A. R. STAT-4 mediated IL-12 signaling pathway is critical for the development of protective immunity in cutaneous leishmaniasis. Eur. J. Immunol. 29, 2524–2529 (1999).

    CAS  PubMed  Google Scholar 

  134. Neurath, M. F. et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J. Exp. Med. 195, 1129–1143 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Support was provided by grants from the National Institutes of Health (Bethesda, United States) and the Juvenile Diabetes Research Foundation (New York, United States). M.J.T. is supported by a Postdoctoral Fellowship from the Cancer Research Institute (New York). G.M.L. is a Medical Research Council (United Kingdom) Clinician Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie H. Glimcher.

Ethics declarations

Competing interests

Laurie H. Glimcher is on the scientific advisory board of the Mannkind Corporation and on the corporate board of the Bristol-Myers Squibb Company. She has equity in both of these companies and has filed patents that have been licensed by Mannkind Corporation.

Related links

Related links

DATABASES

Entrez Gene

EOMES

FASL

granzyme B

IFN-γ

perforin

T-bet

Glossary

TRANSACTIVATION

The process by which a transcription factor binds the promoter region of a gene and induces its transcription.

REPRESSION

The process by which a transcription factor binds the promoter region of a gene and inhibits its transcription.

T-BOX (TBX) TRANSCRIPTION FACTORS

A family of transcription factors that each contains a DNA-binding domain of 200 amino acids known as the T-box. These factors are usually involved in developmental programmes, and the founding member of the family is Brachyury. T-bet and eomesodermin are members of this family.

T HELPER 1 (TH1)-CELL

The definition of a CD4+ T cell that has differentiated into a cell that produces the cytokines interferon-γ and tumour-necrosis factor.

T-BOX DNA-BINDING DOMAIN

A 200-amino-acid DNA-binding domain found in all members of the T-box family. This domain binds a consensus sequence found in the promoter regions of genes.

OT-1 TCR-TRANSGENIC MICE

Transgenic mice that have a T-cell receptor specific for an MHC-class-I-restricted peptide derived from ovalbumin. T cells from these mice can be activated in an antigen-specific manner either in vitro or in vivo.

CHROMIUM-RELEASE ASSAY

An assay that determines the activity of cytotoxic cells on the basis of their ability to lyse target cells labelled with radioactive chromium. The amount of radioactivity released is proportional to the number of target cells that are killed by the cytolytic cells added to the culture.

RAT INSULIN PROMOTER (RIP)–LCMV TRANSGENIC MODEL

A transgenic mouse model of type 1 diabetes in which peptides derived from lymphocytic choriomeningitis (LCMV) are expressed in the pancreas under the control of RIP. Infection of the mouse with LCMV leads to the development of diabetes as a result of infiltrating CD8+ effector T cells.

CHROMATIN IMMUNOPRECIPITATION

An experimental technique that analyses direct binding of an endogenous transcription factor to chromatin by fixation with formaldehyde followed by immunoprecipitation with a transcription-factor-specific antibody. Gene-specific enrichment is then assessed by polymerase chain reaction analysis of the immunoprecipitated DNA.

Vα14i NKT CELLS

The most abundant subset of natural killer T (NKT) cells. They have a rearrangement of the T-cell receptor (TCR) variable-gene segment Vα14 to the joining-region segment Jα18 to form an invariant complementarity-determining region. The resulting TCR is known as Vα14 invariant (Vα14i). This TCR is autoreactive to CD1d, and Vα14i NKT cells respond strongly to α-galactosylceramide (α-GalCer) presented in the context of CD1d.

DNASE I FOOTPRINTING ANALYSIS

An in vitro experimental technique for identifying the DNA sequence to which a transcription factor binds. A short end-labelled fragment of the DNA sequence of interest is incubated with nuclear extract and then digested with a low concentration of DNase I. The digested DNA is then recovered from the reaction and resolved on a polyacrylamide gel, together with a sequencing reaction using the same DNA fragment as the template. The regions bound by proteins are protected from DNase I digestion and appear as blank areas on the gel, and the exact protein-bound sequence can be determined by comparing the location of the blank areas with that of the sequencing reaction.

SV40 TAG REPORTER

A reporter gene consisting of the SV40 virus large T antigen — a multifunctional 85 kDa protein that is the sole viral protein required for SV40 replication and causes malignant transformation of susceptible cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glimcher, L., Townsend, M., Sullivan, B. et al. Recent developments in the transcriptional regulation of cytolytic effector cells. Nat Rev Immunol 4, 900–911 (2004). https://doi.org/10.1038/nri1490

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing