Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adherens junctions: from molecules to morphogenesis

Key Points

  • Adherens junctions (AJs) meet the dual challenge of maintaining tissue architecture and facilitating cell movement during tissue development and renewal.

  • Across animal species, classic cadherins display diversity in the structure of their extracellular regions but share a conserved cytoplasmic tail and a common tendency to form clusters at the plasma membrane.

  • The cytoplasmic tail of classic cadherin binds to the catenins, which mediate links to cytoskeletal networks as well as exocytotic and endocytic machinery.

  • Crosstalk between cadherin–catenin clusters and actin regulators directs AJ assembly from initial cell–cell contacts.

  • Links between cadherin–catenin clusters and microtubules organize epithelial cells more globally.

  • Regulated endocytosis of cadherin–catenin clusters facilitates AJ remodelling.

  • The effects of cytoskeletal or endocytic regulation of AJs on overall tissue structure depends on whether the regulation occurs locally, at a subset of cell–cell contacts of individual cells, or globally, at all cell–cell contacts.

Abstract

How adhesive interactions between cells generate and maintain animal tissue structure remains one of the most challenging and long-standing questions in cell and developmental biology. Adherens junctions (AJs) and the cadherin–catenin complexes at their core are therefore the subjects of intense research. Recent work has greatly advanced our understanding of the molecular organization of AJs and how cadherin–catenin complexes engage actin, microtubules and the endocytic machinery. As a result, we have gained important insights into the molecular mechanisms of tissue morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron micrograph of an AJ.
Figure 2: Evolution of classic cadherins.
Figure 3: Organization and cytoskeletal relationships of cadherin–catenin and nectin–afadin complexes.
Figure 4: Interplay between cadherin–catenin clusters and actin during AJ assembly and remodelling.
Figure 5: Interplay between cadherin–catenin clusters and microtubules.
Figure 6: Regulation of cadherin–catenin clusters by endocytosis.

Similar content being viewed by others

References

  1. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev. Mol. Cell Biol. 6, 622–634 (2005).

    Article  CAS  Google Scholar 

  2. Halbleib, J. M. & Nelson, W. J. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20, 3199–3214 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Nishimura, T. & Takeichi, M. Remodeling of the adherens junctions during morphogenesis. Curr. Top. Dev. Biol. 89, 33–54 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Farquhar, M. G. & Palade, G. E. Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963). The first clear morphological descriptions of AJs and other epithelial junctions by electron microscopy in mammalian tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hirokawa, N. & Heuser, J. E. Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. J. Cell Biol. 91, 399–409 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Miyaguchi, K. Ultrastructure of the zonula adherens revealed by rapid-freeze deep-etching. J. Struct. Biol. 132, 169–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451–1455 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Pokutta, S. & Weis, W. I. Structure and mechanism of cadherins and catenins in cell–cell contacts. Annu. Rev. Cell Dev. Biol. 23, 237–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Perez-Moreno, M. & Fuchs, E. Catenins: keeping cells from getting their signals crossed. Dev. Cell 11, 601–612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Franke, W. W. Discovering the molecular components of intercellular junctions — a historical view. Cold Spring Harbor Perspect. Biol. 1, a003061 (2009).

    Article  Google Scholar 

  11. Berx, G. & van Roy, F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harbor Perspect. Biol. 1, a003129 (2009).

    Article  Google Scholar 

  12. Bonazzi, M., Lecuit, M. & Cossart, P. Listeria monocytogenes internalin and E-cadherin: from bench to bedside. Cold Spring Harbor Perspect. Biol. 1, a003087 (2009).

    Article  Google Scholar 

  13. Grell, K. G. & Ruthmann, A. Placozoa. In Microscopic Anatomy of Invertebrates, Placozoa, Porifera, Cnidaria and Ctenophora. (eds F.H. & J.W.) (Wiley-Liss, New York, 1991).

    Google Scholar 

  14. Kraus, Y. & Technau, U. Gastrulation in the sea anemone Nematostella vectensis occurs by invagination and immigration: an ultrastructural study. Dev. Genes Evol. 216, 119–132 (2006).

    Article  PubMed  Google Scholar 

  15. Chapman, J. A. et al. The dynamic genome of Hydra. Nature 464, 592–596 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srivastava, M. et al. The Trichoplax genome and the nature of placozoans. Nature 454, 955–960 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Abedin, M. & King, N. The premetazoan ancestry of cadherins. Science 319, 946–948 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Grimson, M. J. et al. Adherens junctions and β-catenin-mediated cell signalling in a non-metazoan organism. Nature 408, 727–731 (2000). Identifies junctional complexes with AJ morphology in an organism without classic cadherins

    Article  CAS  PubMed  Google Scholar 

  19. Oda, H., Tagawa, K. & Akiyama-Oda, Y. Diversification of epithelial adherens junctions with independent reductive changes in cadherin form: identification of potential molecular synapomorphies among bilaterians. Evol. Dev. 7, 376–389 (2005). A reconstruction of the evolution of classic cadherins during animal evolution.

    Article  CAS  PubMed  Google Scholar 

  20. Hulpiau, P. & van Roy, F. Molecular evolution of the cadherin superfamily. Int. J. Biochem. Cell Biol. 41, 349–369 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Iwai, Y. et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77–89 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Miller, J. R. & McClay, D. R. Characterization of the role of cadherin in regulating cell adhesion during sea urchin development. Dev. Biol. 192, 323–339 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Broadbent, I. D. & Pettitt, J. The C. elegans hmr-1 gene can encode a neuronal classic cadherin involved in the regulation of axon fasciculation. Curr. Biol. 12, 59–63 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Tanabe, K., Takeichi, M. & Nakagawa, S. Identification of a nonchordate-type classic cadherin in vertebrates: chicken Hz-cadherin is expressed in horizontal cells of the neural retina and contains a nonchordate-specific domain complex. Dev. Dyn. 229, 899–906 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Oda, H., Uemura, T., Harada, Y., Iwai, Y. & Takeichi, M. A Drosophila homolog of cadherin associated with Armadillo and essential for embryonic cell-cell adhesion. Dev. Biol. 165, 716–726 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Oda, H., Akiyama-Oda, Y. & Zhang, S. Two classic cadherin-related molecules with no cadherin extracellular repeats in the cephalochordate amphioxus: distinct adhesive specificities and possible involvement in the development of multicell-layered structures. J. Cell Sci. 117, 2757–2767 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Garrod, D. & Chidgey, M. Desmosome structure, composition and function. Biochim. Biophys. Acta 1778, 572–587 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Leckband, D. & Prakasam, A. Mechanism and dynamics of cadherin adhesion. Annu. Rev. Biomed. Eng. 8, 259–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Tsukasaki, Y. et al. Role of multiple bonds between the single cell adhesion molecules, nectin and cadherin, revealed by high sensitive force measurements. J. Mol. Biol. 367, 996–1006 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Kovacs, E. M. & Yap, A. S. Cell–cell contact: cooperating clusters of actin and cadherin. Curr. Biol. 18, R667–R669 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Troyanovsky, S. Cadherin dimers in cell–cell adhesion. Eur. J. Cell Biol. 84, 225–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. He, W., Cowin, P. & Stokes, D. L. Untangling desmosomal knots with electron tomography. Science 302, 109–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Al-Amoudi, A., Diez, D. C., Betts, M. J. & Frangakis, A. S. The molecular architecture of cadherins in native epidermal desmosomes. Nature 450, 832–837 (2007). The alignment of the atomic structure of a classic cadherin extracellular domain to electron tomographic reconstructions of fully packed, cadherin-based intercellular junctions.

    Article  CAS  PubMed  Google Scholar 

  34. Owen, G. R., Acehan, D., Derr, K. D., Rice, W. J. & Stokes, D. L. Cryoelectron tomography of isolated desmosomes. Biochem. Soc. Trans. 36, 173–179 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. McGill, M. A., McKinley, R. F. & Harris, T. J. Independent cadherin–catenin and Bazooka clusters interact to assemble adherens junctions. J. Cell Biol. 185, 787–796 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cavey, M., Rauzi, M., Lenne, P. F. & Lecuit, T. A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 453, 751–756 (2008). Reveals that AJs are comprised of dispersed cadherin subclusters.

    Article  CAS  PubMed  Google Scholar 

  37. Xu, W. & Kimelman, D. Mechanistic insights from structural studies of β-catenin and its binding partners. J. Cell Sci. 120, 3337–3344 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Gavert, N. & Ben-Ze'ev, A. β-Catenin signaling in biological control and cancer. J. Cell Biochem. 102, 820–828 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Reynolds, A. B. p120-catenin: past and present. Biochim. Biophys. Acta 1773, 2–7 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. McCrea, P. D. & Park, J. I. Developmental functions of the p120-catenin sub-family. Biochim. Biophys. Acta 1773, 17–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Benjamin, J. M. & Nelson, W. J. Bench to bedside and back again: molecular mechanisms of α-catenin function and roles in tumorigenesis. Semin. Cancer Biol. 18, 53–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Kobielak, A. & Fuchs, E. α-Catenin: at the junction of intercellular adhesion and actin dynamics. Nature Rev. Mol. Cell Biol. 5, 614–625 (2004).

    Article  CAS  Google Scholar 

  43. Huber, A. H., Stewart, D. B., Laurents, D. V., Nelson, W. J. & Weis, W. I. The cadherin cytoplasmic domain is unstructured in the absence of β-catenin. A possible mechanism for regulating cadherin turnover. J. Biol. Chem. 276, 12301–12309 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, Y. T., Stewart, D. B. & Nelson, W. J. Coupling assembly of the E-cadherin/β-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J. Cell Biol. 144, 687–699 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lock, J. G. & Stow, J. L. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol. Biol. Cell 16, 1744–1755 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Langevin, J. et al. Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-cadherin trafficking from recycling endosomes to the plasma membrane. Dev. Cell 9, 365–376 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Bajpai, S. et al. α-Catenin mediates initial E-cadherin-dependent cell–cell recognition and subsequent bond strengthening. Proc. Natl Acad. Sci. USA 105, 18331–18336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pacquelet, A. & Rorth, P. Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J. Cell Biol. 170, 803–812 (2005). Shows that the release of α-catenin from cadherin is not needed for several types of tissue morphogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gorfinkiel, N. & Arias, A. M. Requirements for adherens junction components in the interaction between epithelial tissues during dorsal closure in Drosophila. J. Cell Sci. 120, 3289–3298 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Rhee, J., Buchan, T., Zukerberg, L., Lilien, J. & Balsamo, J. Cables links Robo-bound Abl kinase to N-cadherin-bound β-catenin to mediate Slit-induced modulation of adhesion and transcription. Nature Cell Biol. 9, 883–892 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Lilien, J. & Balsamo, J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of β-catenin. Curr. Opin. Cell Biol. 17, 459–465 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Delva, E. & Kowalczyk, A. P. Regulation of cadherin trafficking. Traffic 10, 259–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Ireton, R. C. et al. A novel role for p120 catenin in E-cadherin function. J. Cell Biol. 159, 465–476 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Davis, M. A., Ireton, R. C. & Reynolds, A. B. A core function for p120-catenin in cadherin turnover. J. Cell Biol. 163, 525–534 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ishiyama, N. et al. Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell–cell adhesion. Cell 141, 117–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, X., Kojima, S., Borisy, G. G. & Green, K. J. p120 catenin associates with kinesin and facilitates the transport of cadherin–catenin complexes to intercellular junctions. J. Cell Biol. 163, 547–557 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell–cell contacts. Cell 135, 948–959 (2008). Identifies a mechanism for linking microtubule minus ends to AJs.

    Article  CAS  PubMed  Google Scholar 

  58. Myster, S. H., Cavallo, R., Anderson, C. T., Fox, D. T. & Peifer, M. Drosophila p120catenin plays a supporting role in cell adhesion but is not an essential adherens junction component. J. Cell Biol. 160, 433–449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pettitt, J., Cox, E. A., Broadbent, I. D., Flett, A. & Hardin, J. The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin–catenin function during epidermal morphogenesis. J. Cell Biol. 162, 15–22 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pacquelet, A., Lin, L. & Rorth, P. Binding site for p120/δ-catenin is not required for Drosophila E-cadherin function in vivo. J. Cell Biol. 160, 313–319 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hirano, S., Kimoto, N., Shimoyama, Y., Hirohashi, S. & Takeichi, M. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 70, 293–301 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Rimm, D. L., Koslov, E. R., Kebriaei, P., Cianci, C. D. & Morrow, J. S. α1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc. Natl Acad. Sci. USA 92, 8813–8817 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pokutta, S. & Weis, W. I. Structure of the dimerization and β-catenin-binding region of α-catenin. Mol. Cell 5, 533–543 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Yamada, S., Pokutta, S., Drees, F., Weis, W. I. & Nelson, W. J. Deconstructing the cadherin–catenin–actin complex. Cell 123, 889–901 (2005). Suggests that α-catenin cannot bind cadherin–β-catenin complexes and actin at the same time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. α-Catenin is a molecular switch that binds E-cadherin–β-Catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Costa, M. et al. A putative catenin–cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J. Cell Biol. 141, 297–308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kametani, Y. & Takeichi, M. Basal-to-apical cadherin flow at cell junctions. Nature Cell Biol. 9, 92–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Abe, K. & Takeichi, M. EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc. Natl Acad. Sci. USA 105, 13–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Maul, R. S. et al. EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J. Cell Biol. 160, 399–407 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sawyer, J. K., Harris, N. J., Slep, K. C., Gaul, U. & Peifer, M. The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. J. Cell Biol. 186, 57–73 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kobielak, A., Pasolli, H. A. & Fuchs, E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nature Cell Biol. 6, 21–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. McNeill, H., Ryan, T. A., Smith, S. J. & Nelson, W. J. Spatial and temporal dissection of immediate and early events following cadherin-mediated epithelial cell adhesion. J. Cell Biol. 120, 1217–1226 (1993). Provides some of the first descriptions of how AJs assemble as cells first come into contact.

    Article  CAS  PubMed  Google Scholar 

  73. Adams, C. L., Nelson, W. J. & Smith, S. J. Quantitative analysis of cadherin–catenin–actin reorganization during development of cell–cell adhesion. J. Cell Biol. 135, 1899–1911 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Adams, C. L., Chen, Y. T., Smith, S. J. & Nelson, W. J. Mechanisms of epithelial cell–cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin–green fluorescent protein. J. Cell Biol. 142, 1105–1119 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vasioukhin, V. & Fuchs, E. Actin dynamics and cell–cell adhesion in epithelia. Curr. Opin. Cell Biol. 13, 76–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100, 209–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Yonemura, S., Itoh, M., Nagafuchi, A. & Tsukita, S. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell Sci. 108, 127–142 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Ivanov, A. I., Hunt, D., Utech, M., Nusrat, A. & Parkos, C. A. Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol. Biol. Cell 16, 2636–2650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kishikawa, M., Suzuki, A. & Ohno, S. aPKC enables development of zonula adherens by antagonizing centripetal contraction of the circumferential actomyosin cables. J. Cell Sci. 121, 2481–2492 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Yamada, S. & Nelson, W. J. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell cell adhesion. J. Cell Biol. 178, 517–527 (2007). Reveals how Rho family GTPases are coordinated as AJs form and mature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, J. et al. Actin at cell-cell junctions is composed of two dynamic and functional populations. J. Cell Sci. 118, 5549–5562 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Scott, J. A. et al. Ena/VASP proteins can regulate distinct modes of actin organization at cadherin-adhesive contacts. Mol. Biol. Cell 17, 1085–1095 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Verma, S. et al. Arp2/3 activity is necessary for efficient formation of E-cadherin adhesive contacts. J. Biol. Chem. 279, 34062–34070 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Kovacs, E. M., Goodwin, M., Ali, R. G., Paterson, A. D. & Yap, A. S. Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr. Biol. 12, 379–382 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Yap, A. S. & Kovacs, E. M. Direct cadherin-activated cell signaling: a view from the plasma membrane. J. Cell Biol. 160, 11–16 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Braga, V. M. Cell–cell adhesion and signalling. Curr. Opin. Cell Biol. 14, 546–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Lampugnani, M. G. et al. VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. Mol. Biol. Cell 13, 1175–1189 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Noren, N. K., Niessen, C. M., Gumbiner, B. M. & Burridge, K. Cadherin engagement regulates Rho family GTPases. J. Biol. Chem. 276, 33305–33308 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Kovacs, E. M., Ali, R. G., McCormack, A. J. & Yap, A. S. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem. 277, 6708–6718 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Hordijk, P. L. et al. Inhibition of invasion of epithelial cells by Tiam1–Rac signaling. Science 278, 1464–1466 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Sander, E. E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A. & Collard, J. G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009–1022 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Malliri, A., van Es, S., Huveneers, S. & Collard, J. G. The Rac exchange factor Tiam1 is required for the establishment and maintenance of cadherin-based adhesions. J. Biol. Chem. 279, 30092–30098 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Mertens, A. E., Rygiel, T. P., Olivo, C., van der Kammen, R. & Collard, J. G. The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the Par polarity complex. J. Cell Biol. 170, 1029–1037 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yamazaki, D., Oikawa, T. & Takenawa, T. Rac–WAVE-mediated actin reorganization is required for organization and maintenance of cell–cell adhesion. J. Cell Sci. 120, 86–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Braga, V. M., Betson, M., Li, X. & Lamarche-Vane, N. Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell–cell adhesion in normal human keratinocytes. Mol. Biol. Cell 11, 3703–3721 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vaezi, A., Bauer, C., Vasioukhin, V. & Fuchs, E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell 3, 367–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Zandy, N. L., Playford, M. & Pendergast, A. M. Abl tyrosine kinases regulate cell-cell adhesion through Rho GTPases. Proc. Natl Acad. Sci. USA 104, 17686–17691 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dube, N. et al. The RapGEF PDZ-GEF2 is required for maturation of cell–cell junctions. Cell Signal. 20, 1608–1615 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Pannekoek, W. J., Kooistra, M. R., Zwartkruis, F. J. & Bos, J. L. Cell–cell junction formation: the role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim. Biophys. Acta 1788, 790–796 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Wildenberg, G. A. et al. p120-catenin and p190RhoGAP regulate cell–cell adhesion by coordinating antagonism between Rac and Rho. Cell 127, 1027–1039 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol. 8, 633–644 (2007).

    Article  CAS  Google Scholar 

  102. Harris, T. J., Sawyer, J. K. & Peifer, M. How the cytoskeleton helps build the embryonic body plan: models of morphogenesis from Drosophila. Curr. Top. Dev. Biol. 89, 55–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, X. & Macara, I. G. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nature Cell Biol. 7, 262–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Delanoe-Ayari, H., Al Kurdi, R., Vallade, M., Gulino-Debrac, D. & Riveline, D. Membrane and acto-myosin tension promote clustering of adhesion proteins. Proc. Natl Acad. Sci. USA 101, 2229–2234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bard, L. et al. A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. J. Neurosci. 28, 5879–5890 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fernandez-Gonzalez, R., Simoes Sde, M., Roper, J. C., Eaton, S. & Zallen, J. A. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17, 736–743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shewan, A. M. et al. Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol. Biol. Cell 16, 4531–4542 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sahai, E. & Marshall, C. J. ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nature Cell Biol. 4, 408–415 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Warner, S. J. & Longmore, G. D. Distinct functions for Rho1 in maintaining adherens junctions and apical tension in remodeling epithelia. J. Cell Biol. 185, 1111–1125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Warner, S. J. & Longmore, G. D. Cdc42 antagonizes Rho1 activity at adherens junctions to limit epithelial cell apical tension. J. Cell Biol. 187, 119–133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zallen, J. A. Planar polarity and tissue morphogenesis. Cell 129, 1051–1063 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Zallen, J. A. & Wieschaus, E. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev. Cell 6, 343–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004). Shows how localizing myosin activity to specific AJs can affect tissue morphogenesis.

    Article  CAS  PubMed  Google Scholar 

  114. Blankenship, J. T., Backovic, S. T., Sanny, J. S., Weitz, O. & Zallen, J. A. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Harris, T. J. & Peifer, M. Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila. J. Cell Biol. 167, 135–147 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cox, R. T., Kirkpatrick, C. & Peifer, M. Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis. J. Cell Biol. 134, 133–148 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Barrett, K., Leptin, M. & Settleman, J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell 91, 905–915 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Rogers, S. L., Wiedemann, U., Hacker, U., Turck, C. & Vale, R. D. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol. 14, 1827–1833 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Costa, M., Wilson, E. T. & Wieschaus, E. A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell 76, 1075–1089 (1994).

    Article  CAS  PubMed  Google Scholar 

  120. Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315, 384–386 (2007).

    Article  PubMed  CAS  Google Scholar 

  121. Dawes-Hoang, R. E. et al. Folded gastrulation, cell shape change and the control of myosin localization. Development 132, 4165–4178 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499 (2009). Shows how myosin activity affecting all AJs across a tissue can cause apical constriction and tissue morphogenesis.

    Article  CAS  PubMed  Google Scholar 

  123. Stehbens, S. J., Akhmanova, A. & Yap, A. S. Microtubules and cadherins: a neglected partnership. Front. Biosci. 14, 3159–3167 (2009).

    Article  CAS  Google Scholar 

  124. Stehbens, S. J. et al. Dynamic microtubules regulate the local concentration of E-cadherin at cell–cell contacts. J. Cell Sci. 119, 1801–1811 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Ligon, L. A. & Holzbaur, E. L. Microtubules tethered at epithelial cell junctions by dynein facilitate efficient junction assembly. Traffic 8, 808–819 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Bartolini, F. & Gundersen, G. G. Generation of noncentrosomal microtubule arrays. J. Cell Sci. 119, 4155–4163 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Waterman-Storer, C. M., Salmon, W. C. & Salmon, E. D. Feedback interactions between cell–cell adherens junctions and cytoskeletal dynamics in newt lung epithelial cells. Mol. Biol. Cell 11, 2471–2483 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ligon, L. A., Karki, S., Tokito, M. & Holzbaur, E. L. Dynein binds to β-catenin and may tether microtubules at adherens junctions. Nature Cell Biol. 3, 913–917 (2001). Identifies a mechanism for linking microtubule plus ends to AJs.

    Article  CAS  PubMed  Google Scholar 

  129. Karki, S., Ligon, L. A., DeSantis, J., Tokito, M. & Holzbaur, E. L. PLAC-24 is a cytoplasmic dynein-binding protein that is recruited to sites of cell–cell contact. Mol. Biol. Cell 13, 1722–1734 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chausovsky, A., Bershadsky, A. D. & Borisy, G. G. Cadherin-mediated regulation of microtubule dynamics. Nature Cell Biol. 2, 797–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Shtutman, M. et al. Signaling function of α-catenin in microtubule regulation. Cell Cycle 7, 2377–2383 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Mary, S. et al. Biogenesis of N-cadherin-dependent cell–cell contacts in living fibroblasts is a microtubule-dependent kinesin-driven mechanism. Mol. Biol. Cell 13, 285–301 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tepass, U. & Hartenstein, V. The development of cellular junctions in the Drosophila embryo. Dev. Biol. 161, 563–596 (1994).

    Article  CAS  PubMed  Google Scholar 

  134. Harris, T. J. & Peifer, M. The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. J. Cell Biol. 170, 813–823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Muller, H. A. & Wieschaus, E. Armadillo, Bazooka, and Stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol. 134, 149–163 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. Le Borgne, R., Bellaiche, Y. & Schweisguth, F. Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr. Biol. 12, 95–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Yamashita, Y. M., Jones, D. L. & Fuller, M. T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301, 1547–1550 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. den Elzen, N., Buttery, C. V., Maddugoda, M. P., Ren, G. & Yap, A. S. Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol. Biol. Cell 20, 3740–3750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128, 547–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nejsum, L. N. & Nelson, W. J. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity. J. Cell Biol. 178, 323–335 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dupin, I., Camand, E. & Etienne-Manneville, S. Classical cadherins control nucleus and centrosome position and cell polarity. J. Cell Biol. 185, 779–786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Desai, R. A., Gao, L., Raghavan, S., Liu, W. F. & Chen, C. S. Cell polarity triggered by cell–cell adhesion via E-cadherin. J. Cell Sci. 122, 905–911 (2009). References 136–142 show how connections to AJs can affect the organization of microtubule networks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wirtz-Peitz, F. & Zallen, J. A. Junctional trafficking and epithelial morphogenesis. Curr. Opin. Genet. Dev. 19, 350–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Le, T. L., Yap, A. S. & Stow, J. L. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J. Cell Biol. 146, 219–232 (1999). Provides some of the first evidence for cadherin endocytosis and recycling.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. de Beco, S., Gueudry, C., Amblard, F. & Coscoy, S. Endocytosis is required for E-cadherin redistribution at mature adherens junctions. Proc. Natl Acad. Sci. USA 106, 7010–7015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hong, S., Troyanovsky, R. B. & Troyanovsky, S. M. Spontaneous assembly and active disassembly balance adherens junction homeostasis. Proc. Natl Acad. Sci. USA 107, 3528–3533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Schill, N. J. & Anderson, R. A. Out, in and back again: PtdIns(4,5)P2 regulates cadherin trafficking in epithelial morphogenesis. Biochem. J. 418, 247–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Troyanovsky, R. B., Sokolov, E. P. & Troyanovsky, S. M. Endocytosis of cadherin from intracellular junctions is the driving force for cadherin adhesive dimer disassembly. Mol. Biol. Cell 17, 3484–3493 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gavard, J. & Gutkind, J. S. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nature Cell Biol. 8, 1223–1234 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Chiasson, C. M., Wittich, K. B., Vincent, P. A., Faundez, V. & Kowalczyk, A. P. p120-catenin inhibits VE-cadherin internalization through a Rho-independent mechanism. Mol. Biol. Cell 20, 1970–1980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Miyashita, Y. & Ozawa, M. Increased internalization of p120-uncoupled E-cadherin and a requirement for a dileucine motif in the cytoplasmic domain for endocytosis of the protein. J. Biol. Chem. 282, 11540–11548 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Classen, A. K., Anderson, K. I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–817 (2005). Shows how localizing cadherin recycling to specific cell–cell contacts can affect tissue morphogenesis.

    Article  CAS  PubMed  Google Scholar 

  153. Leibfried, A., Fricke, R., Morgan, M. J., Bogdan, S. & Bellaiche, Y. Drosophila Cip4 and WASp define a branch of the Cdc42–Par6–aPKC pathway regulating E-cadherin endocytosis. Curr. Biol. 18, 1639–1648 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Georgiou, M., Marinari, E., Burden, J. & Baum, B. Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr. Biol. 18, 1631–1638 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol. 4, 222–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Xiao, K. et al. p120-catenin regulates clathrin-dependent endocytosis of VE-cadherin. Mol. Biol. Cell 16, 5141–5151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Harris, K. P. & Tepass, U. Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis. J. Cell Biol. 183, 1129–1143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. D'Souza-Schorey, C. Disassembling adherens junctions: breaking up is hard to do. Trends Cell Biol. 15, 19–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Palacios, F., Schweitzer, J. K., Boshans, R. L. & D'Souza-Schorey, C. ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nature Cell Biol. 4, 929–936 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Kon, S., Tanabe, K., Watanabe, T., Sabe, H. & Satake, M. Clathrin dependent endocytosis of E-cadherin is regulated by the Arf196GAP isoform SMAP1. Exp. Cell Res. 314, 1415–1428 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Ikenouchi, J. & Umeda, M. FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex. Proc. Natl Acad. Sci. USA 107, 748–753 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Ogata, S. et al. TGF-β signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. Genes Dev. 21, 1817–1831 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shaye, D. D., Casanova, J. & Llimargas, M. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nature Cell Biol. 10, 964–970 (2008). References 162 and 163 provide examples of how global changes to cadherin endocytosis across a tissue can affect its morphogenesis.

    Article  CAS  PubMed  Google Scholar 

  164. Takai, Y., Ikeda, W., Ogita, H. & Rikitake, Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu. Rev. Cell Dev. Biol. 24, 309–342 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Tachibana, K. et al. Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. J. Cell Biol. 150, 1161–1176 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Pokutta, S., Drees, F., Takai, Y., Nelson, W. J. & Weis, W. I. Biochemical and structural definition of the l-afadin- and actin-binding sites of α-catenin. J. Biol. Chem. 277, 18868–18874 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Ikeda, W. et al. Afadin: A key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J. Cell Biol. 146, 1117–1132 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Larue, L., Ohsugi, M., Hirchenhain, J. & Kemler, R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl Acad. Sci. USA 91, 8263–8267 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wei, S. Y. et al. Echinoid is a component of adherens junctions that cooperates with DE-Cadherin to mediate cell adhesion. Dev. Cell 8, 493–504 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Laplante, C. & Nilson, L. A. Differential expression of the adhesion molecule Echinoid drives epithelial morphogenesis in Drosophila. Development 133, 3255–3264 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Koehler for the image in Figure 1. Work on adherens junctions in the authors' laboratories is supported by the Natural Sciences and Engineering Research Counsel of Canada (to T.J.C.H.), the Canadian Institutes of Health Research (to T.J.C.H. and U.T.) and the Canadian Cancer Society (to U.T.). T.J.C.H. is a Canada research chair in cell polarity and animal development.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Tony J. C. Harris's homepage

Ulrich Tepass's homepage

Glossary

Bilateran

An animal with a bilaterally symmetrical body plan, such as humans, fish and insects.

Intermediate filament

A cytoskeletal filament that provides mechanical strength in higher eukaryotic cells.

Puncta adherenta

Cadherin–catenin clusters found at cell–cell contacts, often during early stages of AJ assembly.

Lamellipodium

A broad, flat protrusion at the leading edge of a moving cell that is enriched with a branched network of actin filaments.

LIM domain

A repeat of about 60 amino acids, including Cys and His residues, that is thought to be involved in protein–protein interactions.

Filopodium

A long, thin protrusion at the periphery of cells and growth cones. Filopodia are supported by F-actin bundles.

Guanine nucleotide exchange factor (GEF)

A protein that facilitates the exchange of guanine diphosphate (GDP) for guanine triphosphate (GTP) in the nucleotide-binding pocket of a GTP-binding protein.

Actomyosin

A complex of myosin and actin filaments that is responsible for contractility during a range of cellular movements in eukaryotic cells.

GTPase-activating protein

(GAP). A protein that stimulates the intrinsic ability of a GTPase to hydrolyse GTP to GDP. Therefore, GAPs negatively regulate GTPases by converting them from an active (GTP-bound) to an inactive (GDP-bound) state.

Microvillus

A small, finger-like projection that occurs on the exposed apical surfaces of epithelial cells. Microvilli are supported by F-actin bundles.

Clathrin-coated pit

The initial site of invagination of a clathrin-coated vesicle.

Notum

The dorsal side of the thorax of an adult insect.

Epithelial-to-mesenchymal transition

The transformation of epithelial cells into mesenchymal cells with migratory and invasive properties.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, T., Tepass, U. Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11, 502–514 (2010). https://doi.org/10.1038/nrm2927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing