Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The polarization of immune cells in the tumour environment by TGFβ

Key Points

  • During early tumour formation, transforming growth factor-β (TGFβ) can function as a tumour suppressor to prevent tumorigenesis; however, overproduction of TGFβ in established tumours is often associated with tumour metastasis and poor prognosis in patients with cancer.

  • The tumour-promoting effects of TGFβ may be due to the immunosuppressive effects it has on both innate and adaptive immunity.

  • TGFβ inhibits natural killer cell function by inhibiting cytokine production and downregulating the expression of activating receptors.

  • TGFβ inhibits the maturation of, and cytokine production and proper antigen presentation by, dendritic cells, while promoting regulatory T (TReg) cell differentiation and an overall tolerogenic state. TGFβ also promotes an M2 phenotype for macrophages and an N2 phenotype for neutrophils.

  • TGFβ directly dampens the function of CD4+ and CD8+ effector T cells and promotes the survival of TReg cells. Depending on the cytokine milieu, TGFβ greatly affects the differentiation of several key CD4+ T cell subsets in tumour immunology.

  • There is great interest in targeting TGFβ-induced signalling for immunotherapy of cancer; however, the dosing, timing and combination of this approach with other immunotherapies to achieve the most successful antitumour effect need to be further investigated.

Abstract

Transforming growth factor-β (TGFβ) is an immunosuppressive cytokine produced by tumour cells and immune cells that can polarize many components of the immune system. This Review covers the effects of TGFβ on natural killer (NK) cells, dendritic cells, macrophages, neutrophils, CD8+ and CD4+ effector and regulatory T cells, and NKT cells in animal tumour models and in patients with cancer. Collectively, many recent studies favour the hypothesis that blocking TGFβ-induced signalling in the tumour microenvironment enhances antitumour immunity and may be beneficial for cancer therapy. An overview of the current drugs and reagents available for inhibiting TGFβ-induced signalling and their phase in clinical development is also provided.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The yin and yang of TGFβ in tumour development, maintenance and metastasis formation.
Figure 2: Effects of TGFβ on innate immune cells.
Figure 3: Effects of TGFβ on effector T cells.
Figure 4: Effects of TGFβ on regulatory T cells.
Figure 5: Targets for inhibiting TGFβ and downstream signalling events.

Similar content being viewed by others

References

  1. Massague, J. TGFβ in cancer. Cell 134, 215–230 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Wrzesinski, S. H., Wan, Y. Y. & Flavell, R. A. Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin. Cancer Res. 13, 5262–5270 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Padua, D. & Massague, J. Roles of TGFβ in metastasis. Cell Res. 19, 89–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Tian, M. & Schiemann, W. P. The TGF-β paradox in human cancer: an update. Future Oncol. 5, 259–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Bierie, B. & Moses, H. L. Transforming growth factor β (TGF-β) and inflammation in cancer. Cytokine Growth Factor Rev. 21, 49–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Zou, W. & Restifo, N. P. TH17 cells in tumour immunity and immunotherapy. Nature Rev. Immunol. 10, 248–256 (2010).

    Article  CAS  Google Scholar 

  8. Yang, Q., Goding, S. R., Hokland, M. E. & Basse, P. H. Antitumor activity of NK cells. Immunol. Res. 36, 13–25 (2006).

    Article  PubMed  Google Scholar 

  9. Laouar, Y., Sutterwala, F. S., Gorelik, L. & Flavell, R. A. Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nature Immunol. 6, 600–607 (2005).

    Article  CAS  Google Scholar 

  10. Rook, A. H. et al. Effects of transforming growth factor β on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J. Immunol. 136, 3916–3920 (1986).

    CAS  PubMed  Google Scholar 

  11. Wahl, S. M., Wen, J. & Moutsopoulos, N. M. The kiss of death: interrupted by NK-cell close encounters of another kind. Trends Immunol. 27, 161–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Trotta, R. et al. TGF-β utilizes SMAD3 to inhibit CD16-mediated IFN-γ production and antibody-dependent cellular cytotoxicity in human NK cells. J. Immunol. 181, 3784–3792 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Lanier, L. L. Up on the tightrope: natural killer cell activation and inhibition. Nature Immunol. 9, 495–502 (2008).

    Article  CAS  Google Scholar 

  14. Castriconi, R. et al. Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc. Natl Acad. Sci. USA 100, 4120–4125 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Crane, C. A. et al. TGF-β downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro. Oncol. 12, 7–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, J.-C., Lee, K.-M., Kim, D.-W. & Heo, D. S. Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J. Immunol. 172, 7335–7340 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Kopp, H. G., Placke, T. & Salih, H. R. Platelet-derived transforming growth factor-β down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 69, 7775–7783 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Li, H., Han, Y., Guo, Q., Zhang, M. & Cao, X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-β1. J. Immunol. 182, 240–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Steinman, R. M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Ferlazzo, G. & Munz, C. Dendritic cell interactions with NK cells from different tissues. J. Clin. Immunol. 29, 265–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Dhodapkar, M. V., Dhodapkar, K. M. & Palucka, A. K. Interactions of tumor cells with dendritic cells: balancing immunity and tolerance. Cell Death Differ. 15, 39–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Mellman, I. & Steinman, R. M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Yamazaki, S. & Steinman, R. M. Dendritic cells as controllers of antigen-specific Foxp3+ regulatory T cells. J. Dermatol. Sci. 54, 69–75 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kortylewski, M. et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 15, 114–123 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ito, M. et al. Tumor-derived TGFβ-1 induces dendritic cell apoptosis in the sentinel lymph node. J. Immunol. 176, 5637–5643 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Weber, F. et al. Transforming growth factor-β1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol. Immunother. 54, 898–906 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Halliday, G. M. & Le, S. Transforming growth factor-β produced by progressor tumors inhibits, while IL-10 produced by regressor tumors enhances, Langerhans cell migration from skin. Int. Immunol. 13, 1147–1154 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Bekeredjian-Ding, I. et al. Tumour-derived prostaglandin E and transforming growth factor-β synergize to inhibit plasmacytoid dendritic cell-derived interferon-α. Immunology 128, 439–450 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhang, X. et al. CD48 dendritic cells prime CD4+ T regulatory 1 cells to suppress antitumor immunity. J. Immunol. 175, 2931–2937 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Roncarolo, M. G., Levings, M. K. & Traversari, C. Differentiation of T regulatory cells by immature dendritic cells. J. Exp. Med. 193, F5–F9 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yamazaki, S. et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Tarbell, K. V., Yamazaki, S., Olson, K., Toy, P. & Steinman, R. M. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med. 199, 1467–1477 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Banerjee, D. K., Dhodapkar, M. V., Matayeva, E., Steinman, R. M. & Dhodapkar, K. M. Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108, 2655–2661 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Chung, D. J. et al. Indoleamine 2, 3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 114, 555–563 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Luo, X. et al. Dendritic cells with TGF-β1 differentiate naive CD4+CD25 T cells into islet-protective Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA 104, 2821–2826 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levings, M. K., Bacchetta, R., Schulz, U. & Roncarolo, M. G. The role of IL-10 and TGF-β in the differentiation and effector function of T regulatory cells. Int. Arch. Allergy Immunol. 129, 263–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Ghiringhelli, F. et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med. 202, 919–929 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Liu, V. C. et al. Tumor evasion of the immune system by converting CD4+CD25 T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-β. J. Immunol. 178, 2883–2892 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Yamazaki, S. et al. CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J. Immunol. 181, 6923–6933 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Dumitriu, I. E., Dunbar, D. R., Howie, S. E., Sethi, T. & Gregory, C. D. Human dendritic cells produce TGF-β 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J. Immunol. 182, 2795–2807 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Mantovani, A., Sica, A., Allavena, P., Garlanda, C. & Locati, M. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum. Immunol. 70, 325–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Steidl, C. et al. Tumor-associated macrophages and survival in classic Hodgkin's Lymphoma. N. Engl. J. Med. 362, 875–885 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451–483 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Sica, A. et al. Macrophage polarization in tumour progression. Semin. Cancer Biol. 18, 349–355 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Byrne, S. N., Knox, M. C. & Halliday, G. M. TGFβ is responsible for skin tumour infiltration by macrophages enabling the tumours to escape immune destruction. Immunol. Cell Biol. 86, 92–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Biswas, S. K. et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood 107, 2112–2122 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Saccani, A. et al. p50 nuclear factor-κB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. 66, 11432–11440 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Porta, C. et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proc. Natl Acad. Sci. USA 106, 14978–14983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Torroella-Kouri, M. et al. Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res. 69, 4800–4809 (2009). This study shows that TGFβ and prostaglandin E 2 individually and additively downregulate NF-κB and C/EBP expression in a unique less-differentiated macrophage subpopulation.

    Article  CAS  PubMed  Google Scholar 

  53. Umemura, N. et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J. Leukoc. Biol. 83, 1136–1144 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Fichtner-Feigl, S., Strober, W., Kawakami, K., Puri, R. K. & Kitani, A. IL-13 signaling through the IL-13α2 receptor is involved in induction of TGF-β1 production and fibrosis. Nature Med. 12, 99–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Gratchev, A. et al. Activation of a TGF-β-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-β receptor II. J. Immunol. 180, 6553–6565 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Allen, S. S. et al. Altered inflammatory responses following transforming growth factor-β neutralization in experimental guinea pig tuberculous pleurisy. Tuberculosis (Edinb.) 88, 430–436 (2008).

    Article  CAS  Google Scholar 

  57. Smith, W. B. et al. Transforming growth factor-β1 inhibits the production of IL-8 and the transmigration of neutrophils through activated endothelium. J. Immunol. 157, 360–368 (1996).

    CAS  PubMed  Google Scholar 

  58. Shen, L. et al. Inhibition of human neutrophil degranulation by transforming growth factor-β1. Clin. Exp. Immunol. 149, 155–161 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Di Carlo, E. et al. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97, 339–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009). This study provides the first evidence that TGFβ controls pro-tumour versus antitumour immune responses by polarizing neutrophil subpopulations to N1 or N2 phenotypes in the tumour microenvironment.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pekarek, L. A., Starr, B. A., Toledano, A. Y. & Schreiber, H. Inhibition of tumor growth by elimination of granulocytes. J. Exp. Med. 181, 435–440 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Tazawa, H. et al. Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression. Am. J. Pathol. 163, 2221–2232 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Colombo, M. P., Modesti, A., Parmiani, G. & Forni, G. Local cytokine availability elicits tumor rejection and systemic immunity through granulocyte–T-lymphocyte cross-talk. Cancer Res. 52, 4853–4857 (1992).

    CAS  PubMed  Google Scholar 

  65. Hicks, A. M. et al. Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc. Natl Acad. Sci. USA 103, 7753–7758 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stoppacciaro, A. et al. Regression of an established tumor genetically modified to release granulocyte colony-stimulating factor requires granulocyte–T cell cooperation and T cell-produced interferon γ. J. Exp. Med. 178, 151–161 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Schumacher, K., Haensch, W., Roefzaad, C. & Schlag, P. M. Prognostic significance of activated CD8+ T cell infiltrations within esophageal carcinomas. Cancer Res. 61, 3932–3936 (2001).

    CAS  PubMed  Google Scholar 

  68. Nakano, O. et al. Proliferative activity of intratumoral CD8+ T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 61, 5132–5136 (2001).

    CAS  PubMed  Google Scholar 

  69. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    CAS  PubMed  Google Scholar 

  70. Gao, Q. et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J. Clin. Oncol. 25, 2586–2593 (2007).

    Article  PubMed  Google Scholar 

  71. Thomas, D. A. & Massague, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, Q. et al. Blockade of transforming growth factor-β signaling in tumor-reactive CD8+ T cells activates the antitumor immune response cycle. Mol. Cancer Ther. 5, 1733–1743 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Franciszkiewicz, K. et al. Intratumoral induction of CD103 triggers tumor-specific CTL function and CCR5-dependent T-cell retention. Cancer Res. 69, 6249–6255 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med. 7, 1118–1122 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, Q. et al. Adoptive transfer of tumor-reactive transforming growth factor-β-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer Res. 65, 1761–1769 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, L. et al. Immunotherapy for human renal cell carcinoma by adoptive transfer of autologous transforming growth factor β-insensitive CD8+ T cells. Clin. Cancer Res. 16, 164–173 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R–STAT6 pathway. Nature Immunol. 1, 515–520 (2000).

    Article  CAS  Google Scholar 

  79. Terabe, M. et al. Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J. Exp. Med. 198, 1741–1752 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Nam, J. S. et al. An anti-transforming growth factor β antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res. 68, 3835–3843 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Wallace, A. et al. Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clin. Cancer Res. 14, 3966–3974 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Takaku, S. et al. Blockade of TGF-β enhances tumor vaccine efficacy mediated by CD8+ T cells. Int. J. Cancer 126, 1666–1674 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Terabe, M. et al. Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-β monoclonal antibody. Clin. Cancer Res. 15, 6560–6569 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Ueda, R. et al. Systemic inhibition of transforming growth factor-β in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin. Cancer Res. 15, 6551–6559 (2009). References 82–84 show that the combination of a TGFβ-specific antibody with a vaccine results in a synergistic improvement in the inhibition of tumour growth that is mediated by increased number and activity of CD8+ T cells.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Sanjabi, S., Mosaheb, M. M. & Flavell, R. A. Opposing effects of TGF-β and IL-15 cytokines control the number of short-lived effector CD8+ T cells. Immunity 31, 131–144 (2009). This study shows the ability of TGFβ to promote apoptosis of effector CD8+ T cells under immunogenic conditions, such as vaccination.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Ahmadzadeh, M. & Rosenberg, S. A. TGF-β1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J. Immunol. 174, 5215–5223 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. di Bari, M. G. et al. TGF-β modulates the functionality of tumor-infiltrating CD8+ T cells through effects on TCR signaling and Spred1 expression. Cancer Immunol. Immunother. 58, 1809–1818 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Nam, J. S. et al. Transforming growth factor β subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res. 68, 3915–3923 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Hinrichs, C. S. et al. Type 17 CD8+ T cells display enhanced antitumor immunity. Blood 114, 596–599 (2009). This study shows that IL-17-producing CD8+ T cells mediate tumour regression and persist longer than normal CD8+ T cells after adoptive transfer in tumour-bearing mice.

  90. Muranski, P. et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112, 362–373 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Martin-Orozco, N. et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31, 787–798 (2009). References 90 and 91 provide compelling evidence comparing the therapeutic potential of adoptively transferred T H cell subpopulations and show that T H 17-polarized cells are the most effective in tumour eradication.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Li, M. O. & Flavell, R. A. TGF-β: a master of all T cell trades. Cell 134, 392–404 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Li, X. F. et al. Transforming growth factor-β (TGF-β)-mediated immunosuppression in the tumor-bearing state: enhanced production of TGF-β and a progressive increase in TGF-β susceptibility of anti-tumor CD4+ T cell function. Jpn. J. Cancer Res. 84, 315–325 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Maeda, H. & Shiraishi, A. TGF-β contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J. Immunol. 156, 73–78 (1996).

    CAS  PubMed  Google Scholar 

  95. Knutson, K. L. & Disis, M. L. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol. Immunother. 54, 721–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Muranski, P. & Restifo, N. P. Adoptive immunotherapy of cancer using CD4+ T cells. Curr. Opin. Immunol. 21, 200–208 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Gao, F. G. et al. Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T cell to a fully functional tumor killer cell. Cancer Res. 62, 6438–6441 (2002).

    CAS  PubMed  Google Scholar 

  98. Perez-Diez, A. et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 109, 5346–5354 (2007). This report shows the potential of CD4+ T cells for tumour elimination even in the absence of CD8+ T cells and independent of MHC class II expression by tumour cells.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Martin-Orozco, N. & Dong, C. The IL-17/IL-23 axis of inflammation in cancer: friend or foe? Curr. Opin. Invest. Drugs 10, 543–549 (2009).

    CAS  Google Scholar 

  100. Murugaiyan, G. & Saha, B. Protumor vs antitumor functions of IL-17. J. Immunol. 183, 4169–4175 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Miyahara, Y. et al. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc. Natl Acad. Sci. USA 105, 15505–15510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Su, X. et al. Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J. Immunol. 184, 1630–1641 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Nurieva, R., Yang, X. O., Chung, Y. & Dong, C. Cutting edge: in vitro generated Th17 cells maintain their cytokine expression program in normal but not lymphopenic hosts. J. Immunol. 182, 2565–2568 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Xie, Y. et al. Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma. J. Exp. Med. 207, 651–667 (2010). This report shows for the first time the potential use of naive CD4+ T cells in transfer experiments to induce potent antitumour immunity in vivo .

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Quezada, S. A. et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207, 637–650 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Kryczek, I. et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J. Immunol. 178, 6730–6733 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Pellegrini, M. et al. Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nature Med. 15, 528–536 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Curotto de Lafaille, M. A. & Lafaille, J. J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30, 626–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Merlo, A. et al. FOXP3 expression and overall survival in breast cancer. J. Clin. Oncol. 27, 1746–1752 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Moo-Young, T. A. et al. Tumor-derived TGF-β mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer. J. Immunother. 32, 12–21 (2009). In this study, TGFβ derived from the tumour promotes in situ T Reg cell differentiation, showing a mechanism of immune surveillance.

    Article  CAS  PubMed  Google Scholar 

  112. Beyer, M. & Schultze, J. L. Regulatory T cells in cancer. Blood 108, 804–811 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Solinas, G., Germano, G., Mantovani, A. & Allavena, P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J. Leukoc. Biol. 86, 1065–1073 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Han, Y., Guo, Q., Zhang, M., Chen, Z. & Cao, X. CD69+ CD4+ CD25 T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-β1. J. Immunol. 182, 111–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Chen, W. et al. Conversion of Peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Fantini, M. C. et al. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25 T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172, 5149–5153 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Petrausch, U. et al. Disruption of TGF-β signaling prevents the generation of tumor-sensitized regulatory T cells and facilitates therapeutic antitumor immunity. J. Immunol. 183, 3682–3689 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Niederkorn, J. Y. Emerging concepts in CD8+ T regulatory cells. Curr. Opin. Immunol. 20, 327–331 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Kapp, J. A. & Bucy, R. P. CD8+ suppressor T cells resurrected. Hum. Immunol. 69, 715–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Jarnicki, A. G., Lysaght, J., Todryk, S. & Mills, K. H. Suppression of antitumor immunity by IL-10 and TGF-β-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J. Immunol. 177, 896–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Shafer-Weaver, K. A. et al. Cutting edge: tumor-specific CD8+ T cells infiltrating prostatic tumors are induced to become suppressor cells. J. Immunol. 183, 4848–4852 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Chaput, N. et al. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 58, 520–529 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Kiniwa, Y. et al. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin. Cancer Res. 13, 6947–6958 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Godfrey, D. I., MacDonald, H. R., Kronenberg, M., Smyth, M. J. & Kaer, L. V. NKT cells: what's in a name? Nature Rev. Immunol. 4, 231–237 (2004).

    Article  CAS  Google Scholar 

  125. Berzofsky, J. & Terabe, M. A novel immunoregulatory axis of NKT cell subsets regulating tumor immunity. Cancer Immunol. Immunother. 57, 1679–1683 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Berzofsky, J. A. & Terabe, M. The contrasting roles of NKT cells in tumor immunity. Curr. Mol. Med. 9, 667–672 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. van der Vliet, H. J. et al. Circulating myeloid dendritic cells of advanced cancer patients result in reduced activation and a biased cytokine profile in invariant NKT cells. J. Immunol. 180, 7287–7293 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Calvo-Aller, E. et al. First human dose escalation study in patients with metastatic malignancies to determine safety and pharmacokinetics of LY2157299, a small molecule inhibitor of the transforming growth factor-β receptor I kinase. ASCO Annual Meeting. J. Clin. Oncol. Abstr. 26, 14554 (2008).

    Article  Google Scholar 

  129. Fakhrai, H. et al. Phase I clinical trial of a TGF-β antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther. 13, 1052–1060 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Nemunaitis, J. et al. Phase II study of belagenpumatucel-L, a transforming growth factor β-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J. Clin. Oncol. 24, 4721–4730 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Nemunaitis, J. et al. Phase II trial of belagenpumatucel-L, a TGF-β2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther. 16, 620–624 (2009). One of the few recent studies evaluating TGFβ blockade in humans; there are several limitations regarding design of trial and true 'efficacy' of this approach.

    Article  CAS  PubMed  Google Scholar 

  132. Schlingensiepen, K.-H. et al. Targeted tumor therapy with the TGF-β2 antisense compound AP 12009. Cytokine Growth Factor Rev. 17, 129–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Schlingensiepen, R. et al. Intracerebral and intrathecal infusion of the TGF-β2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15, 94–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Melero, I., Hervas-Stubbs, S., Glennie, M., Pardoll, D. M. & Chen, L. Immunostimulatory monoclonal antibodies for cancer therapy. Nature Rev. Cancer 7, 95–106 (2007).

    Article  CAS  Google Scholar 

  135. O'Garra, A., Stockinger, B. & Veldhoen, M. Differentiation of human TH-17 cells does require TGF-β! Nature Immunol. 9, 588–590 (2008).

    Article  CAS  Google Scholar 

  136. Schreiber, T. H., Deyev, V. V., Rosenblatt, J. D. & Podack, E. R. Tumor-induced suppression of CTL expansion and subjugation by gp96-Ig vaccination. Cancer Res. 69, 2026–2033 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Levy, L. & Hill, C. S. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 17, 41–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Rev. Cancer 3, 807–821 (2003).

    Article  CAS  Google Scholar 

  139. Nagaraj, N. S. & Datta, P. K. Targeting the transforming growth factor-β signaling pathway in human cancer. Expert Opin. Investig. Drugs 19, 77–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Wei, S. et al. Tumor-induced immune suppression of in vivo effector T-cell priming is mediated by the B7-H1/PD-1 axis and transforming growth factor β. Cancer Res. 68, 5432–5438 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Schlingensiepen, K.-H. et al. The TGF-β1 antisense oligonucleotide AP 11014 for the treatment of non-small cell lung, colorectal and prostate cancer: preclinical studies. J. Clin. Immunol. 22, 3132 (2004).

    Google Scholar 

  142. Khaw, P. et al. A phase III study of subconjunctival human anti-transforming growth factor β(2) monoclonal antibody (CAT-152) to prevent scarring after first-time trabeculectomy. Ophthalmology 114, 1822–1830 (2007).

    Article  PubMed  Google Scholar 

  143. Benigni, A. et al. Add-on anti-TGF-β antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J. Am. Soc. Nephrol. 14, 1816–1824 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Morris, J. C. et al. Phase I/II study of GC1008: A human anti-transforming growth factor-β (TGFβ) monoclonal antibody (MAb) in patients with advanced malignant melanoma (MM) or renal cell carcinoma (RCC). ASCO Annual Meeting. J. Clin. Oncol. Abstr. 26, 9028 (2008).

    Article  Google Scholar 

  145. Nam, J.-S. et al. Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor β in a mouse model of breast cancer. Cancer Res. 66, 6327–6335 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Zhong, Z. et al. Anti-transforming growth factor β receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells. Clin. Cancer Res. 16, 1191–1205 (2010). The newest study evaluating an antibody specific for TGFβRII, which shows antitumour responses against mouse mammary and colon cancer cell lines by increasing CTL and NK cell activity while decreasing the number of T Reg cells and MDSCs in mice treated with these antibodies.

    Article  CAS  PubMed  Google Scholar 

  147. Kano, M. R. et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc. Natl Acad. Sci. USA 104, 3460–3465 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Scott Sawyer, J. et al. Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. Bioorg. Med. Chem. Lett. 14, 3581–3584 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Inman, G. J. et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 62, 65–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Saunier, E. F. & Akhurst, R. J. TGFβ inhibition for cancer therapy. Curr. Cancer Drug Targets. 6, 565–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Hayashi, T. et al. Transforming growth factor β receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin. Cancer Res. 10, 7540–7546 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Uhl, M. et al. SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res. 64, 7954–7961 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Ehata, S. et al. Ki26894, a novel transforming growth factor-β type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci. 98, 127–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Kim, S. et al. Systemic blockade of transforming growth factor-β signaling augments the efficacy of immunogene therapy. Cancer Res. 68, 10247–10256 (2008). Recent evidence of successful combination therapy using TGFβ-blocking reagents.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Suzuki, E. et al. A novel small-molecule inhibitor of transforming growth factor β type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Res. 67, 2351–2359 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Qiqi, C., Sang Kyun, L., Bryan, Z. & Hoffmann, F. M. Selective inhibition of TGF-β responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Oncogene 24, 3864–3874 (2005).

    Article  CAS  Google Scholar 

  157. Llopiz, D. et al. Peptide inhibitors of transforming growth factor-β enhance the efficacy of antitumor immunotherapy. Int. J. Cancer 125, 2614–2623 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Yang, Y.-A. et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest. 109, 1607–1615 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Fujita, T. et al. Inhibition of transforming growth factor-β-mediated immunosuppression in tumor-draining lymph nodes augments antitumor responses by various immunologic cell types. Cancer Res. 69, 5142–5150 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Foster, A. E. et al. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-β receptor. J. Immunother. 31, 500–505 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Melisi, D. et al. LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol. Cancer. Ther. 7, 829–840 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

R.A.F. is an investigator of the Howard Hughes Medical Institute. This work is supported by a post-doctoral fellowship grant from the Cancer Research Institute (to S.S.), the NCI-funded Yale SPORE in Skin Cancer (P50 CA121974) through a Yale Skin SPORE Career Development Award (to S.H.W.) and a post-doctoral fellowship from PEW Charitable Trust: PEW Latin American Fellow Program in Biomedical Sciences (to P.L-L.). Additional support from NIH grants CA121974 and DK051665 (to R.A.F.) and JDRF grant 32-2008-352 (to R.A.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Flavell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

ClinicalTrials.gov

National Cancer Institute Drug Dictionary

FURTHER INFORMATION

Richard A. Flavell's homepage

Glossary

Peripheral tolerance

The lack of responsiveness of mature lymphocytes in the periphery to specific self antigens. These mechanisms can control potentially self-reactive lymphocytes that have escaped central tolerance or prevent immune responses to specialized self proteins that were not present during establishment of central tolerance. Peripheral tolerance is associated with suppression of self-reactive antibody production by B cells and inhibition of self-reactive effector cells, such as T helper cells and cytotoxic T lymphocytes.

Myeloid-derived suppressor cells

(MDSCs). A subset of immature CD11b+GR1+ cells (which include precursors of macrophages, granulocytes, dendritic cells and myeloid cells) that are produced in response to various tumour-derived cytokines. These cells have been shown to induce tumour-associated antigen-specific CD8+ T cell tolerance.

Tumour-associated macrophages

(TAMs). An important component of the tumour microenvironment. These cells differentiate from circulating blood monocytes that have infiltrated tumours. They can have positive or negative effects on tumorigenesis (that is, tumour promotion or immunosurveillance, respectively).

M1 macrophage

A classically activated macrophage that is stimulated by Toll-like receptor ligands (such as lipopolysaccharide) and IFNγ and that expresses, among others, inducible nitric-oxide synthase and nitric oxide.

M2 macrophage

An alternatively activated macrophage that is stimulated by IL-4 or IL-13 and that expresses arginase 1, the mannose receptor CD206 and the IL-4 receptor α-chain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flavell, R., Sanjabi, S., Wrzesinski, S. et al. The polarization of immune cells in the tumour environment by TGFβ. Nat Rev Immunol 10, 554–567 (2010). https://doi.org/10.1038/nri2808

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2808

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer