Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Fibrocytes: emerging effector cells in chronic inflammation

Abstract

Fibrocytes are mesenchymal cells that arise from monocyte precursors. They are present in injured organs and have both the inflammatory features of macrophages and the tissue remodelling properties of fibroblasts. Chronic inflammatory stimuli mediate the differentiation, trafficking and accumulation of these cells in fibrosing conditions associated with autoimmunity, cardiovascular disease and asthma. This Opinion article discusses the immunological mediators controlling fibrocyte differentiation and recruitment, describes the association of fibrocytes with chronic inflammatory diseases and compares the potential roles of fibrocytes in these disorders with those of macrophages and fibroblasts. It is hoped that this information prompts new opportunities for the study of these unique cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue injury, repair and remodelling.
Figure 2: Characteristics of fibrocytes in tissues and in the circulation.
Figure 3: Differentiation pathways of macrophages, fibrocytes and fibroblasts.
Figure 4: Potential roles of fibrocytes in chronic inflammatory disease.

Similar content being viewed by others

References

  1. Cohnheim, J. Ueber Entzundung und Eiterung (About inflammation and suppuration). Path. Anat. Physiol. Klin. Med. 40, 1–79 (1867).

    Google Scholar 

  2. Bucala, R., Spiegel, L. A., Chesney, J., Hogan, M. & Cerami, A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chesney, J., Bacher, M., Bender, A. & Bucala, R. The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc. Natl Acad. Sci. USA 94, 6307–6312 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chesney, J., Metz, C., Stavitsky, A. B., Bacher, M. & Bucala, R. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J. Immunol. 160, 419–425 (1998).

    CAS  PubMed  Google Scholar 

  5. Pilling, D., Fan, T., Huang, D., Kaul, B. & Gomer, R. H. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 4, e7475 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Moeller, A. et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 179, 588–594 (2009).

    Article  PubMed  Google Scholar 

  7. Phillips, R. J. et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J. Clin. Invest. 114, 438–446 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, C. H. et al. Increased circulating fibrocytes in asthma with chronic airflow obstruction. Am. J. Respir. Crit. Care Med. 178, 583–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Vakil, V. et al. Gadolinium-containing magnetic resonance image contrast agent promotes fibrocyte differentiation. J. Magn. Reson. Imaging 30, 1284–1288 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Medbury, H. et al. Monocytes contribute to the atherosclerotic cap by transformation into fibrocytes. Int. Angiol. 27, 114–123 (2008).

    CAS  PubMed  Google Scholar 

  11. Nikam, V. S. et al. Treprostinil inhibits the recruitment of bone marrow-derived circulating fibrocytes in chronic hypoxic pulmonary hypertension. Eur. Respir. J. 36, 1302–1324 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Mathai, S. K. et al. Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab. Invest. 90, 812–823 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galligan, C. L. et al. Fibrocyte activation in rheumatoid arthritis. Rheumatology 49, 640–651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niedermeier, M. et al. CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc. Natl Acad. Sci. USA 106, 17892–17897 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kisseleva, T. et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol. 45, 429–438 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Haudek, S. B. et al. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc. Natl Acad. Sci. USA 103, 18284–18289 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vannella, K. M. et al. Cysteinyl leukotrienes are autocrine and paracrine regulators of fibrocyte function. J. Immunol. 179, 7883–7890 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinez, F. O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci. 13, 453–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Homer, R. J., Elias, J. A., Lee, C. G. & Herzog, E. L. Modern concepts in pulmonary fibrosis. Arch. Pathol. Lab. Med. (in the press).

  21. Yang, L. et al. Identification of fibrocytes in postburn hypertrophic scar. Wound Repair Regen. 13, 398–404 (2005).

    Article  PubMed  Google Scholar 

  22. Balmelli, C. et al. Responsiveness of fibrocytes to Toll-like receptor danger signals. Immunobiology 212, 693–699 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt, M., Sun, G., Stacey, M. A., Mori, L. & Mattoli, S. Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J. Immunol. 171, 380–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Mattoli, S., Barcyk, M. & Bellini, A. Fibrocytes in Asthma. Fibrocytes: New Insights into Tissue Repair and Systemic Fibroses (World Scientific Publishing Co., Singapore) (in the press).

  25. Herzog, E. L. & Bucala, R. Fibrocytes in health and disease. Exp. Hematol. 38, 548–556 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pilling, D., Tucker, N. M. & Gomer, R. H. Aggregated IgG inhibits the differentiation of human fibrocytes. J. Leukoc. Biol. 79, 1242–1251 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Curnow, S. J. et al. Distinct types of fibrocyte can differentiate from mononuclear cells in the presence and absence of serum. PLoS ONE 5, e9730 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shao, D. D., Suresh, R., Vakil, V., Gomer, R. H. & Pilling, D. Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J. Leukoc. Biol. 83, 1323–1333 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Maharjan, A. S., Pilling, D. & Gomer, R. H. Toll-like receptor 2 agonists inhibit human fibrocyte differentiation. Fibrogenesis Tissue Repair 3, 23–30 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pilling, D., Buckley, C. D., Salmon, M. & Gomer, R. H. Inhibition of fibrocyte differentiation by serum amyloid P. J. Immunol. 171, 5537–5546 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Murray, L. A. et al. TGF-β driven lung fibrosis is macrophage dependent and blocked by serum amyloid P. Int. J. Biochem. Cell Biol. 43, 154–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Gan, Y. et al. Role of semaphorin 7a in TGF-β1 induced lung fibrosis, and scleroderma-related interstitial lung disease. Arthritis Rheum. 11 Apr 2011 (doi:10.1002/art.3 0386).

  33. Mehrad, B., Burdick, M. D. & Strieter, R. M. Fibrocyte CXCR4 regulation as a therapeutic target in pulmonary fibrosis. Int. J. Biochem. Cell Biol. 41, 1708–1718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haudek, S. B. et al. Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation. Cardiovasc. Res. 83, 511–518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haudek, S. B. et al. Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy. J. Mol. Cell. Cardiol. 49, 499–507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Powell, A. E. et al. Fusion between intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res. 71, 1497–1505 (2011).

    CAS  Google Scholar 

  37. Liu, Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 69, 213–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Hashimoto, N. et al. Endothelial–mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 43, 161–172 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Pereira, R. F. et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc. Natl Acad. Sci. USA 95, 1142–1147 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Szabo, E. et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468, 521–526 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Hashimoto, N., Jin, H., Liu, T., Chensue, S. W. & Phan, S. H. Bone marrow-derived progenitor cells in pulmonary fibrosis. J. Clin. Invest. 113, 243–252 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Balmelli, C., Ruggli, N., McCullough, K. & Summerfield, A. Fibrocytes are potent stimulators of anti-virus cytotoxic T cells. J. Leukoc. Biol. 77, 923–933 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Peng, X. et al. Local apoptosis promotes production of collagen in monocyte derived cells. Fibrogenesis Tissue Repair (in the press).

  44. Wang, J. F. et al. Fibrocytes from burn patients regulate the activities of fibroblasts. Wound Repair Regen. 15, 113–121 (2007).

    Article  PubMed  Google Scholar 

  45. Garcia-de-Alba, C. et al. Expression of matrix metalloproteases by fibrocytes: possible role in migration and homing. Am. J. Respir. Crit. Care Med. 182, 1144–1152 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Hartlapp, I. et al. Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J. 15, 2215–2224 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki, K. et al. Semaphorin 7A initiates T-cell-mediated inflammatory responses through α1β1 integrin. Nature 446, 680–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Holmes, S. et al. Sema7A is a potent monocyte stimulator. Scand. J. Immunol. 56, 270–275 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Czopik, A. Semaphorin 7A is a negative regulator of T cell responses. Immunity 5, 591–600 (2006).

    Article  CAS  Google Scholar 

  50. Lee, C. G. et al. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J. Exp. Med. 206, 1149–1166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, C. G. et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Ann. Rev. Physiol. 73, 479–501 (2011).

    Article  CAS  Google Scholar 

  52. Barth, P. J., Ebrahimsade, S., Hellinger, A., Moll, R. & Ramaswamy, A. CD34+ fibrocytes in neoplastic and inflammatory pancreatic lesions. Virchows Arch. 440, 128–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Nimphius, W., Moll, R., Olbert, P., Ramaswamy, A. & Barth, P. J. CD34+ fibrocytes in chronic cystitis and noninvasive and invasive urothelial carcinomas of the urinary bladder. Virchows Arch. 450, 179–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science 330, 827–830 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. van Deventer, H. W. et al. C-C chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9. Am. J. Pathol. 173, 253–264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Varga, J. & Pasche, B. Transforming growth factor β as a therapeutic target in systemic sclerosis. Nature Rev. Rheumatol. 5, 200–206 (2009).

    Article  CAS  Google Scholar 

  57. Kadono, T., Kikuchi, K., Ihn, H., Takehara, K. & Tamaki, K. Increased production of interleukin 6 and interleukin 8 in scleroderma fibroblasts. J. Rheumatol. 25, 296–301 (1998).

    CAS  PubMed  Google Scholar 

  58. Needleman, B. W. Increased expression of intercellular adhesion molecule 1 on the fibroblasts of scleroderma patients. Arthritis Rheum. 33, 1847–1851 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. van Leishout, A. W. et al. Enhanced interleukin-10 production by dendritic cells upon stimulation with Toll-like receptor 4 agonists in systemic sclerosis that is possibly implicated in CCL18 secretion. Scand. J. Rheumatol. 38, 282–290 (2009).

    Article  CAS  Google Scholar 

  60. Luzina, I. G. et al. Gene expression in bronchoalveolar lavage cells from scleroderma patients. Am. J. Respir. Cell Mol. Biol. 26, 549–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Luzina, I. G. et al. Regulation of pulmonary inflammation and fibrosis through expression of integrins αVβ3 and αVβ5 on pulmonary T lymphocytes. Arthritis Rheum. 60, 1530–1539 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yoshizaki, A. et al. CD19 regulates skin and lung fibrosis via Toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am. J. Pathol. 28, 639–650 (2008).

    Google Scholar 

  63. Douglas, R. S. et al. Increased generation of fibrocytes in thyroid-associated ophthalmopathy. J. Clin. Endocrinol. Metab. 95, 430–438 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Khoo, T. K., Coenen, M. J., Schiefer, A. R., Kumar, S. & Bahn, R. S. Evidence for enhanced Thy-1 (CD90) expression in orbital fibroblasts of patients with Graves' ophthalmopathy. Thyroid 18, 1291–1296 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bahn, R. S. Graves' ophthalmopathy. N. Engl. J. Med. 362, 726–738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Muller-Ladner, U., Ospelt, C., Gay, S., Distler, O. & Pap, T. Cells of the synovium in rheumatoid arthritis. Synovial fibroblasts. Arthritis Res. Ther. 9, 223 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kinne, R. W., Stuhlmuller, B. & Burmester, G. R. Cells of the synovium in rheumatoid arthritis. Macrophages. Arthritis Res. Ther. 9, 224 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Mantovani, A., Garlanda, C. & Locati, M. Macrophage diversity and polarization in atherosclerosis: a question of balance. Arterioscler. Thromb. Vasc. Biol. 29, 1419–1423 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Thorp, E. & Tabas, I. Mechanisms and consequences of efferocytosis in advanced atherosclerosis. J. Leukoc. Biol. 5, 1089–1095 (2009).

    Article  CAS  Google Scholar 

  70. Saha, P. et al. The monocyte/macrophage as a therapeutic target in atherosclerosis. Curr. Opin. Pharmacol. 9, 109–118 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Buday, A. et al. Elevated systemic TGF-β impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE−/− mice. Am. J. Physiol. Heart Circ. Physiol. 299, H386–H395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Iwata, H. et al. Bone marrow-derived cells contribute to vascular inflammation but do not differentiate into smooth muscle cell lineages. Circulation 122, 2048–2057 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Daniel, J. M. et al. Time-course analysis on the differentiation of bone marrow-derived progenitor cells into smooth muscle cells during neointima formation. Arterioscler. Thromb. Vasc. Biol. 30, 1890–1896 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Harel-Adar, T. et al. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc. Natl Acad. Sci. USA 108, 1827–1835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Troidl, C. et al. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J. Cell. Mol. Med. 13, 3485–3494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Turner, N. A. et al. Mechanism of TNFα-induced IL-1α, IL-1β and IL-6 expression in human cardiac fibroblasts: effects of statins and thiazolidinediones. Cardiovasc. Res. 76, 81–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Vanhoutte, D. & Heymans, S. TIMPs and cardiac remodeling: 'Embracing the MMP-independent-side of the family'. J. Mol. Cell. Cardiol. 48, 445–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Murakami, M. & Simons, M. Fibroblast growth factor regulation of neovascularization. Curr. Opin. Hematol. 15, 215–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barth, P. J., Koster, H. & Moosdorf, R. CD34+ fibrocytes in normal mitral valves and myxomatous mitral valve degeneration. Pathol. Res. Pract. 201, 301–304 (2005).

    Article  PubMed  Google Scholar 

  80. Haudek, S. B. et al. Fc receptor engagement mediates differentiation of cardiac fibroblast precursor cells. Proc. Natl Acad. Sci. USA 105, 10179–10184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Simoes, D. C. et al. Osteopontin deficiency protects against airway remodeling and hyperresponsiveness in chronic asthma. Am. J. Respir. Crit. Care Med. 179, 894–902 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Sugiura, H. et al. Activation of Toll-like receptor 3 augments myofibroblast differentiation. Am. J. Respir. Cell Mol. Biol. 40, 654–662 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Lee, C. G. et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nature Med. 10, 1095–1103 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Dong, L. et al. FIZZ1 plays a crucial role in early stage airway remodeling of OVA-induced asthma. J. Asthma 45, 648–653 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Moreira, A. P. et al. Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease. J. Allergy Clin. Immunol. 126, 712–721 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Nihlberg, K. et al. Tissue fibrocytes in patients with mild asthma: a possible link to thickness of reticular basement membrane? Respir. Res. 7, 50–59 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Yang, L. et al. Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab. Invest. 82, 1183–1192 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Andersson-Sjoland, A., Erjefalt, J. S., Bjermer, L., Eriksson, L. & Westergren-Thorsson, G. Fibrocytes are associated with vascular and parenchymal remodelling in patients with obliterative bronchiolitis. Respir. Res. 10, 103 (2009).

    Google Scholar 

  89. Moore, B. B. et al. The role of CCL12 in the recruitment of fibrocytes and lung fibrosis. Am. J. Respir. Cell Mol. Biol. 35, 175–181 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mehrad, B. et al. Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochem. Biophys. Res. Commun. 353, 104–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Cowper, S. E. et al. Nephrogenic fibrosing dermopathy. Am. J. Dermatopathol. 23, 383–393 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank E. Tarquino for excellent help with manuscript preparation. We gratefully acknowledge funding from the following sources: the US National Institutes of Health (NIH grant UL1RR024139), the Scleroderma Foundation, the American Thoracic Society and a TRI award from Yale Department of Medicine (all to E.L.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica L. Herzog.

Ethics declarations

Competing interests

Richard Bucala is an inventor on patents describing the clinical utility of fibrocytes. He also serves on the scientific advisory board of Promedior, Inc., which is developing therapeutic agents directed against fibrocytes. Erica Herzog has received grant funding from Promedior, Inc.

Related links

Related links

FURTHER INFORMATION

Erica L. Herzog's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reilkoff, R., Bucala, R. & Herzog, E. Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol 11, 427–435 (2011). https://doi.org/10.1038/nri2990

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing