Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Consequences of regulated pre-mRNA splicing in the immune system

Key Points

  • Alternative splicing of a pre-mRNA enables the production of multiple functionally distinct proteins from a single gene. This mechanism of gene regulation is widespread, with particular prevalence in the immune system.

  • Sequences in exons and introns can influence the pattern of splicing of a given gene. Therefore, translationally silent mutations can alter protein expression by changing the splicing of a pre-mRNA, with potential disease consequences.

  • The protein tyrosine kinases FYN, SYK and possibly LCK, are differentially spliced in T cells. At least two isoforms are predicted for each protein, with one isoform being more efficient at promoting T-cell signalling.

  • Cytokine signalling in T cells might also be influenced by alternative splicing. Functionally distinct isoforms have been detected for the cytokines interleukin-2 (IL-2), IL-4 and IL-6, the receptors for IL-4 and IL-7 and the cytokine-induced signalling molecules protein tyrosine kinase 2 (PYK2), myeloid differentiation primary-response gene 88 (MyD88) and IL-1 receptor-associated kinase 1 (IRAK1).

  • The expression of cell-surface molecules, such as CD44, intercellular adhesion molecule 1 (ICAM1), platelet/endothelial cell-adhesion molecule 1 (PECAM1), CD45 and cytotoxic T-lymphocyte antigen 4 (CTLA4) is also influenced by alternative splicing to generate either soluble forms of the molecules or molecules with altered protein–protein interactions. Splicing-dependent changes in the expression of these molecules have been shown to influence the threshold of T-cell activation.

  • Regulation of splicing in response to antigen stimulation has been observed or implied for CD44, CD45, FYN, CTLA4, PECAM1 and MyD88. The mechanisms by which activation-induced splicing regulation occurs are beginning to be understood for the CD44 and CD45 genes, and recent data indicate that some of these alternative splicing events might be regulated by overlapping pathways.

Abstract

Alternative splicing is widely recognized to be a ubiquitous and crucial mechanism for generating protein diversity and regulating protein expression. Numerous immunologically relevant genes have been found to undergo alternative splicing; however, there has been little effort to develop a coherent picture of how alternative splicing might be used as a general mechanism to regulate the function of the immune system. In this review, I summarize the mechanisms by which splicing is controlled in T cells, and discuss the role of alternative splicing and alternative isoform expression in the regulation of T-cell activation and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic patterns of alternative splicing.
Figure 2: Alternative splicing of CD44 and CD45 pre-mRNA.
Figure 3: Proposed models for the regulation of CD44 and CD45 alternative splicing.

Similar content being viewed by others

References

  1. Modrek, B., Resch, A., Grasso, C. & Lee, C. Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res. 29, 2850–2859 (2001). This study demonstrates the extent of alternative splicing in humans, particularly in the immune and nervous systems.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson, J. M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003).

    CAS  PubMed  Google Scholar 

  3. Black, D. L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    CAS  PubMed  Google Scholar 

  4. Smith, C. W. J. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388 (2000).

    CAS  PubMed  Google Scholar 

  5. Black, D. L. & Grabowski, P. J. Alternative pre-mRNA splicing and neuronal function. Prog. Mol. Subcell. Biol. 31, 187–216 (2003).

    CAS  PubMed  Google Scholar 

  6. Wu, J. Y., Tang, H. & Havlioglu, N. Alternative pre-mRNA splicing and regulation of programmed cell death. Prog. Mol. Subcell. Biol. 31, 153–185 (2003).

    CAS  PubMed  Google Scholar 

  7. Black, D. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103, 367–370 (2000).

    CAS  PubMed  Google Scholar 

  8. Graveley, B. R. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 17, 100–107 (2001).

    CAS  PubMed  Google Scholar 

  9. Wollerton, M. C., Gooding, C., Wagner, E. J., Garcia-Blanco, M. A. & Smith, C. W. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell 13, 91–100 (2004).

    CAS  PubMed  Google Scholar 

  10. Ishitani, A. & Geraghty, D. E. Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc. Natl Acad. Sci. USA 89, 3947–3951 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan, G., Shi, L. & Faustman, D. Novel splicing of the human MHC-encoded peptide transporter confers unique properties. J. Immunol. 162, 852–859 (1999).

    CAS  PubMed  Google Scholar 

  12. Astier, A. et al. Human epidermal Langerhans cells secrete a soluble receptor for IgG (FcγRII/CD32) that inhibits the binding of immune complexes to FcγR+ cells. J. Immunol. 152, 201–212 (1994).

    CAS  PubMed  Google Scholar 

  13. Atkinson, T. P., Hall, C. G., Goldsmith, J. & Kirkham, P. M. Splice variant in TCRζ links T cell receptor signaling to a G-protein-related signaling pathway. Biochem. Biophys. Res. Commun. 310, 761–766 (2003).

    CAS  PubMed  Google Scholar 

  14. Tsytsikov, V. N., Yurovsky, V. V., Atamas, S. P., Alms, W. J. & White, B. Identification and characterization of two alternative splice variants of human interleukin-2. J. Biol. Chem. 271, 23055–23060 (1996).

    CAS  PubMed  Google Scholar 

  15. Alms, W. J., Atamas, S. P., Yurovsky, V. V. & White, B. Generation of a variant of human interleukin-4 by alternative splicing. Mol. Immunol. 33, 361–370 (1996).

    CAS  PubMed  Google Scholar 

  16. Trowbridge, I. S. & Thomas, M. L. CD45: An emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12, 85–116 (1994).

    CAS  PubMed  Google Scholar 

  17. Oaks, M. K. et al. A native soluble form of CTLA-4. Cell. Immunol. 201, 144–153 (2000).

    CAS  PubMed  Google Scholar 

  18. Arch, R. et al. Participation in normal immune responses of a metastasis-inducing splice variant of CD44. Science 257, 682–685 (1992).

    CAS  PubMed  Google Scholar 

  19. Rothrock, C., Cannon, B., Hahm, B. & Lynch, K. W. A conserved signal-responsive sequence mediates activation-induced alternative splicing of CD45. Mol. Cell 12, 1317–1324 (2003). Identification of the important sequences in the CD45 variable exons that mediate their antigen-induced repression. Evidence is also provided for the existence of common splicing-regulatory pathways in T cells.

    CAS  PubMed  Google Scholar 

  20. Cooke, M. P. & Perlmutter, R. M. Expression of a novel form of the fyn proto-oncogene in hematopoietic cells. New Biol. 1, 66–74 (1989).

    CAS  PubMed  Google Scholar 

  21. Davidson, D., Viallet, J. & Veillette, A. Unique catalytic properties dictate the enhanced function of p59fynT, the hemopoietic cell-specific isoform of the Fyn tyrosine protein kinase, in T cells. Mol. Cell Biol. 14, 4554–4564 (1994). This paper provides a detailed analysis of the functional differences between the FYN isoforms.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Davidson, D., Chow, L. M., Fournel, M. & Veillette, A. Differential regulation of T cell antigen responsiveness by isoforms of the src-related tyrosine protein kinase p59fyn. J. Exp. Med. 175, 1483–1492 (1992).

    CAS  PubMed  Google Scholar 

  23. Weil, R. et al. Altered expression of tyrosine kinases of the Src and Syk families in human T-cell leukemia virus type 1-infected T-cell lines. J. Virol. 73, 3709–3717 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Germani, A., Malherbe, S. & Rouer, E. The exon 7-spliced Lck isoform in T lymphocytes: a potential regulator of p56lck signaling pathways. Biochem. Biophys. Res. Commun. 301, 680–685 (2003).

    CAS  PubMed  Google Scholar 

  25. Rowley, R. B., Bolen, J. B. & Fargnoli, J. Molecular cloning of rodent p72Syk. Evidence of alternative mRNA splicing. J. Biol. Chem. 270, 12659–12664 (1995).

    CAS  PubMed  Google Scholar 

  26. Yagi, S., Suzuki, K., Hasegawa, A., Okumura, K. & Ra, C. Cloning of the cDNA for the deleted Syk kinase homologous to ZAP-70 from human basophilic leukemia cell line (KU812). Biochem. Biophys. Res. Commun. 200, 28–34 (1994).

    CAS  PubMed  Google Scholar 

  27. Latour, S., Zhang, J., Siraganian, R. P. & Veillette, A. A unique insert in the linker domain of Syk is necessary for its function in immunoreceptor signalling. EMBO J. 17, 2584–2595 (1998). The authors identify the molecular basis of the distinct functions of SYK and SYKB. This work also has implications for the functional difference between SYK and ZAP70 (ζ-chain-associated protein kinase of 70 kDa).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. King, P. D. et al. Novel isoforms of murine intercellular adhesion molecule-1 generated by alternative RNA splicing. J. Immunol. 154, 6080–6093 (1995).

    CAS  PubMed  Google Scholar 

  29. Wang, Y. & Sheibani, N. Expression pattern of alternatively spliced PECAM-1 isoforms in hematopoietic cells and platelets. J. Cell. Biochem. 87, 424–438 (2002).

    CAS  PubMed  Google Scholar 

  30. Robledo, O. et al. ICAM-1 isoforms: specific activity and sensitivity to cleavage by leukocyte elastase and cathepsin G. Eur. J. Immunol. 33, 1351–1360 (2003).

    CAS  PubMed  Google Scholar 

  31. Wang, Y., Su, X., Sorenson, C. M. & Sheibani, N. Modulation of PECAM-1 expression and alternative splicing during differentiation and activation of hematopoietic cells. J. Cell. Biochem. 88, 1012–1024 (2003).

    CAS  PubMed  Google Scholar 

  32. Fox, S. B. et al. Normal human tissues, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res. 54, 4539–4546 (1994).

    CAS  PubMed  Google Scholar 

  33. Ponta, H., Sherman, L. & Herrlich, P. A. CD44: from adhesion molecules to signalling regulators. Nature Rev. Mol. Cell Biol. 4, 33–45 (2003).

    CAS  Google Scholar 

  34. Gunthert, U. et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65, 13–24 (1991).

    CAS  PubMed  Google Scholar 

  35. Eisterer, W. et al. CD44 isoforms are differentially regulated in plasma cell dyscrasias and CD44v9 represents a new independent prognostic parameter in multiple myeloma. Leuk. Res. 25, 1051–1057 (2001).

    CAS  PubMed  Google Scholar 

  36. Bartolazzi, A. et al. Regulation of growth and dissemination of a human lymphoma by CD44 splice variants. J. Cell Sci. 108, 1723–1733 (1995).

    CAS  PubMed  Google Scholar 

  37. Konig, H., Ponta, H. & Herrlich, P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J. 17, 2904–2913 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Atamas, S. P. Alternative splice variants of cytokines: making a list. Life Sci. 61, 1105–1112 (1997).

    CAS  PubMed  Google Scholar 

  39. Heaney, M. L. & Golde, D. W. Soluble cytokine receptors. Blood 87, 847–857 (1996).

    CAS  PubMed  Google Scholar 

  40. Rincon, M., Anguita, J., Nakamura, T., Fikrig, E. & Flavell, R. A. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J. Exp. Med. 185, 461–469 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu, G. Y. et al. Solution structure of recombinant human interleukin-6. J. Mol. Biol. 268, 468–481 (1997).

    CAS  PubMed  Google Scholar 

  42. Somers, W., Stahl, M. & Seehra, J. S. 1.9 A crystal structure of interleukin 6: implications for a novel mode of receptor dimerization and signaling. EMBO J. 16, 989–997 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Boulay, J. L. & Paul, W. E. The interleukin-4-related lymphokines and their binding to hematopoietin receptors. J. Biol. Chem. 267, 20525–20528 (1992).

    CAS  PubMed  Google Scholar 

  44. Bihl, M. P. et al. Identification of a novel IL-6 isoform binding to the endogenous IL-6 receptor. Am. J. Respir. Cell. Mol. Biol. 27, 48–56 (2002). An excellent study of the structure–function relationship between IL-6 isoforms.

    CAS  PubMed  Google Scholar 

  45. Paonessa, G. et al. Two distinct and independent sites on IL-6 trigger gp130 dimer formation and signalling. EMBO J. 14, 1942–1951 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zav'yalov, V. P. et al. Molecular model of an alternative splice variant of human IL-4, IL-4Δ2, a naturally occurring inhibitor of IL-4-stimulated T cell proliferation. Immunol. Lett. 58, 149–152 (1997).

    CAS  PubMed  Google Scholar 

  47. Denesyuk, A. I., Zav'yalov, V. P., Denessiouk, K. A. & Korpela, T. Molecular models of two competitive inhibitors, IL-2Δ2 and IL-2Δ3, generated by alternative splicing of human interleukin-2. Immunol. Lett. 60, 61–66 (1998).

    CAS  PubMed  Google Scholar 

  48. Kruse, S., Forster, J., Kuehr, J. & Deichmann, K. A. Characterization of the membrane-bound and a soluble form of human IL-4 receptor α produced by alternative splicing. Int. Immunol. 11, 1965–1970 (1999).

    CAS  PubMed  Google Scholar 

  49. Goodwin, R. G. et al. Cloning of the human and murine interleukin-7 receptors: demonstration of a soluble form and homology to a new receptor superfamily. Cell 60, 941–951 (1990).

    CAS  PubMed  Google Scholar 

  50. Miyazaki, T. et al. Pyk2 is a downstream mediator of the IL-2 receptor-coupled Jak signaling pathway. Genes Dev. 12, 770–775 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Benbernou, N., Muegge, K. & Durum, S. K. Interleukin (IL)-7 induces rapid activation of Pyk2, which is bound to Janus kinase 1 and IL-7Rα. J. Biol. Chem. 275, 7060–7065 (2000).

    CAS  PubMed  Google Scholar 

  52. Hazeki, K. et al. Toll-like receptor-mediated tyrosine phosphorylation of paxillin via MyD88-dependent and -independent pathways. Eur. J. Immunol. 33, 740–747 (2003).

    CAS  PubMed  Google Scholar 

  53. Dikic, I. & Schlessinger, J. Identification of a new Pyk2 isoform implicated in chemokine and antigen receptor signaling. J. Biol. Chem. 273, 14301–14308 (1998). Identification and functional characterization of a variant isoform of PYK2.

    CAS  PubMed  Google Scholar 

  54. Cao, Z., Henzel, W. J. & Gao, X. IRAK: a kinase associated with the interleukin-1 receptor. Science 271, 1128–1131 (1996).

    CAS  PubMed  Google Scholar 

  55. Jensen, L. E. & Whitehead, A. S. IRAK1b, a novel alternative splice variant of interleukin-1 receptor-associated kinase (IRAK), mediates interleukin-1 signaling and has prolonged stability. J. Biol. Chem. 276, 29037–29044 (2001).

    CAS  PubMed  Google Scholar 

  56. Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837–847 (1997).

    CAS  PubMed  Google Scholar 

  57. Burns, K. et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263–268 (2003). This paper clearly shows the molecular basis for the functional differences between MyD88 isoforms.

    PubMed  PubMed Central  Google Scholar 

  58. Janssens, S., Burns, K., Tschopp, J. & Beyaert, R. Regulation of interleukin-1- and lipopolysaccharide-induced NF-κB activation by alternative splicing of MyD88. Curr. Biol. 12, 467–471 (2002).

    CAS  PubMed  Google Scholar 

  59. Lynch, K. W. & Weiss, A. A model system for the activation-induced alternative-splicing of CD45 implicates protein kinase C and Ras. Mol. Cell Biol. 20, 70–80 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu, Z. & Weiss, A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nature Immunol. 3, 764–771 (2002). This study demonstrates the functional differences between CD45 isoforms due to the inefficiency of dimerization of the large CD45 isoforms.

    CAS  Google Scholar 

  61. Majeti, R., Bilwes, A. M., Noel, J. P., Hunter, T. & Weiss, A. Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science 279, 88–91 (1998).

    CAS  PubMed  Google Scholar 

  62. Hermiston, M. L., Xu, Z., Majeti, R. & Weiss, A. Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J. Clin. Invest. 109, 9–14 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jacobsen, M. et al. A point mutation in PTPRC is associated with the development of multiple sclerosis. Nature Genet. 26, 495–499 (2000).

    CAS  PubMed  Google Scholar 

  64. Chu, D. H. et al. The Syk protein tyrosine kinase can function independently of CD45 and Lck in T cell antigen receptor signaling. EMBO J. 15, 6251–6261 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. van der Merwe, P. A., Bodian, D. L., Daenke, S., Linsley, P. & Davis, S. J. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J. Exp. Med. 185, 393–403 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    CAS  PubMed  Google Scholar 

  67. Perkins, D. et al. Regulation of CTLA-4 expression during T cell activation. J. Immunol. 156, 4154–4159 (1996).

    CAS  PubMed  Google Scholar 

  68. Magistrelli, G. et al. A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur. J. Immunol. 29, 3596–3602 (1999).

    CAS  PubMed  Google Scholar 

  69. Faustino, N. A. & Cooper, T. A. Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003).

    CAS  PubMed  Google Scholar 

  70. Cartegni, L., Chew, S. L. & Krainer, A. R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature Rev. Genet. 3, 285–298 (2002).

    CAS  PubMed  Google Scholar 

  71. Pagani, F. & Baralle, F. E. Genomic variants in exons and introns: identifying the splicing spoilers. Nature Rev. Genet. 5, 389–396 (2004).

    CAS  PubMed  Google Scholar 

  72. Oaks, M. K. & Hallett, K. M. Cutting edge: a soluble form of CTLA-4 in patients with autoimmune thyroid disease. J. Immunol. 164, 5015–5018 (2000).

    CAS  PubMed  Google Scholar 

  73. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    CAS  PubMed  Google Scholar 

  74. Jones, S. A., Horiuchi, S., Topley, N., Yamamoto, N. & Fuller, G. M. The soluble interleukin-6 receptor: mechanisms of production and implications in disease. FASEB J. 15, 43–58 (2001).

    CAS  PubMed  Google Scholar 

  75. Korte, A. et al. Expression analysis and characterization of alternatively spliced transcripts of human IL-7Rα chain encoding two truncated receptor proteins in relapsed childhood all. Cytokine 12, 1597–1608 (2000).

    CAS  PubMed  Google Scholar 

  76. Kotsimbos, A. T. & Hamid, Q. IL-5 and IL-5 receptor in asthma. Mem. Inst. Oswaldo Cruz 92, 75–91 (1997).

    CAS  PubMed  Google Scholar 

  77. Sakkas, L. I., Tourtellotte, C., Berney, S., Myers, A. R. & Platsoucas, C. D. Increased levels of alternatively spliced interleukin 4 (IL-4Δ2) transcripts in peripheral blood mononuclear cells from patients with systemic sclerosis. Clin. Diagn. Lab. Immunol. 6, 660–664 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Matter, N. et al. Heterogeneous ribonucleoprotein A1 is part of an exon-specific splice-silencing complex controlled by oncogenic signaling pathways. J. Biol. Chem. 275, 35353–35360 (2000).

    CAS  PubMed  Google Scholar 

  79. Weg-Remers, S., Ponta, H., Herrlich, P. & Konig, H. Regulation of alternative pre-mRNA splicing by the ERK MAP-kinase pathway. EMBO J. 20, 4194–4203 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Matter, N., Herrlich, P. & Konig, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420, 691–695 (2002). This is one of the first papers to provide a clear molecular link between activation of the mitogen-activated protein kinase pathway and modulation of a specific splicing regulatory event.

    CAS  PubMed  Google Scholar 

  81. Stickeler, E. et al. The RNA binding protein YB-1 binds A/C-rich exon enhancers and stimulates splicing of the CD44 alternative exon v4. EMBO J. 20, 3821–3830 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Honig, A., Auboeuf, D., Parker, M. M., O'Malley, B. W. & Berget, S. M. Regulation of alternative splicing by the ATP-dependent DEAD-box RNA helicase p72. Mol. Cell Biol. 22, 5698–5707 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lynch, K. W. & Weiss, A. A CD45 polymorphism associated with multiple sclerosis disrupts an exonic splicing silencer. J. Biol. Chem. 276, 24341–24347 (2001).

    CAS  PubMed  Google Scholar 

  84. Zilch, C. F. et al. A point mutation within CD45 exon A is the cause of variant CD45RA splicing in humans. Eur. J. Immunol. 28, 22–29 (1998).

    CAS  PubMed  Google Scholar 

  85. Syken, J. Macian, F., Agarwal, S., Rao, A. & Munger, K. TID1, a mammalian homologue of the drosophila tumor suppressor lethal (2) tumorous imaginal discs, regulates activation-induced cell death in TH2 cells. Oncogene 22, 4636–4641 (2003).

    CAS  PubMed  Google Scholar 

  86. Liu, C., Cheng, J. & Mountz, J. D. Differential expression of human Fas mRNA species upon peripheral blood mononuclear cell activation. Biochemistry J. 310, 957–963 (1995).

    CAS  Google Scholar 

  87. Nishimura, H., Washizu, J., Nakamura, N., Enomoto, A. & Yoshikai, Y. Translational efficiency is upregulated by alternative exon in murine IL-15 mRNA. J. Immunol. 160, 936–942 (1998).

    CAS  PubMed  Google Scholar 

  88. Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank B. Graveley, K. Hertel, C. Wuelfing and members of laboratory for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

CD44

CD45

CTLA4

FYN

ICAM1

IL-2

IL-4

IL-6

IL-4Rα

IL-6Rα

IL-6Rβ

IL-7Rα

IRAK1

IRAK4

LCK

LFA1

MyD88

p72

PECAM1

PYK2

SAM68

SYK

TLR4

YB1

Glossary

SPLICING

The processing of pre-mRNA such that introns are removed and exons are joined directly to one another.

CASSETTE EXONS

Exons that are included in only a percentage of the final mRNA transcripts that are derived from a given pre-mRNA.

MUTUALLY EXCLUSIVE EXONS

Two or more exons in a single pre-mRNA that are never both included in the final mRNA transcript.

SPLICE SITES

Conserved sequences at the exon–intron boundaries that direct the splicing machinery and determine the precise location of pre-mRNA cleavage and exon joining.

SPLICEOSOME

A ribonucleoprotein complex that is involved in splicing of nuclear pre-mRNA. It is composed of five small nuclear ribonucleoproteins (snRNPs) and more than 50 non-snRNPs that recognize and assemble on exon–intron boundaries to catalyse intron processing of the pre-mRNA.

SR PROTEIN

A group of highly conserved, serine (S)- and arginine (R)-rich splicing-regulatory proteins. In most experimental systems, binding of an SR protein to an exon leads to exon inclusion.

HETEROGENEOUS NUCLEAR RIBONUCLEOPARTICLE PROTEIN

(HnRNP protein). A class of diverse RNA-binding proteins that associate with nascent pre-mRNA and can influence splicing. Several experimental systems have shown that binding of an hnRNP protein to an exon leads to exon skipping.

EXONIC SPLICING SILENCERS

(ESSs). Sequences in an exon that promote exon skipping.

EXONIC SPLICING ENHANCERS

(ESEs). Sequences in an exon that promote exon recognition and inclusion.

INTRONIC SPLICING SILENCERS

(ISSs). Sequences in an intron that promote skipping of a flanking exon.

INTRONIC SPLICING ENHANCERS

(ISEs). Sequences in an intron that promote recognition and inclusion of a flanking exon.

IMMUNOLOGICAL SYNAPSE

A stable region of contact between a T cell and an antigen-presenting cell that forms through cell–cell interaction of adhesion molecules. The mature immunological synapse contains two distinct, membrane domains: a central cluster of T-cell receptors, known as the central supramolecular activation cluster (cSMAC) and a surrounding ring of adhesion molecules known as the peripheral SMAC.

FOUR-HELICAL BUNDLE

A structural motif in proteins in which four α-helices are packed together.

DOMINANT-NEGATIVE INHIBITOR

A protein variant that inhibits the proper function of the co-expressed wild-type protein.

MIXED LEUKOCYTE REACTION

A tissue-culture technique for testing T-cell reactivity. The proliferation of one population of T cells, induced by exposure to inactivated MHC-mismatched stimulator cells, is determined by measuring the incorporation of 3H-thymidine into the DNA of dividing cells.

EXON SKIPPING

Exclusion of an exon from a pre-mRNA into the final mature mRNA transcript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynch, K. Consequences of regulated pre-mRNA splicing in the immune system. Nat Rev Immunol 4, 931–940 (2004). https://doi.org/10.1038/nri1497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing