Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Expanding TRAF function: TRAF3 as a tri-faced immune regulator

Key Points

  • TNFR-associated factors (TRAFs) constitute a family of seven cytoplasmic proteins that control signal transduction from different receptor families, including the tumour necrosis factor receptors (TNFRs), Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs). Therefore, TRAFs regulate various downstream signalling pathways, such as the nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF) pathways, and control a plethora of biological functions, both in immune and non-immune cell types.

  • TRAFs share a similar domain organization. Receptors and other upstream proteins engage TRAFs typically via their carboxy-terminal TRAF domain, whereas the amino-terminal region promotes the synthesis of non-degradative K63-linked polyubiquitin chains, which are required for downstream signal transduction.

  • The function of TRAF3 remained unclear until recent studies demonstrated that it can perform at least three different molecular functions, depending on the engaging receptor and its interplay with other proteins, such as TRAF2, the E3 ubiquitin ligases cellular inhibitor of apoptosis 1 (cIAP1) and cIAP2 and the protein kinase NF-κB-inducing kinase (NIK; also known as MAP3K14).

  • In TLR and RLR signalling pathways, TRAF3 is recruited into signalling complexes following pathogen encounter and acts as a ubiquitin ligase, promoting the synthesis of K63-linked polyubiquitin chains that control the activation of the type I interferon response. A patient with a destabilizing mutation in TRAF3 has been described who suffered from paediatric herpes simplex encephalitis, supporting the idea that TRAF3 functions in antiviral immune defence in humans.

  • Following the activation of certain TLRs and TNFRs (such as TLR4 and CD40), TRAF3 acts as a negative regulator, and its degradation is required for MAPK activation and the regulation of immune effector functions (for example, pro-inflammatory cytokine production). Receptor activation and the formation of a membrane-associated signalling complex leads to cIAP-mediated degradation of TRAF3, thereby liberating multiprotein complexes that contain MEK kinase 1 (MEKK1; also known as MAP3K1) and TGFβ-activated kinase 1 (TAK1; also known as MAP3K7) into the cytoplasm, where they activate downstream MAPK pathways.

  • Together with TRAF2 and cIAPs (and possibly other proteins), TRAF3 serves as a constitutive negative regulator of the alternative NF-κB pathway, which controls B cell survival and lymphoid organ development. Activation of a subset of TNFRs (including CD40, the BAFF receptor and the lymphotoxin-β receptor) results in cIAP-mediated TRAF3 degradation and the liberation of NIK, and this in turn leads to IκB kinase-α (IKKα)-mediated NF-κB activation. Mutations in several negative regulatory components in this pathway, including TRAF3, have been identified in cancer cells from patients with multiple myeloma, resulting in increased NF-κB activity and cancer cell survival.

Abstract

Tumour necrosis factor receptor (TNFR)-associated factor (TRAF) proteins are essential components of signalling pathways activated by TNFR or Toll-like receptor (TLR) family members. Acting alone or in combination, the seven known TRAFs control many biological processes, including cytokine production and cell survival. The function of one TRAF in particular, TRAF3, remained elusive for many years. Recent work has revealed that TRAF3 is a highly versatile regulator that positively controls type I interferon production, but negatively regulates mitogen-activated protein kinase activation and alternative nuclear factor-κB signalling. In this Review, we discuss our current understanding of the role of TRAF3 in TNFR and TLR signalling pathways, and its role in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain organization of mammalian TRAF proteins.
Figure 2: Adaptors and signalling complexes used by members of the TLR and IL-1R families.
Figure 3: The two NF-κB activation pathways.
Figure 4: TRAF3 as a gatekeeper for TNFR-induced stress kinase activation.
Figure 5: Differential TRAF3 ubiquitylation dictates the outcome of TLR4 signalling.
Figure 6: Role of TRAF3 in the regulation of NIK turnover and activity.

Similar content being viewed by others

References

  1. Ha, H., Han, D. & Choi, Y. TRAF-mediated TNFR-family signaling. Curr. Protoc. Immunol. 87, 11.9D (2009).

  2. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunol. 11, 373–384 (2010).

    Article  CAS  Google Scholar 

  3. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Zhu, S. et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J. Exp. Med. 207, 2647–2662 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie, P., Kraus, Z. J., Stunz, L. L., Liu, Y. & Bishop, G. A. TNF receptor-associated factor 3 is required for T cell-mediated immunity and TCR/CD28 signaling. J. Immunol. 186, 143–155 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Rothe, M., Wong, S. C., Henzel, W. J. & Goeddel, D. V. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78, 681–692 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Xie, P., Hostager, B. S., Munroe, M. E., Moore, C. R. & Bishop, G. A. Cooperation between TNF receptor-associated factors 1 and 2 in CD40 signaling. J. Immunol. 176, 5388–5400 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Regnier, C. H. et al. Impaired neural tube closure, axial skeleton malformations, and tracheal ring disruption in TRAF4-deficient mice. Proc. Natl Acad. Sci. USA 99, 5585–5590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shiels, H. et al. TRAF4 deficiency leads to tracheal malformation with resulting alterations in air flow to the lungs. Am. J. Pathol. 157, 679–688 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalkan, T., Iwasaki, Y., Park, C. Y. & Thomsen, G. H. Tumor necrosis factor-receptor-associated factor-4 is a positive regulator of transforming growth factor-β signaling that affects neural crest formation. Mol. Biol. Cell 20, 3436–3450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baud, V. et al. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 13, 1297–1308 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, Z. G., Hsu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87, 565–576 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Rothe, M., Sarma, V., Dixit, V. M. & Goeddel, D. V. TRAF2-mediated activation of NF-κB by TNF receptor 2 and CD40. Science 269, 1424–1427 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D. V. TRAF6 is a signal transducer for interleukin-1. Nature 383, 443–446 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Yamashita, M. et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Mol. Cell 31, 918–924 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hacker, H. et al. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J. Exp. Med. 192, 595–600 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsu, H., Xiong, J. & Goeddel, D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell 81, 495–504 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837–847 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Rothe, M., Pan, M. G., Henzel, W. J., Ayres, T. M. & Goeddel, D. V. The TNFR2–TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83, 1243–1252 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, C., Kabaleeswaran, V., Wang, Y., Cheng, G. & Wu, H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol. Cell 38, 101–113 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Mace, P. D., Smits, C., Vaux, D. L., Silke, J. & Day, C. L. Asymmetric recruitment of cIAPs by TRAF2. J. Mol. Biol. 400, 8–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Vince, J. E. et al. TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (TNF) to efficiently activate NF-κB and to prevent TNF-induced apoptosis. J. Biol. Chem. 284, 35906–35915 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanjo, H., Zajonc, D. M., Braden, R., Norris, P. S. & Ware, C. F. Allosteric regulation of the ubiquitin:NIK and ubiquitin:TRAF3 E3 ligases by the lymphotoxin-β receptor. J. Biol. Chem. 285, 17148–17155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bhoj, V. G. & Chen, Z. J. Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Finley, D. et al. Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol. Cell. Biol. 14, 5501–5509 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, M., Skaug, B., Zeng, W. & Chen, Z. J. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFα and IL-1β. Mol. Cell 36, 302–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zeng, W., Xu, M., Liu, S., Sun, L. & Chen, Z. J. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol. Cell 36, 315–325 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Yamazaki, K. et al. Two mechanistically and temporally distinct NF-κB activation pathways in IL-1 signaling. Sci. Signal. 2, ra66 (2009).

    Article  PubMed  Google Scholar 

  33. Matsuzawa, A. et al. Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 321, 663–668 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vallabhapurapu, S. et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nature Immunol. 9, 1364–1370 (2008).

    Article  CAS  Google Scholar 

  35. Yin, Q., Lamothe, B., Darnay, B. G. & Wu, H. Structural basis for the lack of E2 interaction in the RING domain of TRAF2. Biochemistry 48, 10558–10567 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Kelliher, M. A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Alvarez, S. E. et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465, 1084–1088 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong, W. W. et al. RIPK1 is not essential for TNFR1-induced activation of NF-κB. Cell Death Differ. 17, 482–487 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Tseng, P. H. et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nature Immunol. 11, 70–75 (2010).

    Article  CAS  Google Scholar 

  43. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Gao, M. et al. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306, 271–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Karin, M. & Gallagher, E. TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol. Rev. 228, 225–240 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Yang, J. et al. Mekk3 is essential for early embryonic cardiovascular development. Nature Genet. 24, 309–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    Article  PubMed  CAS  Google Scholar 

  48. Gohda, J., Matsumura, T. & Inoue, J. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not Toll/IL-1 receptor domain-containing adaptor-inducing IFN-β (TRIF)-dependent pathway in TLR signaling. J. Immunol. 173, 2913–2917 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Gallagher, E. et al. Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production. Nature Immunol. 8, 57–63 (2007).

    Article  CAS  Google Scholar 

  50. Sato, S. et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nature Immunol. 6, 1087–1095 (2005).

    Article  CAS  Google Scholar 

  51. Hacker, H. et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 17, 6230–6240 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kawai, T. & Akira, S. Toll-like receptor and RIG-I-like receptor signaling. Ann. NY Acad. Sci. 1143, 1–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol. 5, 1061–1068 (2004).

    Article  CAS  Google Scholar 

  54. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Marie, I., Durbin, J. E. & Levy, D. E. Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. EMBO J. 17, 6660–6669 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/βgene induction. Immunity 13, 539–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Hauer, J. et al. TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-κB pathway by TRAF-binding TNFRs. Proc. Natl Acad. Sci. USA 102, 2874–2879 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu, H. M., O'Rourke, K., Boguski, M. S. & Dixit, V. M. A novel RING finger protein interacts with the cytoplasmic domain of CD40. J. Biol. Chem. 269, 30069–30072 (1994).

    CAS  PubMed  Google Scholar 

  62. Cheng, G. et al. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science 267, 1494–1498 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Nakano, H. et al. Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proc. Natl Acad. Sci. USA 96, 9803–9808 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    Article  PubMed  Google Scholar 

  65. Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Saha, S. K. et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25, 3257–3263 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paz, S. et al. A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response. Cell Res. 4 Jan 2011 (doi: 10.1038/cr.2011.2).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tang, E. D. & Wang, C. Y. MAVS self-association mediates antiviral innate immune signaling. J. Virol. 83, 3420–3428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakhaei, P. et al. The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS Pathog. 5, e1000650 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Yamamoto, M. et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nature Immunol. 7, 962–970 (2006).

    Article  CAS  Google Scholar 

  71. Ahmad-Nejad, P. et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32, 1958–1968 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nature Immunol. 9, 361–368 (2008).

    Article  CAS  Google Scholar 

  73. Barton, G. M. & Kagan, J. C. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature Rev. Immunol. 9, 535–542 (2009).

    Article  CAS  Google Scholar 

  74. Xiao, G., Fong, A. & Sun, S. C. Induction of p100 processing by NF-κB-inducing kinase involves docking IκB kinase α (IKKα) to p100 and IKKα-mediated phosphorylation. J. Biol. Chem. 279, 30099–30105 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Xiao, G., Harhaj, E. W. & Sun, S. C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell 7, 401–409 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Claudio, E., Brown, K., Park, S., Wang, H. & Siebenlist, U. BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells. Nature Immunol. 3, 958–965 (2002).

    Article  CAS  Google Scholar 

  77. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Gardam, S., Sierro, F., Basten, A., Mackay, F. & Brink, R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 28, 391–401 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Xie, P., Stunz, L. L., Larison, K. D., Yang, B. & Bishop, G. A. Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 27, 253–267 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. He, J. Q. et al. Rescue of TRAF3-null mice by p100 NF-κB deficiency. J. Exp. Med. 203, 2413–2418 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liao, G., Zhang, M., Harhaj, E. W. & Sun, S. C. Regulation of the NF-κB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J. Biol. Chem. 279, 26243–26250 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Keats, J. J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Zarnegar, B., Yamazaki, S., He, J. Q. & Cheng, G. Control of canonical NF-κB activation through the NIK–IKK complex pathway. Proc. Natl Acad. Sci. USA 105, 3503–3508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Amir, R. E., Haecker, H., Karin, M. & Ciechanover, A. Mechanism of processing of the NF-κB2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCFβ-TrCP ubiquitin ligase. Oncogene 23, 2540–2547 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Perez de Diego, R. et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33, 400–411 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. He, J. Q., Saha, S. K., Kang, J. R., Zarnegar, B. & Cheng, G. Specificity of TRAF3 in its negative regulation of the noncanonical NF-κB pathway. J. Biol. Chem. 282, 3688–3694 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Ermolaeva, M. A. et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nature Immunol. 9, 1037–1046 (2008).

    Article  CAS  Google Scholar 

  92. Chen, N. J. et al. Beyond tumor necrosis factor receptor: TRADD signaling in Toll-like receptors. Proc. Natl Acad. Sci. USA 105, 12429–12434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Mehta for the bioinformatics analysis of the TRAF domain structures depicted in Fig. 1. H.H. was supported by US National Institutes of Health (NIH) grant AI083443 and the American Lebanese Syrian Associated Charities (ALSAC). Work was also supported by NIH grant AI043477 to M.K., who is an American Cancer Society Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Häcker or Michael Karin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Inhibitor of apoptosis

A class of proteins (cIAP1, cIAP2, XIAP and NAIP) that contain BIR domains and that can act under certain conditions as intracellular caspase inhibitors. For cIAP1 and cIAP2 function in TNFR-associated factor (TRAF)-dependent signal transduction pathways, this function is probably not relevant.

E3 ubiquitin ligases

Enzymes that attach ubiquitin to substrate proteins. Single-subunit E3 ubiquitin ligases contain both the substrate-binding domain(s) and E2 tranferase recruitment machinery in the same polypeptide chain, whereas multisubunit E3 ubiquitin ligases divide these functions between individual protein components. E3 ubiquitin ligases are further classified on the basis of their E2 transferase recruitment domains, which can be HECT-type, RING finger-type or U box-type.

Mitogen-activated protein kinase

(MAPK). MAPKs are a group of serine/threonine-specific protein kinases that are activated by a variety of stimuli, including growth factors, cytokines, ionizing radiation and osmotic shock. MAPK activation is controlled through defined kinase cascades, which include a MAPK kinase (MAPKK) and a MAPKK kinase (MAP3K). These MAPK cascades serve as information relays, connecting different sensor molecules (such as cell surface receptors) to specific regulatory proteins (including transcription factors), thereby translating changes in the cell environment into gene regulation.

Alternative NF-κB pathway

A nuclear factor-κB (NF-κB) activation pathway that is activated by a subset of TNF receptor family members, including BAFFR, LTβR and CD40. In contrast to the classic NF-κB pathway, which depends on the catalytic activity of IκB kinase-β (IKKβ), the alternative pathway depends on the catalytic activity of IKKα, which phosphorylates p100 (also known as NF-κB2). This results in limited proteolytic processing of the C-terminal part of p100, thereby liberating the N-terminal active transcription factor p52. p52, together with its dimerization partner RELB, enters the nucleus and drives transcription.

Ubiquitylation

The attachment of the small protein ubiquitin to (primarily) lysine residues in other proteins. Protein ubiquitylation occurs in three enzymatic steps requiring a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2) and a ubiquitin ligase (E3), which catalyses the ligation of an isopeptide bond between the C terminus of ubiquitin and an amino group belonging to a lysine residue of the target protein.

Proteasome

A giant multicatalytic protease resident in the cytosol and the nucleus. The 20S core, which contains three distinct catalytic subunits, can be appended at either end by a 19S cap or an 11S cap. The binding of two 19S caps to the 20S core forms the 26S proteasome, which degrades polyubiquitylated proteins.

Plasmacytoid dendritic cells

(pDCs). A subset of DCs that are described as plasmacytoid because their microscopic appearance resembles that of plasmablasts. On a per cell basis, pDCs are the main producers of type I interferons in response to virus infections or Toll-like receptor stimulation.

Plasma cells

Non-dividing, terminally differentiated, immunoglobulin-secreting cells of the B cell lineage.

SCFβTrCP

A multiprotein complex containing a protein core of SKP1, CUL1 and an F-box protein (the SCF complex) that catalyses the ubiquitylation of specific proteins destined for proteasomal degradation. β-transducin repeat-containing protein (βTrCP) is an F-box protein that recognizes specific phosphorylated substrates, including NK-κB inhibitor-α (IκBα) and p100 (also known as NK-κB2).

Herpes simplex encephalitis

Herpes simplex encephalitis is a rare complication of herpes simplex virus 1 (HSV-1) infection and has been associated with the impairment of innate immunity to HSV-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häcker, H., Tseng, PH. & Karin, M. Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 11, 457–468 (2011). https://doi.org/10.1038/nri2998

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2998

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing