Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic analysis of resistance to viral infection

Key Points

  • The Toll-like receptors (TLRs) and retinoic-acid-inducible gene I (RIG-I)-like receptors (RLRs) both participate in sensing viral infection, but do so in different cells and fill different 'niches'. Whereas the RLRs detect viral nucleic acids within the cytoplasm of infected cells and are therefore cell-autonomous sensors, the TLRs can allow non-infected cells to detect infection in other cells, perhaps even in cells at a considerable distance.

  • The biochemical pathways for TLR-induced and RLR-induced signalling have been largely deciphered, and are described here. These pathways are both capable of activating nuclear factor-κB (NF-κB) and interferon-regulatory factor 3 (IRF3) and/or IRF7, which are central regulators of inflammatory-cytokine induction and type I interferon (IFN) production, respectively.

  • A division of labour exists among immune cells, in that plasmacytoid dendritic cells (pDCs), conventional DCs, natural killer (NK) cells, lymphocytes and other cell types all mediate host resistance to viral infection, and each cell type has non-redundant functions in the containment of specific viral infections.

  • For a defined β-herpesvirus infection, multiple classes of DCs have a vital sensory role, whereas NK cells are of key importance as effectors. Numerous viral-evasion mechanisms have been identified, many mutations in the 'resistome' cause susceptibility to infection and many other mutations yet to be identified cause resistance to infection.

  • Studies using the invertebrate model Drosophila melanogaster show that insects sense viral infection and respond by inducing gene expression. Some of the genes that are induced by viral infection are controlled by the Janus kinase–signal transducer and activator of transcription (JAK–STAT) pathway, establishing a parallel with IFN signalling.

  • RNA interference is an intrinsic defence against viral infections in invertebrates. The RNaseIII enzyme Dicer-2 processes viral double-stranded RNAs, and generate small interfering RNAs that guide the RNaseH-like enzyme Argonaute-2 to viral RNA molecules, providing sequence-specific immunity.

Abstract

As machines that reprogramme eukaryotic cells to suit their own purposes, viruses present a difficult problem for multicellular hosts, and indeed, have become one of the central pre-occupations of the immune system. Unable to permanently outpace individual viruses in an evolutionary footrace, higher eukaryotes have evolved broadly active mechanisms with which to sense viruses and suppress their proliferation. These mechanisms have recently been elucidated by a combination of forward and reverse genetic methods. Some of these mechanisms are clearly ancient, whereas others are relatively new. All are remarkably adept at discriminating self from non-self, and allow the host to cope with what might seem an impossible predicament.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles and applications of forward and reverse genetic analysis.
Figure 2: Signalling through TLR3, TLR7, TLR8 and TLR9 in response to endosomal nucleic acids of viral origin.
Figure 3: Signalling through cytoplasmic helicases leads to the activation of both NF-κB and IRF3.
Figure 4: Central roles of NK cells and DCs in the defence against MCMV.
Figure 5: Schematic overview of antiviral defences in Drosophila melanogaster.

Similar content being viewed by others

References

  1. Morens, D. M., Folkers, G. K. & Fauci, A. S. The challenge of emerging and re-emerging infectious diseases. Nature 430, 242–249 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kurt-Jones, E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunol. 1, 398–401 (2000).

    Article  CAS  Google Scholar 

  3. Haynes, L. M. et al. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol. 75, 10730–10737 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Georgel, P. et al. Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology 362, 304–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1481–1482 (2004).

    Article  CAS  Google Scholar 

  8. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433, 887–892 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Tabeta, K. et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl Acad. Sci. USA 101, 3516–3521 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, T. et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Med. 10, 1366–1373 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med. 5, 919–923 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Blasius, A. et al. A cell surface molecule selectively expressed on murine natural interferon producing cells that blocks secretion of interferon-α. Blood 103, 4201–4206 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. De Bouteiller, O. et al. Recognition of double stranded RNA by human toll like receptor 3 and downstream receptor signaling requires multimerisation and an acidic pH. J. Biol. Chem. 280, 38133–38145 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Rutz, M. et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur. J. Immunol. 34, 2541–2550 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. MacFarlane, D. E. & Manzel, L. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J. Immunol. 160, 1122–1131 (1998).

    CAS  PubMed  Google Scholar 

  17. Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl Acad. Sci. USA 100, 6646–6651 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tabeta, K. et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nature Immunol. 7, 156–164 (2006).

    Article  CAS  Google Scholar 

  19. Casrouge, A. et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Brinkmann, M. M. et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J. Cell Biol. 177, 265–275 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto, M. et al. Role of adapter TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κB activation. Nature Immunol. 5, 503–507 (2004).

    Article  CAS  Google Scholar 

  24. Sato, S. et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304–4310 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Beutler, B. et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24, 353–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Honda, K. & Taniguchi, T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nature Rev. Immunol. 6, 644–658 (2006).

    Article  CAS  Google Scholar 

  29. Honda, K. et al. Role of a transductional–transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc. Natl Acad. Sci. USA 101, 15416–15421 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoshino, K. et al. IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature 440, 949–953 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol. 5, 1061–1068 (2004).

    Article  CAS  Google Scholar 

  32. Matsui, K. et al. Cutting edge: Role of TANK-binding kinase 1 and inducible IκB kinase in IFN responses against viruses in innate immune cells. J. Immunol. 177, 5785–5789 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Shinohara, M. L. et al. Osteopontin expression is essential for interferon-α production by plasmacytoid dendritic cells. Nature Immunol. 7, 498–506 (2006).

    Article  CAS  Google Scholar 

  34. Faust, M., Hastings, K. E. & Millward, S. m7G5′ppp5′GmptcpUp at the 5′ terminus of reovirus messenger RNA. Nucleic Acids Res. 2, 1329–1343 (1975).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Rose, J. K. Heterogneeous 5′-terminal structures occur on vesicular stomatitis virus mRNAs. J. Biol. Chem. 250, 8098–8104 (1975).

    CAS  PubMed  Google Scholar 

  36. Moss, B., Keith, J. M., Gershowitz, A., Ritchey, M. B. & Palese, P. Common sequence at the 5′ ends of the segmented RNA genomes of influenza A and B viruses. J. Virol. 25, 312–318 (1978).

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunol. 5, 730–737 (2004). This paper describes the initial identification of RIG-I as an intracellular viral dsRNA detector, the activation of which leads to the production of type I IFNs.

    Article  CAS  Google Scholar 

  38. Kang, D. C. et al. mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc. Natl Acad. Sci. USA 99, 637–642 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoneyama, M. et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851–2858 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Rothenfusser, S. et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J. Immunol. 175, 5260–5268 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kato, H. et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006). In this paper, the authors generated mice that lacked RIG-I and MDA5, and showed that these two helicases recognize different RNA viruses.

    Article  CAS  PubMed  Google Scholar 

  43. Gitlin, L. et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl Acad. Sci. USA 103, 8459–8464 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hornung, V. et al. 5′-triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  PubMed  Google Scholar 

  45. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Marques, J. T. et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nature Biotechnol. 24, 559–565 (2006).

    Article  CAS  Google Scholar 

  47. Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Venkataraman, T. et al. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J. Immunol. 178, 6444–6455 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature Immunol. 6, 981–988 (2005).

    Article  CAS  Google Scholar 

  50. Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, L. G. et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19, 727–740 (2005). References 49–52 identify a novel CARD-containing protein that functions as an adaptor for RIG-I- and MDA5-mediated signalling.

    Article  CAS  PubMed  Google Scholar 

  53. Kumar, H. et al. Essential role of IPS-1 in innate immune responses against RNA viruses. J. Exp. Med. 203, 1795–1803 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Sun, Q. et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24, 633–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Balachandran, S., Thomas, E. & Barber, G. N. A FADD-dependent innate immune mechanism in mammalian cells. Nature 432, 401–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Takahashi, K. et al. Roles of caspase-8 and caspase-10 in innate immune responses to double-stranded RNA. J. Immunol. 176, 4520–4524 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Li, K. et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl Acad. Sci. USA 102, 2992–2997 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Loo, Y. M. et al. Viral and therapeutic control of IFN-β promoter stimulator 1 during hepatitis C virus infection. Proc. Natl Acad. Sci. USA 103, 6001–6006 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stack, J. et al. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med. 201, 1007–1018 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Kubota, A., Kubota, S., Farrell, H. E., vis-Poynter, N. & Takei, F. Inhibition of NK cells by murine CMV-encoded class I MHC homologue m144. Cell. Immunol. 191, 145–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Lodoen, M. et al. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J. Exp. Med. 197, 1245–1253 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Krmpotic, A. et al. NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J. Exp. Med. 201, 211–220 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Hasan, M. et al. Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. J. Virol. 79, 2920–2930 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Kleijnen, M. F. et al. A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J. 16, 685–694 (1997). This paper shows a unique and sophisticated evasion mechanism aimed at the CTL response.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Bubeck, A. et al. The glycoprotein gp48 of murine cytomegalovirusL proteasome-dependent cytosolic dislocation and degradation. J. Biol. Chem. 277, 2216–2224 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Krmpotic, A. et al. The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J. Exp. Med. 190, 1285–1296 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Yewdell, J. W. & Hill, A. B. Viral interference with antigen presentation. Nature Immunol. 3, 1019–1025 (2002).

    Article  CAS  Google Scholar 

  68. Reddehase, M. J. Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nature Rev. Immunol. 2, 831–844 (2002).

    Article  CAS  Google Scholar 

  69. Loewendorf, A. et al. Identification of a mouse cytomegalovirus gene selectively targeting CD86 expression on antigen-presenting cells. J. Virol. 78, 13062–13071 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Menard, C. et al. Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J. Virol. 77, 5557–5570 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Janssen, E. et al. Efficient T cell activation via a Toll–interleukin 1 receptor-independent pathway. Immunity 24, 787–799 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Valchanova, R. S., Picard-Maureau, M., Budt, M. & Brune, W. Murine cytomegalovirus m142 and m143 are both required to block protein kinase R-mediated shutdown of protein synthesis. J. Virol. 80, 10181–10190 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Spencer, J. V. et al. Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J. Virol. 76, 1285–1292 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Welsh, R. M., O'Donnell, C. L. & Shultz, L. D. Antiviral activity of NK 1.1+ natural killer cells in C57BL/6 scid mice infected with murine cytomegalovirus. Nature Immunol. 13, 239–245 (1994).

    CAS  Google Scholar 

  75. Bukowski, J. F., Woda, B. A., Habu, S., Okumura, K. & Welsh, R. M. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J. Immunol. 131, 1531–1538 (1983).

    CAS  PubMed  Google Scholar 

  76. Bukowski, J. F., Woda, B. A. & Welsh, R. M. Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. J. Virol. 52, 119–128 (1984).

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Scalzo, A. A., Fitzgerald, N. A., Simmons, A., La Vista, A. B. & Shellam, G. R. Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J. Exp. Med. 171, 1469–1483 (1990).

    Article  CAS  PubMed  Google Scholar 

  78. Brown, M. G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, S. H. et al. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nature Genet. 28, 42–45 (2001). References 78 and 79 describe classical positional-cloning efforts that independently established the importance of Ly49H in sensing MCMV infection.

    CAS  PubMed  Google Scholar 

  80. Smith, H. R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl Acad. Sci. USA 99, 8826–8831 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002). Showed that Ly49i is important as an inhibitory receptor that increases susceptibility to MCMV in 129-strain mice.

    Article  CAS  PubMed  Google Scholar 

  82. Tomasello, E. & Vivier, E. KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions. Eur. J. Immunol. 35, 1670–1677 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Lanier, L. L., Corliss, B. C., Wu, J., Leong, C. & Phillips, J. H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703–707 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. McVicar, D. W. et al. DAP12-mediated signal transduction in natural killer cells. A dominant role for the Syk protein-tyrosine kinase. J. Biol. Chem. 273, 32934–32942 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Crozat, K. et al. Analysis of the MCMV resistome by ENU mutagenesis. Mamm. Genome 17, 398–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Allman, D. et al. Ikaros is required for plasmacytoid dendritic cell differentiation. Blood 108, 4025–4034 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Andrews, D. M., Scalzo, A. A., Yokoyama, W. M., Smyth, M. J. & Degli-Esposti, M. A. Functional interactions between dendritic cells and NK cells during viral infection. Nature Immunol. 4, 175–181 (2003).

    Article  CAS  Google Scholar 

  90. van Dommelen, S. L. et al. Perforin and granzymes have distinct roles in defensive immunity and immunopathology. Immunity 25, 835–848 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Stinchcombe, J., Bossi, G. & Griffiths, G. M. Linking albinism and immunity: the secrets of secretory lysosomes. Science 305, 55–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Ward, D. M. et al. Use of expression constructs to dissect the functional domains of the CHS/beige protein: identification of multiple phenotypes. Traffic 4, 403–415 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Ward, D. M., Griffiths, G. M., Stinchcombe, J. C. & Kaplan, J. Analysis of the lysosomal storage disease Chediak-Higashi syndrome. Traffic 1, 816–822 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Tchernev, V. T. et al. The Chediak–Higashi protein interacts with SNARE complex and signal transduction proteins. Mol. Med. 8, 56–64 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Clark, R. & Griffiths, G. M. Lytic granules, secretory lysosomes and disease. Curr. Opin. Immunol. 15, 516–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genet. 25, 173–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Feldmann, J. et al. Munc13–4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–473 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Crozat, K. et al. Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. J. Exp. Med. 204, 853–863 (2007). An example of ENU mutagenesis used to create a novel MCMV immunodeficiency phenotype, with subsequent identification of the mutation in an important effector gene that had not previously been targeted.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Stow, J. L., Manderson, A. P. & Murray, R. Z. SNAREing immunity: the role of SNAREs in the immune system. Nature Rev. Immunol. 6, 919–929 (2006).

    Article  CAS  Google Scholar 

  100. Hong, W. Cytotoxic T lymphocyte exocytosis: bring on the SNAREs! Trends Cell Biol. 15, 644–650 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Croker, B. A. et al. ATP-sensitive potassium channels mediate survival during infection in mammals and insects. Nature Genet. (in the press).

  102. Dighe, A. et al. Requisite H2k role in NK cell-mediated resistance in acute murine cytomegalovirus-infected MA/My mice. J. Immunol. 175, 6820–6828 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Desrosiers, M. P. et al. Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell-mediated innate resistance to cytomegalovirus infection. Nature Genet. 37, 593–599 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Hoffmann, J. A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Cherry, S. & Perrimon, N. Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nature Immunol. 5, 81–87 (2004).

    Article  CAS  Google Scholar 

  106. Cherry, S. et al. Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes Dev. 19, 445–452 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Sabatier, L. et al. Pherokine-2 and -3: two Drosophila molecules related to pheromone/odor-binding proteins induced by viral and bacterial infections. Eur. J. Biochem. 270, 3398–3407 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Dostert, C. et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nature Immunol. 6, 946–953 (2005).

    Article  CAS  Google Scholar 

  109. Agaisse, H. & Perrimon, N. The roles of JAK/STAT signaling in Drosophila immune responses. Immunol. Rev. 198, 72–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Lin, C. C. et al. Characterization of two mosquito STATs, AaSTAT and CtSTAT. Differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection. J. Biol. Chem. 279, 3308–3317 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Liu, W. J., Chang, Y. S., Wang, A. H., Kou, G. H. & Lo, C. F. White spot syndrome virus annexes a shrimp STAT to enhance expression of the immediate-early gene ie1. J. Virol. 81, 1461–1471 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Thoetkiattikul, H., Beck, M. H. & Strand, M. R. Inhibitor κB-like proteins from a polydnavirus inhibit NF-κB activation and suppress the insect immune response. Proc. Natl Acad. Sci. USA 102, 11426–11431 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zambon, R. A., Nandakumar, M., Vakharia, V. N. & Wu, L. P. The Toll pathway is important for an antiviral response in Drosophila. Proc. Natl Acad. Sci. USA 102, 7257–7262 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Galiana-Arnoux, D., Dostert, C., Schneemann, A., Hoffmann, J. A. & Imler, J. L. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nature Immunol. 7, 590–597 (2006).

    Article  CAS  Google Scholar 

  116. Wang, X. H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452–454 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. van Rij, R. P. et al. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev. 20, 2985–2995 (2006). References 112–117 establish that RNAi has a crucial role in the control of RNA virus infection in flies, and that the RNAi machinery provides sequence-specific immunity, specifically degrading viral RNAs.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Zambon, R. A., Vakharia, V. N. & Wu, L. P. RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell. Microbiol. 8, 880–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Obbard, D. J., Jiggins, F. M., Halligan, D. L. & Little, T. J. Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr. Biol. 16, 580–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Li, H., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Chao, J. A. et al. Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nature Struct. Mol. Biol. 12, 952–957 (2005). The authors provide a detailed structural analysis of the first suppressor of RNAi identified in an animal virus.

    Article  CAS  Google Scholar 

  122. Bucheton, A. The relationship between the flamenco gene and gypsy in Drosophila: how to tame a retrovirus. Trends Genet. 11, 349–353 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Pelisson, A., Sarot, E., Payen-Groschene, G. & Bucheton, A. A novel repeat-associated small interfering RNA-mediated silencing pathway downregulates complementary sense gypsy transcripts in somatic cells of the Drosophila ovary. J. Virol. 81, 1951–1960 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 69–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744–747 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Deleris, A. et al. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313, 68–71 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Dunoyer, P., Himber, C. & Voinnet, O. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nature Genet. 37, 1356–1360 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Roignant, J. Y. et al. Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9, 299–308 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Saleh, M. C. et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nature Cell Biol. 8, 793–802 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Lecellier, C. H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Otsuka, M et al. Hypersusceptibility to vesicular stomatitis virus infection in Dicer-1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27, 123–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Taganov, K. D., Boldin, M. P. & Baltimore, D. MicroRNAs and immunity: tiny players in a big field. Immunity 26, 133–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Cullen, B. R. Is RNA interference involved in intrinsic antiviral immunity in mammals? Nature Immunol. 7, 563–567 (2006).

    Article  CAS  Google Scholar 

  136. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Hashimoto and B. Layton for their assistance in completing this manuscript, and C. Hetru for discussions and preparation of Fig. 5. This work was supported in part by grants from the Special Coordination Funds of the Japanese Ministry of Education, Culture, Sports, Science and Technology, and from the 21st Century Center of Excellence Program of Japan, and by the National Institutes of Health, USA (P01 AI070,167).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruce Beutler, Jules A. Hoffmann or Shizuo Akira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Bruce Beutler's homepage

Glossary

Cross-presentation

The ability of certain antigen-presenting cells to load peptides that are derived from exogenous antigens onto MHC class I molecules. This property is atypical, because most cells exclusively present peptides from their endogenous proteins on MHC class I molecules. Cross-presentation is essential for the initiation of immune responses to viruses that do not infect antigen-presenting cells.

Plasmacytoid dendritic cells

(pDCs). A subset of DCs that was named 'plasmacytoid' because their appearance under the microscope is similar to that of plasmablasts. In humans, these DCs can be derived from lineage (Lin) haematopoietic stem cells from the peripheral blood. These DCs are the main producers of type I interferons in response to viral infections.

ENU-induced mutation

A point mutation that is induced by the alkylating agent N-ethyl-N-nitrosourea (ENU).

Ubiquitylation

The attachment of the small protein ubiquitin to lysine residues that are present in other proteins; this often tags these proteins for rapid cellular degradation.

Myeloid dendritic cells

A subset of CD8α dendritic cells that might be important for initiating vigorous immune responses.

SCID mice

(Severe combined immunodeficient mice). A naturally occurring mouse mutant with SCID disease owing to an inability to rearrange antigen-receptor-chain genes.

Quantitative trait locus

A locus that specifies a phenotypic difference between two different strains of mice, which may be distinguished by millions of genetic differences in all.

Hypomorphic

A type of mutation in which either the altered gene product has a decreased level of activity or the wild-type gene product is expressed at a decreased level.

Ikaros family

A family of zinc-finger-containing transcription factors. These factors are pleiotropic regulators of haematopoiesis and are required for the generation of lymphocyte and dendritic-cell lineages, as well as lymph nodes and Peyer's patches.

Resistome

The set of all genes with non-redundant function in the resistance to a particular microbial agent.

SNARE proteins

(Soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor proteins). A class of proteins that is required for membrane fusion events that occur in the course of vesicle trafficking and secretion.

Orthologous genes

Genes that are present in a different species but are derived from a common ancestral gene.

Haemolymph

The insect equivalent of blood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beutler, B., Eidenschenk, C., Crozat, K. et al. Genetic analysis of resistance to viral infection. Nat Rev Immunol 7, 753–766 (2007). https://doi.org/10.1038/nri2174

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing