Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Foot and mouth: podosomes, invadopodia and circular dorsal ruffles

Key Points

  • The plasma membrane of many motile cells undergoes highly regulated protrusions and invaginations that support the formation of podosomes, invadopodia and circular dorsal ruffles/waves. Although similar in appearance and in their formation — which is mediated by a highly conserved actin–membrane apparatus — these transient surface membrane distortions are distinct. Their function is to help the cell as it migrates through, attaches to, and invades the extracellular matrix.

  • Invadopodia are convolutions and extensions of the ventral plasma membrane that contacts the substratum. These structures represent specific sites where degradation of the underlying matrix occurs, and might also be secretory sites to which nascent protease-containing carriers are targeted for release. Invadopodia are prominent in cells that actively migrate and invade surrounding tissues, such as metastatic tumour cells.

  • Podosomes, which are less well defined than invadopodia, are also formed along the cell base. These structures share many components and features with invadopodia and might represent a modification of invadopodia in cells that are cultured on an artificial substrate such as glass.

  • Circular dorsal ruffles/waves are formed on the dorsal surface of cells after stimulation of receptor tyrosine kinases including the epidermal growth factor receptor or the platelet-derived growth factor receptor. Circular dorsal ruffles/waves use many of the same components as invadopodia and podosomes, but are transient, appear to reorganize the surrounding actin cytoskeleton, and might have an endocytic function as opposed to a secretory one.

Abstract

The plasma membrane of many motile cells undergoes highly regulated protrusions and invaginations that support the formation of podosomes, invadopodia and circular dorsal ruffles. Although they are similar in appearance and in their formation — which is mediated by a highly conserved actin–membrane apparatus — these transient surface membrane distortions are distinct. Their function is to help the cell as it migrates, attaches and invades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Podosome structures.
Figure 2: Invadopodia form and function.
Figure 3: The N-WASP–Arp2/3–cortactin–dynamin complex and its functions.
Figure 4: Circular dorsal ruffles/waves.
Figure 5: Growth-factor stimulation, kinase signalling and circular-dorsal-ruffle/wave formation.

Similar content being viewed by others

References

  1. Linder, S. & Aepfelbacher, M. Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol. 13, 376–385 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. McNiven, M. A., Baldassarre, M. & Buccione, R. The role of dynamin in the assembly and function of podosomes and invadopodia. Front. Biosci. 9, 1944–1953 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Tarone, G., Cirillo, D., Giancotti, F. G., Comoglio, P. M. & Marchisio, P. C. Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp. Cell Res. 159, 141–157 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. David-Pfeuty, T. & Singer, S. J. Altered distributions of the cytoskeletal proteins vinculin and α-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc. Natl Acad. Sci. USA 77, 6687–6691 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marchisio, P. C. et al. Cell–substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J. Cell Biol. 99, 1696–1705 (1984). Provides one of the first detailed descriptions of podosomal structures in a non-transformed cell line, namely osteoclasts.

    Article  CAS  PubMed  Google Scholar 

  6. Marchisio, P. C., Cirillo, D., Teti, A., Zambonin-Zallone, A. & Tarone, G. Rous sarcoma virus-transformed fibroblasts and cells of monocytic origin display a peculiar dot-like organization of cytoskeletal proteins involved in microfilament-membrane interactions. Exp. Cell Res. 169, 202–214 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Spinardi, L. et al. A dynamic podosome-like structure of epithelial cells. Exp. Cell Res. 295, 360–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Marchisio, P. C. et al. Vinculin, talin, and integrins are localized at specific adhesion sites of malignant B lymphocytes. Blood 72, 830–833 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Stickel, S. K. & Wang, Y. L. α-actinin-containing aggregates in transformed cells are highly dynamic structures. J. Cell Biol. 104, 1521–1526 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Ochoa, G. -C. et al. A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell Biol. 150, 377–389 (2000). Pietro de Camilli and colleagues provide a new location and putative function for dynamin-2 at podosomes in v-Src-transformed cells and osteoclasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaidano, G. et al. Integrin distribution and cytoskeleton organization in normal and malignant monocytes. Leukemia 4, 682–687 (1990).

    CAS  PubMed  Google Scholar 

  12. Shaw, L. M., Messier, J. M. & Mercurio, A. M. The activation dependent adhesion of macrophages to laminin involves cytoskeletal anchoring and phosphorylation of the α6β1 integrin. J. Cell Biol. 110, 2167–2174 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Gimona, M., Kaverina, I., Resch, G. P., Vignal, E. & Burgstaller, G. Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells. Mol. Biol. Cell 14, 2482–2491 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Linder, S., Nelson, D., Weiss, M. & Aepfelbacher, M. Wiskott–Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc. Natl Acad. Sci. USA 96, 9648–9653 (1999). In this study WASP was, for the first time, directly implicated in podosome assembly. Further, macrophages from Wiskott–Aldrich syndrome patients (expressing defective WASP forms) were shown to completely lack the ability to form podosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zicha, D. et al. Chemotaxis of macrophages is abolished in the Wiskott–Aldrich syndrome. Br. J. Haematol. 101, 659–665 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. McNiven, M. A. et al. Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J. Cell Biol. 151, 187–198 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Orth, J. D. & McNiven, M. A. Dynamin at the actin–membrane interface. Curr. Opin. Cell Biol. 15, 1–9 (2003).

    Article  Google Scholar 

  18. Lee, E. & De Camilli, P. Dynamin at actin tails. Proc. Natl Acad. Sci. USA 99, 161–166 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, W. T. Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J. Exp. Zool. 251, 167–185 (1989). The first study to describe (and term as invadopodia) the membrane protrusions of the ventral surface of Rous sarcoma virus (RSV)-transformed cells as specialized structural entities directly involved in the local degradation of the ECM.

    Article  CAS  PubMed  Google Scholar 

  20. Mueller, S. C. & Chen, W. T. Cellular invasion into matrix beads: localization of β1 integrins and fibronectin to the invadopodia. J. Cell Sci. 99, 213–225 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Bowden, E. T., Barth, M., Thomas, D., Glazer, R. I. & Mueller, S. C. An invasion-related complex of cortactin, paxillin and PKCμ associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18, 4440–4449 (1999). A new function for cortactin was found at invadopodia in a breast cancer cell line. In addition, cortactin was found in a complex with paxillin and protein kinase Cμ in an invadopodia-enriched membrane preparation.

    Article  CAS  PubMed  Google Scholar 

  22. Polishchuk, R. S. et al. Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J. Cell Biol. 148, 45–58 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baldassarre, M. et al. Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol. Biol. Cell 14, 1074–1084 (2003). Reports a new function and location for dynamin-2 at invadopodia where it is required for ECM degradation. Also provides a detailed ultrastructural analysis of individual invadopodial complexes and immuno-electron localization of dynamin-2 to invadopodial tips that extend into the ECM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Basbaum, C. B. & Werb, Z. Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr. Opin. Cell Biol. 8, 731–738 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Nakahara, H. et al. Activation of β1 integrin signaling stimulates tyrosine phosphorylation of p190RhoGAP and membrane-protrusive activities at invadopodia. J. Biol. Chem. 273, 9–12 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Mizutani, K., Miki, H., He, H., Maruta, H. & Takenawa, T. Essential role of neural Wiskott–Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res. 62, 669–674 (2002).

    CAS  PubMed  Google Scholar 

  27. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).

    Article  CAS  Google Scholar 

  28. Seiki, M. Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett. 194, 1–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Holmbeck, K. et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Hotary, K., Allen, E., Punturieri, A., Yana, I. & Weiss, S. J. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J. Cell Biol. 149, 1309–1323 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Takei, K. et al. Coated intermediates of clathrin-mediated endocytosis generated by brain cytosol on protein-free liposomes. Cell 94, 131–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, P. & Hinshaw, J. E. Three-dimensional reconstruction of dynamin in the constricted state. Nature Cell Biol. 3, 922–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410, 231–235 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nature Cell Biol. 1, 33–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biol. 4, 691–698 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Cao, H. et al. Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol. Cell Biol. 23, 2162–2170 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulin, E. Kinesin and dynamin are required for post-Golgi transport of a plasma membrane protein. Nature Cell Biol. 2, 125–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Cao, H., Thompson, H. M., Krueger, E. W. & McNiven, M. A. Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin. J. Cell Sci. 113, 1993–2002 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Krueger, E. W., Orth, J. D., Cao, H. & McNiven, M. A. A dynamin–cortactin–Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol. Biol. Cell 14, 1085–1096 (2003). The first identification of dynamin-2, cortactin, N-WASP and the Arp2/3 complex at circular dorsal ruffles/waves. This study was also the first to quantify actin remodelling at these structures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Orth, J. D., Krueger, E. W., Cao, H. & McNiven, M. A. The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc. Natl Acad. Sci. USA 99, 167–172 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zambonin-Zallone, A., Teti, A., Carano, A. & Marchisio, P. C. The distribution of podosomes in osteoclasts cultured on bone laminae: effect of retinol. J. Bone Miner. Res. 3, 517–523 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Lakkakorpi, P., Tuukkanen, J., Hentunen, T., Jarvelin, K. & Vaananen, K. Organization of osteoclast microfilaments during the attachment to bone surface in vitro. J. Bone Miner. Res. 4, 817–825 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Kanehisa, J. et al. A band of F-actin containing podosomes is involved in bone resorption by osteoclasts. Bone 11, 287–293 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Destaing, O., Saltel, F., Geminard, J. C., Jurdic, P. & Bard, F. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin–green fluorescent protein. Mol. Biol. Cell 14, 407–416 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Teti, A., Colucci, S., Grano, M., Argentino, L. & Zambonin-Zallone, A. Protein kinase C affects microfilaments, bone resorption, and [Ca2+]o sensing in cultured osteoclasts. Am. J. Physiol. 263, C130–C139 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Duong, L. T. et al. PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of αvβ3 integrin, and phosphorylated by src kinase. J. Clin. Invest. 102, 881–892 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sato, T. et al. Identification of the membrane-type matrix metalloproteinase MT1-MMP in osteoclasts. J. Cell Sci. 110, 589–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Coopman, P. J., Thomas, D. M., Gehlsen, K. R. & Mueller, S. C. Integrin α3β1 participates in the phagocytosis of extracellular matrix molecules by human breast cancer cells. Mol. Biol. Cell 7, 1789–1804 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mellstrom, K. et al. The effect of platelet-derived growth factor on morphology and motility of human glial cells. J. Muscle Res. Cell Motil. 4, 589–609 (1983).

    Article  Google Scholar 

  51. Dowrick, P., Kenworthy, P., McCann, B. & Warn, R. Circular ruffle formation and closure lead to macropinocytosis in hepatocyte growth factor/scatter factor-treated cells. Eur. J. Cell Biol. 61, 44–53 (1993).

    CAS  PubMed  Google Scholar 

  52. Chinkers, M., McKanna, J. A. & Cohen, S. Rapid induction of morphological changes in human carcinoma cells A-431 by epidermal growth factors. J. Cell Biol. 83, 260–265 (1979).

    Article  CAS  PubMed  Google Scholar 

  53. Mellstrom, K., Heldin, C. H. & Westermark, B. Induction of circular membrane ruffling on human fibroblasts by platelet-derived growth factor. Exp. Cell Res. 177, 347–359 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Schliwa, M., Nakamura, T., Porter, K. R. & Euteneuer, U. A tumor promoter induces rapid and coordinated reorganization of actin and vinculin in cultured cells. J. Cell Biol. 99, 1045–1059 (1984).

    Article  CAS  PubMed  Google Scholar 

  55. Kitano, Y., Okada, N. & Adachi, J. TPA-induced alteration of actin organization in cultured human keratinocytes. Exp. Cell Res. 167, 369–375 (1986).

    Article  CAS  PubMed  Google Scholar 

  56. Hedberg, K. M., Bengtsson, T., Safiejko-Mroczka, B., Bell, P. B. & Lindroth, M. PDGF and neomycin induce similar changes in the actin cytoskeleton in human fibroblasts. Cell Motil. Cytoskeleton 24, 139–149 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Safiejko-Mroczka, B. & Bell, P. B. Jr. Distribution of cytoskeletal proteins in neomycin-induced protrusions of human fibroblasts. Exp. Cell Res. 242, 495–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Bereiter-Hahn, J., Strohmeier, R., Kunzenbacher, I., Beck, K. & Voth, M. Locomotion of Xenopus epidermis cells in primary culture. J. Cell Sci. 52, 289–311 (1981).

    Article  CAS  PubMed  Google Scholar 

  59. Soranno, T. & Bell, E. Cytostructural dynamics of spreading and translocating cells. J. Cell Biol. 95, 127–136 (1982).

    Article  CAS  PubMed  Google Scholar 

  60. Marchisio, P. C., Capasso, O., Nitsch, L., Cancedda, R. & Gionti, E. Cytoskeleton and adhesion patterns of cultured chick embryo chondrocytes during cell spreading and Rous sarcoma virus transformation. Exp. Cell Res. 151, 332–343 (1984).

    Article  CAS  PubMed  Google Scholar 

  61. Dharmawardhane, S., Sanders, L. C., Martin, S. S., Daniels, R. H. & Bokoch, G. M. Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J. Cell Biol. 138, 1265–1278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Borisy, G. G. & Svitkina, T. M. Actin machinery: pushing the envelope. Curr. Opin. Cell Biol. 12, 104–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Nister, M. et al. A glioma-derived PDGF A chain homodimer has different functional activities from a PDGF AB heterodimer purified from human platelets. Cell 52, 791–799 (1988).

    Article  CAS  PubMed  Google Scholar 

  64. Hammacher, A., Mellstrom, K., Heldin, C. H. & Westermark, B. Isoform-specific induction of actin reorganization by platelet-derived growth factor suggests that the functionally active receptor is a dimer. EMBO J. 8, 2489–2495 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eriksson, A., Siegbahn, A., Westermark, B., Heldin, C. H. & Claesson-Welsh, L. PDGF α- and β-receptors activate unique and common signal transduction pathways. EMBO J. 11, 543–550 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Arvidsson, A. K., Heldin, C. H. & Claesson-Welsh, L. Transduction of circular membrane ruffling by the platelet-derived growth factor β-receptor is dependent on its kinase insert. Cell Growth Differ. 3, 881–887 (1992).

    CAS  PubMed  Google Scholar 

  67. Westphal, R. S., Soderling, S. H., Alto, N. M., Langeberg, L. K. & Scott, J. D. Scar/WAVE-1, a Wiskott–Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold. EMBO J. 19, 4589–4600 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lanzetti, L., Palamidessi, A., Areces, L., Scita, G. & Di Fiore, P. P. Rab5 is a signalling GTPase involved in actin remodeling by receptor tyrosine kinases. Nature 429, 309–314 (2004). Provided the first link between Rab5 and remodelling of the actin cytoskeleton in cells at the site of circular dorsal ruffles/waves. Also found that the Rab5 GAP RN-tre binds directly to F-actin and associates with actinin-4.

    Article  CAS  PubMed  Google Scholar 

  69. Orth, J. D., Krueger, E. W. & McNiven, M. A. A dynamin–cortactin–N-WASp complex mediates the sequestration and macropinocytic internalization of the EGF-receptor via dorsal ruffles/waves. Mol. Biol. Cell 14 (Suppl. 1), A465 (2003).

    Google Scholar 

  70. Ballestrem, C., Wehrle-Haller, B. & Imhof, B. A. Actin dynamics in living mammalian cells. J. Cell Sci. 111, 1649–1658 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Suetsugu, S., Yamazaki, D., Kurisu, S. & Takenawa, T. Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev. Cell 5, 595–609 (2003). Suetsugu et al . were the first to show, using knockout-mouse technology, new functions for the two WAVE forms. WAVE1 is required for formation of circular dorsal ruffles/waves whereas WAVE2 is required for conventional macropinocytosis. Therefore, it was concluded that circular dorsal ruffles/waves probably do not function in macropinocytosis.

    Article  CAS  PubMed  Google Scholar 

  72. Warn, R., Brown, D., Dowrick, P., Prescott, A. & Warn, A. Cytoskeletal changes associated with cell motility. Symp. Soc. Exp. Biol. 47, 325–338 (1993).

    CAS  PubMed  Google Scholar 

  73. Orth, J. D., Gray, N. W., Thompson, H. M. & McNiven, M. A. in Cell Motility: From Molecules to Organisms (eds Ridley, A. J., Clark, P. & Peckham, M.) 189–201 (John Wiley & Sons, Ltd., Hoboeken, USA, 2003).

    Google Scholar 

  74. Miki, H., Miura, K. & Takenawa, T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 15, 5326–5335 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mullins, R. D. How WASP-family proteins and the Arp2/3 complex convert intracellular signals into cytoskeletal structures. Curr. Opin. Cell Biol. 12, 91–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Anton, I. M. et al. WIP participates in actin reorganization and ruffle formation induced by PDGF. J. Cell Sci. 116, 2443–2451 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Uruno, T. et al. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nature Cell Biol. 3, 259–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Weaver, A. M. et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol. 11, 370–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Wu, H. & Parsons, J. T. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J. Cell Biol. 120, 1417–1426 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Weed, S. A. & Parsons, J. T. Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20, 6418–6434 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Schafer, D. A. et al. Dynamin2 and cortactin regulate actin assembly and filament organization. Curr. Biol. 12, 1852–1857 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Dharmawardhane, S. et al. Regulation of macropinocytosis by p21-activated kinase-1. Mol. Biol. Cell 11, 3341–3352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vadlamudi, R. K., Li, F., Barnes, C. J., Bagheri-Yarmand, R. & Kumar, R. p41Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Rep. 5, 154–160 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Papakonstanti, E. A. & Stournaras, C. Association of PI-3 kinase with PAK1 leads to actin phosphorylation and cytoskeletal reorganization. Mol. Biol. Cell 13, 2946–2962 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Plattner, R., Kadlec, L., DeMali, K. A., Kazlauskas, A. & Pendergast, A. M. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev. 13, 2400–2411 (1999). Plattner et al . used mouse-embryo fibroblasts from an Abl -knockout mouse and showed for the first time that Abl is activated downstream of PDGF and is required for maximal formation of PDGF-induced circular dorsal ruffles/waves.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Diviani, D. & Scott, J. D. AKAP signaling complexes at the cytoskeleton. J. Cell Sci. 114, 1431–1437 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Van Etten, R. A. et al. The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity. J. Cell Biol. 124, 325–340 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Van Etten, R. A., Jackson, P. & Baltimore, D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 58, 669–678 (1989).

    Article  CAS  PubMed  Google Scholar 

  89. McWhirter, J. R. & Wang, J. Y. Activation of tyrosinase kinase and microfilament-binding functions of c-abl by bcr sequences in bcr/abl fusion proteins. Mol. Cell Biol. 11, 1553–1565 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Woodring, P. J., Hunter, T. & Wang, J. Y. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J. Cell Sci. 116, 2613–2626 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Sini, P., Cannas, A., Koleske, A. J., Di Fiore, P. P. & Scita, G. Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation. Nature Cell Biol. 6, 268–274 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Suetsugu, S. et al. Sustained activation of N-WASP through phosphorylation is essential for neurite extension. Dev. Cell 3, 645–658 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Cory, G. O., Garg, R., Cramer, R. & Ridley, A. J. Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation. Wiskott–Aldrich syndrome protein. J. Biol. Chem 277, 45115–45121 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Cory, G. O., Cramer, R., Blanchoin, L. & Ridley, A. J. Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP. Mol. Cell 11, 1229–1239 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Martinez-Quiles, N., Ho, H. H., Kirschner, M. W., Ramesh, N. & Geha, R. S. Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASp. Mol. Cell. Biol. 24, 5269–5280 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wymann, M. & Arcaro, A. Platelet-derived growth factor-induced phosphatidylinositol 3-kinase activation mediates actin rearrangements in fibroblasts. Biochem J. 298, 517–520 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hooshmand-Rad, R. et al. Involvement of phosphatidylinositide 3′-kinase and Rac in platelet-derived growth factor-induced actin reorganization and chemotaxis. Exp. Cell Res. 234, 434–441 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Provenzano, C. et al. Eps8, a tyrosine kinase substrate, is recruited to the cell cortex and dynamic F-actin upon cytoskeleton remodeling. Exp. Cell Res. 186–200 (1998).

  99. Innocenti, M. et al. Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J. Cell Biol. 160, 17–23 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Offenhauser, N. et al. The eps8 family of proteins links growth factor stimulation to actin reorganization generating functional redundancy in the Ras/Rac pathway. Mol. Biol. Cell 15, 91–98 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Shinohara, M. et al. SWAP-70 is a guanine-nucleotide-exchange factor that mediates signalling of membrane ruffling. Nature 416, 759–763 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Jackson, T. R. et al. ACAPs are Arf6 GTPase-activating proteins that function in the cell periphery. J. Cell Biol. 151, 627–638 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Randazzo, P. A. et al. The Arf GTPase-activating protein ASAP1 regulates the actin cytoskeleton. Proc. Natl Acad. Sci. USA 97, 4011–4016 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the R.B. laboratory is supported by the Italian Association for Cancer Research (AIRC, Milano, Italy). Work in the M.A.M. laboratory is supported by funding from the National Institutes of Health and Mayo Foundation. We thank A. Teti and M. Baldassarre for insightful discussions and K. Simmons for help and editorial advice during the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. McNiven.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Interpro

ankyrin repeat

PH domain

SH3 domain

VCA

OMIM

Wiskott–Aldrich syndrome

Swiss-Prot

ASAP1

Cdc42

cortactin

dynamin-2

EGF

EPS8

fascin

gelsolin

Grb2

N-WASP

MMP2

MT1-MMP

Nck2

PAK1

α-PDGF receptor

β-PDGF receptor

PYK2

Rac1

RhoA

vinculin

WAVE2

Glossary

LAMELLIPODIA

Broad, flat protrusions at the leading edge of a moving cell that are enriched with a branched network of actin filaments.

FILOPODIA

Thin cellular processes containing long, unbranched, parallel bundles of actin filaments.

PHAGOCYTIC CUP

A cup-like extension of peripheral membrane and cytoplasm that partially encircles foreign particles or bacteria during the early stages of the phagocytic process.

LEADING EDGE

The thin margin of a lamellipodium spanning the area of the cell from the plasma membrane to about 1 μm back into the lamellipodium.

Arp2/3 COMPLEX

A complex that consists of two actin-related proteins, Arp2 and Arp3, along with five smaller proteins. When activated, the Arp2/3 complex binds to the side of an existing actin filament and nucleates the assembly of a new actin filament. The resulting branch structure is Y-shaped.

RHO-FAMILY GTPases

Ras-related small GTPases involved in controlling the polymerization of actin.

EXTRACELLULAR MATRIX

(ECM). The complex, multi-molecular material that surrounds cells. The ECM comprises a scaffold on which tissues are organized, it provides cellular microenvironments and it regulates a variety of cellular functions.

MACROPINOCYTOSIS

An actin-dependent process by which cells engulf large volumes of fluids.

FOCAL ADHESION

A cell-to-substrate adhesion structure that anchors the ends of actin microfilaments (stress fibres) and mediates strong attachment to substrates.

STRESS FIBRES

Also termed 'actin-microfilament bundles', these are bundles of parallel filaments that contain F-actin and other contractile molecules, and often stretch between cell attachments as if under stress.

MONOCYTE

Large leukocytes with a horseshoe-shaped nucleus. They derive from pluripotent stem cells and become phagocytic macrophages when they enter tissues.

OSTEOCLAST

A mesenchymal cell that can differentiate into a bone-degrading cell.

MACROPHAGE

Any cell of the mononuclear-phagocyte system that is characterized by its ability to phagocytose foreign particulate and colloidal material.

DOMINANT-NEGATIVE

A defective protein that retains interaction capabilities and so distorts or competes with normal proteins.

SH3 DOMAIN

(Src-homology-3). A protein sequence of 50 amino acids that recognizes and binds sequences that are rich in proline.

CLATHRIN

The main component of the coat that is associated with clathrin-coated vesicles, which are involved in membrane transport both in the endocytic and biosynthetic pathways.

ADAPTOR PROTEINS

Proteins that augment cellular responses by recruiting other proteins to a complex. They usually contain several protein–protein interaction domains.

METALLOPROTEINASE

A proteinase that has a metal ion at its active site.

ACTIN COMET TAIL

An actin tail at one end of an endosome that propels the organelle inwards. First described for the intracellular movement of Listeria sp.

RESORPTION LACUNA

The contained, low-pH subosteoclastic environment that is delimited by a dense circumferential ring of actin that forms a tight adhesive contact, or sealing zone. Lytic enzymes and H+ that promote bone erosion are secreted into this sealed environment.

TPA

(12,13-tetradecanoyl phorbol acetate). Also known as phorbol myristoyl acetate, this is the most common phorbol ester. Phorbol esters are polycyclic esters that are isolated from croton oil. They are potent co-carcinogens or tumour promoters because they mimic diacylglycerol, and thereby irreversibly activate protein kinase C.

GUANINE NUCLEOTIDE-EXCHANGE FACTOR

(GEF). A protein that facilitates the exchange of GDP (guanine diphosphate) for GTP (guanine triphosphate) in the nucleotide-binding pocket of a GTP-binding protein.

PLECKSTRIN-HOMOLOGY (PH) DOMAIN

A sequence of 100 amino acids that is present in many signalling molecules and binds to lipid products of phosphatidyl-inositol 3-kinase. Pleckstrin is a protein of unknown function that was originally identified in platelets. It is a principal substrate of protein kinase C.

GTPase-ACTIVATING PROTEINS

(GAPs). Proteins that inactivate small GTP-binding proteins, such as Ras-family members, by increasing their rate of GTP hydrolysis.

MOTOGENS

Compounds that induce cell motility.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buccione, R., Orth, J. & McNiven, M. Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 5, 647–657 (2004). https://doi.org/10.1038/nrm1436

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1436

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing