Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of the gut microbiota in immunity and inflammatory disease

Key Points

  • The gut microbiota is important for the development and functional maturation of the gut immune system, including gut-associated lymphoid tissue, T helper 17 cells, inducible regulatory T cells, IgA-producing B cells and innate lymphoid cells.

  • The gut microbiota prevents exogenous pathogen infection through direct (for example, competition for common nutrients and niches) and indirect (for example, enhancement of host defence) mechanisms.

  • Pathogens have evolved strategies to evade direct competition with the resident microbiota by eradicating bacterial competitors, localizing to niches that are distinct from those occupied by commensal bacteria and by using alternative resources.

  • Potential pathobionts can accumulate in a host with inherent genetic susceptibility or environmental factors that lead to the development of inflammatory bowel disease.

  • The gut microbiota regulates susceptibility to extra-intestinal autoimmune diseases, such as multiple sclerosis, type 1 diabetes, arthritis and allergy.

Abstract

The mammalian intestine is colonized by trillions of microorganisms, most of which are bacteria that have co-evolved with the host in a symbiotic relationship. The collection of microbial populations that reside on and in the host is commonly referred to as the microbiota. A principal function of the microbiota is to protect the intestine against colonization by exogenous pathogens and potentially harmful indigenous microorganisms via several mechanisms, which include direct competition for limited nutrients and the modulation of host immune responses. Conversely, pathogens have developed strategies to promote their replication in the presence of competing microbiota. Breakdown of the normal microbial community increases the risk of pathogen infection, the overgrowth of harmful pathobionts and inflammatory disease. Understanding the interaction of the microbiota with pathogens and the host might provide new insights into the pathogenesis of disease, as well as novel avenues for preventing and treating intestinal and systemic disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The gut microbiota-mediated development of the intestinal immune system.
Figure 2: Direct and indirect resistance of the microbiota to colonization by enteric pathogens.
Figure 3: Protective and pathogenic role of the gut microbiota in IBD.
Figure 4: Gut microbiota affects extra-intestinal autoimmune diseases.

Similar content being viewed by others

References

  1. Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Rev. Immunol. 10, 159–169 (2010).

    CAS  Google Scholar 

  2. Renz, H., Brandtzaeg, P. & Hornef, M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nature Rev. Immunol. 12, 9–23 (2011).

    Article  CAS  Google Scholar 

  3. Stecher, B. & Hardt, W. D. Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol. 14, 82–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Littman, D. R. & Pamer, E. G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10, 311–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Honda, K. & Littman, D. R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30, 759–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gordon, H. A., Bruckner-Kardoss, E. & Wostmann, B. S. Aging in germ-free mice: life tables and lesions observed at natural death. J. Gerontol. 21, 380–387 (1966).

    Article  CAS  PubMed  Google Scholar 

  7. Hamada, H. et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168, 57–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Moreau, M. C. & Corthier, G. Effect of the gastrointestinal microflora on induction and maintenance of oral tolerance to ovalbumin in C3H/HeJ mice. Infect. Immun. 56, 2766–2768 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pabst, O. et al. Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J. Immunol. 177, 6824–6832 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Littman, D. R. & Rudensky, A. Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845–858 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). This study identifies SFB as a main driver of intestinal T H 17 cell differentiation, which can protect the host against enteric pathogen infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Shaw, M. H., Kamada, N., Kim, Y. G. & Nunez, G. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J. Exp. Med. 209, 251–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chung, H. et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149, 1578–1593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. & Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol. 5, 1461–1471 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011). In this study, the authors identify a cocktail of 46 strains of Clostridium spp. that efficiently induce the development of peripherally derived FOXP3+ T Reg cells in the colon, which are important for preventing intestinal inflammation and allergy.

    Article  CAS  PubMed  Google Scholar 

  20. Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fagarasan, S., Kawamoto, S., Kanagawa, O. & Suzuki, K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol. 28, 243–273 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Strugnell, R. A. & Wijburg, O. L. The role of secretory antibodies in infection immunity. Nature Rev. Microbiol. 8, 656–667 (2010).

    Article  CAS  Google Scholar 

  24. Macpherson, A. J., Geuking, M. B. & McCoy, K. D. Homeland security: IgA immunity at the frontiers of the body. Trends Immunol. 33, 160–167 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002). This report shows that intestinal IgA responses can shape the commensal bacterial community.

    Article  CAS  PubMed  Google Scholar 

  26. Wei, M. et al. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nature Immunol. 12, 264–270 (2011).

    Article  CAS  Google Scholar 

  27. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki, K. et al. The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut. Immunity 33, 71–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Uematsu, S. et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nature Immunol. 9, 769–776 (2008).

    Article  CAS  Google Scholar 

  31. Tezuka, H. et al. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448, 929–933 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Tezuka, H. et al. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction. Immunity 34, 247–257 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Fritz, J. H. et al. Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut. Nature 481, 199–203 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Walker, J. A., Barlow, J. L. & McKenzie, A. N. Innate lymphoid cells — how did we miss them? Nature Rev. Immunol. 13, 75–87 (2013).

    Article  CAS  Google Scholar 

  35. Sonnenberg, G. F. & Artis, D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 37, 601–610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009). In this report, the authors identify IL-22-producing ILC3s in mucosal tissues, including the intestine, in both mice and humans.

    Article  CAS  PubMed  Google Scholar 

  37. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nature Immunol. 12, 21–27 (2011).

    Article  CAS  Google Scholar 

  38. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunol. 10, 83–91 (2009).

    Article  CAS  Google Scholar 

  40. Sawa, S. et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nature Immunol. 12, 320–326 (2011).

    Article  CAS  Google Scholar 

  41. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med. 14, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011). In this study, the authors demonstrate that bacterial stimuli from commensal microbiota promote the production of the antimicrobial molecule REGIIIγ by the epithelium in a MYD88-dependent process. REGIIIγ functions as an additional barrier against the microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Osawa, N. & Mitsuhashi, S. Infection of germfree mice with Shigella flexneri 3A. Jpn J. Exp. Med. 34, 77–80 (1964).

    CAS  PubMed  Google Scholar 

  45. Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Bohnhoff, M., Drake, B. L. & Miller, C. P. Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proc. Soc. Exp. Biol. Med. 86, 132–137 (1954).

    Article  CAS  PubMed  Google Scholar 

  47. Hentges, D. J. & Freter, R. In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri I. Correlation between various tests. J. Infect. Dis. 110, 30–37 (1962).

    Article  CAS  PubMed  Google Scholar 

  48. Lawley, T. D. et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77, 3661–3669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rupnik, M., Wilcox, M. H. & Gerding, D. N. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nature Rev. Microbiol. 7, 526–536 (2009).

    Article  CAS  Google Scholar 

  50. Momose, Y., Hirayama, K. & Itoh, K. Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie Van Leeuwenhoek 94, 165–171 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Momose, Y., Hirayama, K. & Itoh, K. Effect of organic acids on inhibition of Escherichia coli O157:H7 colonization in gnotobiotic mice associated with infant intestinal microbiota. Antonie Van Leeuwenhoek 93, 141–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Fabich, A. J. et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun. 76, 1143–1152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leatham, M. P. et al. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect. Immun. 77, 2876–2886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012). This study demonstrates the importance of commensal bacteria in eradicating pathogens by competing for shared nutrients. The expression of virulence factors by the pathogen allows it to localize to the epithelium as a means of escaping nutritional competition by the microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Endt, K. et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog. 6, e1001097 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Pacheco, A. R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature 492, 113–117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Le Bouguenec, C. & Schouler, C. Sugar metabolism, an additional virulence factor in enterobacteria. Int. J. Med. Microbiol. 301, 1–6 (2010).

    Article  PubMed  CAS  Google Scholar 

  58. Bertin, Y. et al. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ. Microbiol. 13, 365–377 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010). This study demonstrates that an enteric pathogen acquires a growth advantage in the presence of intestinal inflammation. Pathogen-induced inflammation promotes neutrophil recruitment and the conversion of a commensal metabolite to a form that can be used by the pathogen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thiennimitr, P. et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl Acad. Sci. USA 108, 17480–17485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Murdoch, S. L. et al. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J. Bacteriol. 193, 6057–6069 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gueguen, E. & Cascales, E. Promoter swapping unveils the role of the Citrobacter rodentium CTS1 type VI secretion system in interbacterial competition. Appl. Environ. Microbiol. 79, 32–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bergstrom, K. S. et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 6, e1000902 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Petersson, J. et al. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G327–G333 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brandl, K., Plitas, G., Schnabl, B., DeMatteo, R. P. & Pamer, E. G. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 204, 1891–1900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dessein, R. et al. Toll-like receptor 2 is critical for induction of Reg3β expression and intestinal clearance of Yersinia pseudotuberculosis. Gut 58, 771–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. van Ampting, M. T. et al. Intestinally secreted C-type lectin Reg3β attenuates salmonellosis but not listeriosis in mice. Infect. Immun. 80, 1115–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Denning, T. L., Wang, Y. C., Patel, S. R., Williams, I. R. & Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nature Immunol. 8, 1086–1094 (2007).

    Article  CAS  Google Scholar 

  71. Franchi, L. et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nature Immunol. 13, 449–456 (2012). This study demonstrates that NLRC4 selectively recognizes pathogenic, but not commensal, bacteria and that it promotes protective immunity against pathogens via induction of mature IL-1β.

    Article  CAS  Google Scholar 

  72. Kamada, N. et al. Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J. Immunol. 175, 6900–6908 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008). In this study, the authors report that a human commensal bacterium, B. fragilis , protects against pathobiont-induced intestinal inflammation, and that the PSA in its capsule is sufficient for this protection. Specifically, PSA induces IL-10 production from CD4+ T cells that protect against intestinal inflammation.

    Article  CAS  PubMed  Google Scholar 

  77. O'Mahony, C. et al. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-κB activation. PLoS Pathog. 4, e1000112 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hand, T. W. et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337, 1553–1556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fagundes, C. T. et al. Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice. J. Immunol. 188, 1411–1420 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Med. 16, 228–231 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ganal, S. C. et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Benson, A., Pifer, R., Behrendt, C. L., Hooper, L. V. & Yarovinsky, F. Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. Cell Host Microbe 6, 187–196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115–1119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Giel, J. L., Sorg, J. A., Sonenshein, A. L. & Zhu, J. Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS ONE 5, e8740 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kane, M. et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science 334, 245–249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kuss, S. K. et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334, 249–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sellon, R. K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66, 5224–5231 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dianda, L. et al. T cell receptor-α β-deficient mice fail to develop colitis in the absence of a microbial environment. Am. J. Pathol. 150, 91–97 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Rath, H. C., Wilson, K. H. & Sartor, R. B. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect. Immun. 67, 2969–2974 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Schultz, M. et al. IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am. J. Physiol. 276, G1461–G1472 (1999).

    CAS  PubMed  Google Scholar 

  97. Bamias, G. et al. Commensal bacteria exacerbate intestinal inflammation but are not essential for the development of murine ileitis. J. Immunol. 178, 1809–1818 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Kobayashi, M. et al. Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J. Clin. Invest. 111, 1297–1308 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rakoff-Nahoum, S., Hao, L. & Medzhitov, R. Role of Toll-like receptors in spontaneous commensal-dependent colitis. Immunity 25, 319–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Hoshi, N. et al. MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice. Nature Commun. 3, 1120 (2012).

    Article  CAS  Google Scholar 

  101. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Smythies, L. E. et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115, 66–75 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kamada, N. et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis. J. Clin. Invest. 118, 2269–2280 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cho, J. H. The genetics and immunopathogenesis of inflammatory bowel disease. Nature Rev. Immunol. 8, 458–466 (2008).

    Article  CAS  Google Scholar 

  105. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature Genet. 39, 207–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Parkes, M. et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nature Genet. 39, 830–832 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nature Immunol. 11, 55–62 (2010).

    Article  CAS  Google Scholar 

  111. Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nature Med. 16, 90–97 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Homer, C. R., Richmond, A. L., Rebert, N. A., Achkar, J. P. & McDonald, C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 139, 1630–1641. e2 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Bevins, C. L. & Salzman, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Rev. Microbiol. 9, 356–368 (2011).

    Article  CAS  Google Scholar 

  114. Ogura, Y. et al. Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut 52, 1591–1597 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wehkamp, J. et al. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal α-defensin expression. Gut 53, 1658–1664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Petnicki-Ocwieja, T. et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl Acad. Sci. USA 106, 15813–15818 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim, S. C. et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology 128, 891–906 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Waidmann, M. et al. Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology 125, 162–177 (2003).

    Article  PubMed  Google Scholar 

  121. Bohn, E. et al. Host gene expression in the colon of gnotobiotic interleukin-2-deficient mice colonized with commensal colitogenic or noncolitogenic bacterial strains: common patterns and bacteria strain specific signatures. Inflamm. Bowel Dis. 12, 853–862 (2006).

    Article  PubMed  Google Scholar 

  122. Bloom, S. M. et al. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe 9, 390–403 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Garrett, W. S. et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131, 33–45 (2007). In this study, the authors show that colitogenic pathobionts can accumulate in genetically susceptible mice and can transmit disease to wild-type mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Garrett, W. S. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8, 292–300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Powell, N. et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 37, 674–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011). This report demonstrates that impaired NLRP6 signalling and IL-18 production is associated with the development of dysbiosis and the accumulation of potentially colitogenic pathobionts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 123, 700–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012). In this study, the authors show that a milk-derived fat diet increases the level of bile acids in the intestine, which results in the accumulation of colitogenic pathobionts in genetically susceptible IBD-prone mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lowe, E. L. et al. Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer. PLoS ONE 5, e13027 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Chen, G. Y., Shaw, M. H., Redondo, G. & Nunez, G. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 68, 10060–10067 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Med. 15, 1016–1022 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hajishengallis, G., Darveau, R. P. & Curtis, M. A. The keystone–pathogen hypothesis. Nature Rev. Microbiol. 10, 717–725 (2012).

    Article  CAS  Google Scholar 

  135. Kitajima, S., Morimoto, M., Sagara, E., Shimizu, C. & Ikeda, Y. Dextran sodium sulfate-induced colitis in germ-free IQI/Jic mice. Exp. Anim. 50, 387–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Saha, S. et al. Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-γ. Cell Host Microbe 8, 147–162 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Lee, J. et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nature Cell Biol. 8, 1327–1336 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Kirkland, D. et al. B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity 36, 228–238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vijay-Kumar, M. et al. Deletion of TLR5 results in spontaneous colitis in mice. J. Clin. Invest. 117, 3909–3921 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Carvalho, F. A. et al. Interleukin-1β (IL-1β) promotes susceptibility of Toll-like receptor 5 (TLR5) deficient mice to colitis. Gut 61, 373–384 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Katakura, K. et al. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J. Clin. Invest. 115, 695–702 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Shen, Y. et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12, 509–520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Diehl, G. E. et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494, 116–120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ochoa-Reparaz, J. et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J. Immunol. 183, 6041–6050 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108, S4615–S4622 (2011).

    Article  Google Scholar 

  151. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Ochoa-Reparaz, J. et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 3, 487–495 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nakae, S. et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc. Natl Acad. Sci. USA 100, 5986–5990 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Wen, L. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113 (2008). This report demonstrates that altered microbial communities in MYD88-deficient NOD mice prevent the development of T1D, which indicates that certain subsets of commensal microbiota might have the capacity to protect against the development of T1D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ubeda, C. et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 209, 1445–1456 (2012). This study indicates that differences in bacterial communities in mice that are deficient in individual TLRs or MYD88 are more strongly related to maternal transmission and cage effects than to an inherent genetic susceptibility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kriegel, M. A. et al. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 108, 11548–11553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Hill, D. A. et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nature Med. 18, 538–546 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Bashir, M. E., Louie, S., Shi, H. N. & Nagler-Anderson, C. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J. Immunol. 172, 6978–6987 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Frossard, J. L., Steer, M. L. & Pastor, C. M. Acute pancreatitis. Lancet 371, 143–152 (2008).

    Article  PubMed  Google Scholar 

  163. Tsuji, Y. et al. Sensing of commensal organisms by the intracellular sensor NOD1 mediates experimental pancreatitis. Immunity 37, 326–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lynch, S. V. et al. Cystic fibrosis transmembrane conductance regulator knockout mice exhibit aberrant gastrointestinal microbiota. Gut Microbes 4, 41–47 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Borody, T. J. & Khoruts, A. Fecal microbiota transplantation and emerging applications. Nature Rev. Gastroenterol. Hepatol. 9, 88–96 (2011).

    Article  CAS  Google Scholar 

  166. Li, X. D. et al. Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis. Proc. Natl Acad. Sci. USA 108, 17390–17395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Negishi, H. et al. Essential contribution of IRF3 to intestinal homeostasis and microbiota-mediated Tslp gene induction. Proc. Natl Acad. Sci. USA 109, 21016–21021 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the US National Institutes of Health and the Bill & Melinda Gates Foundation, USA. N.K. is supported by a Research Fellowship from the Crohn's and Colitis Foundation of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Núñez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Gabriel Núñez's homepage

Glossary

Gut-associated lymphoid tissues

(GALTs). Lymphoid structures and aggregates that are associated with the intestinal mucosa, specifically the tonsils, Peyer's patches, lymphoid follicles, appendix or cecal patch, and mesenteric lymph nodes. They are enriched in conventional and unconventional lymphocytes, and in specialized dendritic cell and macrophage subsets.

Germ-free mice

Mice that are born and raised in isolators, without exposure to microorganisms.

Peyer's patches

Collections of lymphoid tissue that are located in the mucosa of the small intestine. They have an outer epithelial layer consisting of specialized epithelial cells called M cells. Peyer's patches consist of a dome area, B cell follicles and interfollicular T cell areas. High endothelial venules are present mainly in the interfollicular areas.

Specific-pathogen-free mice

Mice raised in conditions whereby an increasing number of pathogens are excluded or eradicated from the colony. These animals are maintained in the absence of most of the known chronic and latent persistent pathogens. Although this enables better control of experimental conditions related to immunity and infection, it also sets apart such animal models from pathogen-exposed humans or non-human primates, whose immune systems are in constant contact with pathogens.

Pattern recognition receptors

(PRRs). Germline-encoded receptors (such as the Toll-like receptors (TLRs) and the NOD-like receptors (NLRs)) that can sense pathogen- associated molecular patterns and initiate signalling cascades that lead to an innate immune response. They can be membrane-bound (such as TLRs and C-type lectin receptors (CLRs)) or soluble cytoplasmic receptors (such as retinoic acid-inducible gene I (RIG-I), melanoma differentiation- associated protein 5 (MDA5) and NLRs).

Peripherally derived TReg cells

A subset of forkhead box P3 (FOXP3)+ regulatory T (TReg) cells that are induced in the periphery and mediate their suppressive effects through the secretion of cytokines such as interleukin-10 and transforming growth factor-β, which inhibit other T cells. Their role is to maintain self-tolerance.

Activation-induced cytidine deaminase

(AID). An enzyme that is required for two crucial events in the germinal centre: somatic hypermutation and class-switch recombination.

Follicular DCs

(FDCs). Specialized non-haematopoietic stromal cells that reside in the follicles and germinal centres. These cells possess long dendrites, but are not related to dendritic cells, and carry intact antigen on their surface.

Type IV secretion system

(T6SS). An export system that is used by Gram-negative bacteria to deliver effector proteins to other cells in a cell contact-dependent manner.

Inflammasome

A molecular complex of several proteins, including a NOD-like receptor (NLR), the adaptor protein ASC and a caspase, that, upon assembly, cleaves pro-interleukin-1β (pro-IL-1β) and pro-IL-18, thereby producing mature IL-1β and IL-18.

Aryl hydrocarbon receptor

(AHR). A cytosolic, ligand-dependent transcription factor that translocates to the nucleus following the binding of specific ligands, which include dietary and microbial metabolites. AHR participates in the differentiation of regulatory T cells, T helper 17 (TH17) cells and intraepithelial intestinal T cells, and it is required for the secretion of interleukin-22 by TH17 cells. More recently, AHR has been shown to have crucial roles in the development and function of group 3 innate lymphoid cells, including lymphoid tissue inducer (LTi) cells and ILC3s.

Inflammatory bowel disease

(IBD). Immune-mediated inflammation of the bowel. There are two main forms: Crohn's disease, which is a granulomatous segmental inflammation affecting any part of the intestine; and ulcerative colitis, which is a mucosal inflammation involving the rectum and extending for a variable distance along the colon. In developed countries, the incidence of inflammatory bowel disease is approximately one in 50,000. It usually starts in early adult life and continues afterwards with a relapsing, remitting course.

SAMP1/yit mice

A mutant mouse strain that spontaneously develops a chronic intestinal inflammation that is mainly localized in the terminal ileum.

Autophagy

An evolutionarily conserved process in which acidic double-membrane vacuoles sequester intracellular contents (such as damaged organelles and macromolecules) and target them for degradation through fusion to secondary lysosomes.

α-defensins

One subset of defensin proteins. Defensins and cathelicidins are members of a family of small antimicrobial polypeptides that are abundant in neutrophils and epithelial cells. They contribute to host defence by disrupting the cytoplasmic membrane of microorganisms.

Rag

Recombinase activating genes; Rag1 and Rag2 are expressed in developing lymphocytes. Mice that are deficient in either of these genes fail to produce B or T cells owing to a developmental block in the gene rearrangement that is necessary for receptor expression.

iNKT cells

Invariant natural killer (iNKT) cells; a population of cells that are thought to be particularly important in bridging the innate and adaptive immune responses. iNKT cells are typified by a capacity for self-recognition and rapid release of cytokines such as interferon-γ.

Experimental autoimmune encephalomyelitis

(EAE). An experimental model of multiple sclerosis that is induced by immunization of susceptible animals with myelin-derived antigens, such as myelin basic protein, proteolipid protein or myelin oligodendrocyte glycoprotein.

K/BxN transgenic mice

Mice formed by crossing non-obese diabetic (NOD)/Lt mice with KRN T cell receptor-transgenic mice on the C57BL/6 background. As the KRN receptor on T cells recognizes a peptide from the autoantigen glucose-6-phosphate isomerase, these mice develop an arthritis that is mediated, and transferable, by circulating antibodies against glucose-6- phosphate isomerase.

NOD mice

Non-obese diabetic (NOD) mice spontaneously develop type 1 diabetes as a result of autoreactive T cell-mediated destruction of pancreatic β-islet cells.

Hygiene hypothesis

This hypothesis originally stated that the increased incidence of atopic diseases in westernized countries was a consequence of living in an overly clean environment, which resulted in an understimulated immune system that responded inappropriately to harmless antigens. More recently it has been proposed that an absence of exposure to pathogens, in particular helminths, might predispose individuals to both increased allergy and autoimmune disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamada, N., Seo, SU., Chen, G. et al. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13, 321–335 (2013). https://doi.org/10.1038/nri3430

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing