Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Centromeres: unique chromatin structures that drive chromosome segregation

Key Points

  • Eukaryotic centromeres are regions on chromosomes that mark the site of kinetochore formation, which in turn attach to the mitotic spindle. Centromere-associated proteins assemble hierarchically onto the chromatin and connect the chromosome to the outer kinetochore.

  • The centromeric and pericentromeric chromatin are defined by histone variants (for example, centromeric protein A (CENPA) and H2A.Z) and patterns of histone modifications, such as methylation. The histone H3 variant CENPA is found at all eukaryotic centromeres and is required for centromere function. Various different structures have been proposed for the organization of the CENPA-containing nucleosome.

  • Research is beginning to elucidate the mechanisms of CENPA loading and will further our understanding of the roles of loading factors such as KNL2, Holliday junction recognition protein (suppressor of chromosome missegregation 3 in yeast) and histone remodellers and chaperones.

  • The geometry of the centromeric chromatin aids in bi-orientation of sister chromatids and tension-sensing across the mitotic spindle, and cohesin and histone variants are known to play a part in defining this organization.

  • Entropic forces are important for organizing the whole chromosome into loops. These forces also have a role in chromosome segregation by driving the chromosomes apart, with directionality and timing, from the mitotic spindle.

  • The centromeric chromatin, with the packaging proteins, must balance the outwards forces applied by the mitotic spindle to ensure fidelity in chromosome segregation without breakage. The inwards force can be characterized by springs composed of both DNA and protein elements.

Abstract

Fidelity during chromosome segregation is essential to prevent aneuploidy. The proteins and chromatin at the centromere form a unique site for kinetochore attachment and allow the cell to sense and correct errors during chromosome segregation. Centromeric chromatin is characterized by distinct chromatin organization, epigenetics, centromere-associated proteins and histone variants. These include the histone H3 variant centromeric protein A (CENPA), the composition and deposition of which have been widely investigated. Studies have examined the structural and biophysical properties of the centromere and have suggested that the centromere is not simply a 'landing pad' for kinetochore formation, but has an essential role in mitosis by assembling and directing the organization of the kinetochore.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromosome segregation in the cell cycle.
Figure 2: Characteristics of point and regional centromeres.
Figure 3: The CENPA-containing nucleosome.
Figure 4: Chromatin geometry at the centromere.
Figure 5: Applying the principles of polymer physics to chromosome segregation.

Similar content being viewed by others

References

  1. Moore, L. L. & Roth, M. B. HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J. Cell Biol. 153, 1199–1208 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sullivan, B. A. & Karpen, G. H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Struct. Mol. Biol. 11, 1076–1083 (2004).

    Article  CAS  Google Scholar 

  3. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore–microtubule interface. Nature Rev. Mol. Cell Biol. 9, 33–46 (2008).

    Article  CAS  Google Scholar 

  4. Bouck, D. C., Joglekar, A. P. & Bloom, K. S. Design features of a mitotic spindle: balancing tension and compression at a single microtubule kinetochore interface in budding yeast. Annu. Rev. Genet. 42, 335–359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28, 2511–2531 (2009). A comprehensive review of the structure and functions of the kinetochore.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fukagawa, T. & De Wulf, P. in The Kinetochore — From Molecular Discoveries to Cancer Therapy (eds De Wulf, P. & Earnshaw, W. C.) 133–191 (Springer Science+Business Media, New York, 2009).

    Google Scholar 

  7. Przewloka, M. R. & Glover, D. M. The kinetochore and the centromere: a working long distance relationship. Annu. Rev. Genet. 43, 439–465 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Clarke, L. & Carbon, J. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature 305, 23–28 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Fitzgerald-Hayes, M., Clarke, L. & Carbon, J. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29, 235–244 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Hieter, P. et al. Functional selection and analysis of yeast centromeric DNA. Cell 42, 913–921 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. McGrew, J., Diehl, B. & Fitzgerald-Hayes, M. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 530–538 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sullivan, B. A. in The Kinetochore — From Molecular Discoveries to Cancer Therapy (eds De Wulf, P. & Earnshaw, W. C.) 45–76 (Springer Science+Business Media, New York, 2009).

    Google Scholar 

  14. Joglekar, A. P. et al. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J. Cell Biol. 181, 587–594 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chikashige, Y. et al. Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites. Cell 57, 739–751 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Clarke, L., Amstutz, H., Fishel, B. & Carbon, J. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 83, 8253–8257 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baum, M., Ngan, V. K. & Clarke, L. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol. Biol. Cell 5, 747–761 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pidoux, A. L. & Allshire, R. C. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res. 12, 521–534 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Sanyal, K., Baum, M. & Carbon, J. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc. Natl Acad. Sci. USA 101, 11374–11379 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Centola, M. & Carbon, J. Cloning and characterization of centromeric DNA from Neurospora crassa. Mol. Cell. Biol. 14, 1510–1519 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Copenhaver, G. P. et al. Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468–2474 (1999).

    CAS  PubMed  Google Scholar 

  22. Sun, X., Le, H. D., Wahlstrom, J. M. & Karpen, G. H. Sequence analysis of a functional Drosophila centromere. Genome Res. 13, 182–194 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schueler, M. G., Higgins, A. W., Rudd, M. K., Gustashaw, K. & Willard, H. F. Genomic and genetic definition of a functional human centromere. Science 294, 109–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Maio, J. J. DNA strand reassociation and polyribonucleotide binding in the African green monkey, Cercopithecus aethiops. J. Mol. Biol. 56, 579–595 (1971).

    Article  CAS  PubMed  Google Scholar 

  25. Choo, K. H. Domain organization at the centromere and neocentromere. Dev. Cell 1, 165–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Malik, H. S. & Henikoff, S. Major evolutionary transitions in centromere complexity. Cell 138, 1067–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Foltz, D. R. et al. The human CENP-A centromeric nucleosome-associated complex. Nature Cell Biol. 8, 458–469 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Panchenko, T. & Black, B. E. The epigenetic basis for centromere identity. Prog. Mol. Subcell. Biol. 48, 1–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Sullivan, K. F., Hechenberger, M. & Masri, K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–592 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Howman, E. V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA 97, 1148–1153 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blower, M. D. & Karpen, G. H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nature Cell Biol. 3, 730–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Oegema, K., Desai, A., Rybina, S., Kirkham, M. & Hyman, A. A. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209–1226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palmer, D. K., O'Day, K., Wener, M. H., Andrews, B. S. & Margolis, R. L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104, 805–815 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Saitoh, H. et al. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70, 115–125 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Dawe, R. K., Reed, L. M., Yu, H. G., Muszynski, M. G. & Hiatt, E. N. A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11, 1227–1238 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fukagawa, T., Regnier, V. & Ikemura, T. Creation and characterization of temperature-sensitive CENP-C mutants in vertebrate cells. Nucleic Acids Res. 29, 3796–3803 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ogura, Y., Shibata, F., Sato, H. & Murata, M. Characterization of a CENP-C homolog in Arabidopsis thaliana. Genes Genet. Syst. 79, 139–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Schuh, M., Lehner, C. F. & Heidmann, S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol. 17, 237–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Tomkiel, J., Cooke, C. A., Saitoh, H., Bernat, R. L. & Earnshaw, W. C. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J. Cell Biol. 125, 531–545 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Erhardt, S. et al. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J. Cell Biol. 183, 805–818 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Screpanti, E. et al. Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr. Biol. 21, 391–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Przewloka, M. R. et al. CENP-C is a structural platform for kinetochore assembly. Curr. Biol. 21, 399–405 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Carroll, C. W., Milks, K. J. & Straight, A. F. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol. 189, 1143–1155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hori, T. et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135, 1039–1052 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Okada, M. et al. The CENP-H–I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature Cell Biol. 8, 446–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Hori, T., Okada, M., Maenaka, K. & Fukagawa, T. CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol. Biol. Cell 19, 843–854 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Amano, M. et al. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J. Cell Biol. 186, 173–182 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Earnshaw, W. C. & Migeon, B. R. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92, 290–296 (1985).

    Article  CAS  PubMed  Google Scholar 

  49. Ekwall, K. Epigenetic control of centromere behavior. Annu. Rev. Genet. 41, 63–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Mythreye, K. & Bloom, K. S. Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J. Cell Biol. 160, 833–843 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mishra, P. K., Baum, M. & Carbon, J. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol. Genet. Genomics 278, 455–465 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Folco, H. D., Pidoux, A. L., Urano, T. & Allshire, R. C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319, 94–97 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morris, C. A. & Moazed, D. Centromere assembly and propagation. Cell 128, 647–650 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Glynn, M., Kaczmarczyk, A., Prendergast, L., Quinn, N. & Sullivan, K. F. Centromeres: assembling and propagating epigenetic function. Subcell. Biochem. 50, 223–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Giet, R. & Glover, D. M. Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol. 152, 669–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hagstrom, K. A., Holmes, V. F., Cozzarelli, N. R. & Meyer, B. J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev. 16, 729–742 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Jager, H., Rauch, M. & Heidmann, S. The Drosophila melanogaster condensin subunit Cap-G interacts with the centromere-specific histone H3 variant CID. Chromosoma 113, 350–361 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. Maddox, P. S., Hyndman, F., Monen, J., Oegema, K. & Desai, A. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 176, 757–763 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dunleavy, E., Pidoux, A. & Allshire, R. Centromeric chromatin makes its mark. Trends Biochem. Sci. 30, 172–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Bergmann, J. H. et al. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J. 30, 328–340 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166, 493–505 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Greaves, I. K., Rangasamy, D., Ridgway, P. & Tremethick, D. J. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl Acad. Sci. USA 104, 525–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Naure Cell Biol. 4, 89–93 (2002).

    CAS  Google Scholar 

  68. Guetg, C. et al. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J. 29, 2135–2146 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, W., Lee, H. R., Koo, D. H. & Jiang, J. Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20, 25–34 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Nakano, M. et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14, 507–522 (2008). Describes the use of a HAC to study the effects of altering centromeric chromatin on kinetochore formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cardinale, S. et al. Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Mol. Biol. Cell 20, 4194–4204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Henikoff, S. & Dalal, Y. Centromeric chromatin: what makes it unique? Curr. Opin. Genet. Dev. 15, 177–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Van Hooser, A. A. et al. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 114, 3529–3542 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Black, B. E. et al. Structural determinants for generating centromeric chromatin. Nature 430, 578–582 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Black, B. E. et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell 25, 309–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Zhou, Z. et al. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3. Nature 16 Mar 2011 (doi:10.1038/nature0 9854).

  79. Furuyama, S. & Biggins, S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl Acad. Sci. USA 104, 14706–14711 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Blower, M. D., Sullivan, B. A. & Karpen, G. H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319–330 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sekulic, N., Bassett, E. A., Rogers, D. J. & Black, B. E. The structure of (CENP-A–H4)2 reveals physical features that mark centromeres. Nature 467, 347–351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Conde e Silva, N. et al. CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J. Mol. Biol. 370, 555–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Shelby, R. D., Vafa, O. & Sullivan, K. F. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 136, 501–513 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, Y. et al. The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol. Cell. Biol. 20, 7037–7048 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Camahort, R. et al. Cse4 is part of an octameric nucleosome in budding yeast. Mol. Cell 35, 794–805 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Williams, J. S., Hayashi, T., Yanagida, M. & Russell, P. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol. Cell 33, 287–298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dalal, Y., Furuyama, T., Vermaak, D. & Henikoff, S. Structure, dynamics, and evolution of centromeric nucleosomes. Proc. Natl Acad. Sci. USA 104, 15974–15981 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Furuyama, T. & Henikoff, S. Centromeric nucleosomes induce positive DNA supercoils. Cell 138, 104–113 (2009). Reports the right-handed wrapping of CenH3 nucleosomes in vitro using reconstituted D. melanogaster proteins on circular minichromosomes, and proposes that this alternative right-handed wrapping serves to keep the centromere decondensed and accessible for kinetochore formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dalal, Y., Wang, H., Lindsay, S. & Henikoff, S. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 5, e218 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M. M. & Wu, C. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129, 1153–1164 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Camahort, R. et al. Scm3 is essential to recruit the histone H3 variant Cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 26, 853–865 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Stoler, S. et al. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl Acad. Sci. USA 104, 10571–10576 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pidoux, A. L. et al. Fission yeast Scm3: a CENP-A receptor required for integrity of subkinetochore chromatin. Mol. Cell 33, 299–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sanchez-Pulido, L., Pidoux, A. L., Ponting, C. P. & Allshire, R. C. Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell 137, 1173–1174 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dunleavy, E. M. et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Aravind, L., Iyer, L. M. & Wu, C. Domain architectures of the Scm3p protein provide insights into centromere function and evolution. Cell Cycle 6, 2511–2515 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Shuaib, M., Ouararhni, K., Dimitrov, S. & Hamiche, A. HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc. Natl Acad. Sci. USA 107, 1349–1354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Foltz, D. R. et al. Centromere-specific assembly of CENP-A nucleosomes is mediated by HJURP. Cell 137, 472–484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hewawasam, G. et al. Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol. Cell 40, 444–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ranjitkar, P. et al. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol. Cell 40, 455–464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Furuyama, T., Dalal, Y. & Henikoff, S. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc. Natl Acad. Sci. USA 103, 6172–6177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lavelle, C. et al. Right-handed nucleosome: myth or reality? Cell 139, 1216–1217; author reply 1217–1218 (2009).

    Article  PubMed  Google Scholar 

  103. Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Struct. Biol. 7, 1121–1124 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Bruce, K. et al. The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res. 33, 5633–5639 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Meneghini, M. D., Wu, M. & Madhani, H. D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112, 725–736 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Abbott, D. W., Ivanova, V. S., Wang, X., Bonner, W. M. & Ausio, J. Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J. Biol. Chem. 276, 41945–41949 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Fan, J. Y., Gordon, F., Luger, K., Hansen, J. C. & Tremethick, D. J. The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nature Struct. Biol. 9, 172–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Mellone, B. G. & Allshire, R. C. Stretching it: putting the CEN(P-A) in centromere. Curr. Opin. Genet. Dev. 13, 191–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Henikoff, S., Ahmad, K., Platero, J. S. & van Steensel, B. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl Acad. Sci. USA 97, 716–721 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shelby, R. D., Monier, K. & Sullivan, K. F. Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol. 151, 1113–1118 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jansen, L. E., Black, B. E., Foltz, D. R. & Cleveland, D. W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795–805 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ahmad, K. & Henikoff, S. Centromeres are specialized replication domains in heterochromatin. J. Cell Biol. 153, 101–110 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lermontova, I. et al. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18, 2443–2451 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lermontova, I., Fuchs, J., Schubert, V. & Schubert, I. Loading time of the centromeric histone H3 variant differs between plants and animals. Chromosoma 116, 507–510 (2007).

    Article  PubMed  Google Scholar 

  115. Takahashi, K., Takayama, Y., Masuda, F., Kobayashi, Y. & Saitoh, S. Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle. Phil. Trans. R. Soc. B Biol. Sci. 360, 595–606; discussion 606–607 (2005).

    Article  CAS  Google Scholar 

  116. Pearson, C. G. et al. Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase. Curr. Biol. 14, 1962–1967 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Mellone, B. G., Zhang, W. & Karpen, G. Frodos found: behold the CENP-A “Ring” bearers. Cell 137, 409–412 (2009). A thorough review of research regarding Scm3, its relationship to HJURP and its role in CENPA loading.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118, 715–729 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Fujita, Y. et al. Priming of centromere for CENP-A recruitment by human hMis18α, hMis18β, and M18BP1. Dev. Cell 12, 17–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Kato, T. et al. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res. 67, 8544–8553 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Perpelescu, M., Nozaki, N., Obuse, C., Yang, H. & Yoda, K. Active establishment of centromeric CENP-A chromatin by RSF complex. J. Cell Biol. 185, 397–407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kaufman, P. D., Cohen, J. L. & Osley, M. A. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol. Cell. Biol. 18, 4793–4806 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sharp, J. A., Franco, A. A., Osley, M. A. & Kaufman, P. D. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev. 16, 85–100 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lopes da Rosa, J., Holik, J., Green, E. M., Rando, O. J. & Kaufman, P. D. Overlapping regulation of CenH3 localization and histone H3 turnover by CAF-1 and HIR proteins in Saccharomyces cerevisiae. Genetics 187, 9–19 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Galvani, A. et al. In vivo study of the nucleosome assembly functions of ASF1 histone chaperones in human cells. Mol. Cell. Biol. 28, 3672–3685 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sharp, J. A., Krawitz, D. C., Gardner, K. A., Fox, C. A. & Kaufman, P. D. The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin. Genes Dev. 17, 2356–2361 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lee, M. T. & Bachant, J. SUMO modification of DNA topoisomerase II: trying to get a CENse of it all. DNA Repair (Amst.) 8, 557–568 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  128. Hsu, J. M., Huang, J., Meluh, P. B. & Laurent, B. C. The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol. Cell. Biol. 23, 3202–3215 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xue, Y. et al. The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc. Natl Acad. Sci. USA 97, 13015–13020 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Glynn, E. F. et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. 2, e259 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Wood, A. J., Severson, A. F. & Meyer, B. J. Condensin and cohesin complexity: the expanding repertoire of functions. Nature Rev. Genet. 11, 391–404 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Hirano, T. At the heart of the chromosome: SMC proteins in action. Nature Rev. Mol. Cell Biol. 7, 311–322 (2006).

    Article  CAS  Google Scholar 

  134. Ocampo-Hafalla, M. T., Katou, Y., Shirahige, K. & Uhlmann, F. Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting. Chromosoma 116, 531–544 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yeh, E. et al. Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr. Biol. 18, 81–90 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dewar, H., Tanaka, K., Nasmyth, K. & Tanaka, T. U. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428, 93–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nature Cell Biol. 2, 492–499 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Sakuno, T., Tada, K. & Watanabe, Y. Kinetochore geometry defined by cohesion within the centromere. Nature 458, 852–858 (2009). Details the link between cohesion at the centromere and kinetochore geometry in promoting bipolar attachment.

    Article  CAS  PubMed  Google Scholar 

  139. Stumpff, J. & Asbury, C. L. Chromosome bi-orientation: euclidian euploidy. Curr. Biol. 18, R81–R83 (2008).

    Article  CAS  Google Scholar 

  140. Indjeian, V. B. & Murray, A. W. Budding yeast mitotic chromosomes have an intrinsic bias to biorient on the spindle. Curr. Biol. 17, 1837–1846 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Maresca, T. J. & Salmon, E. D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol. 184, 373–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Maresca, T. J. & Salmon, E. D. Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J. Cell Sci. 123, 825–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zinkowski, R. P., Meyne, J. & Brinkley, B. R. The centromere-kinetochore complex: a repeat subunit model. J. Cell Biol. 113, 1091–1110 (1991).

    Article  CAS  PubMed  Google Scholar 

  144. Birchler, J. A., Gao, Z. & Han, F. A tale of two centromeres—diversity of structure but conservation of function in plants and animals. Funct. Integr. Genomics 9, 7–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Ribeiro, S. A. et al. A super-resolution map of the vertebrate kinetochore. Proc. Natl Acad. Sci. USA 107, 10484–10489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Anderson, M., Haase, J., Yeh, E. & Bloom, K. Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore. Mol. Biol. Cell 20, 4131–4139 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Joglekar, A. P., Bouck, D. C., Molk, J. N., Bloom, K. S. & Salmon, E. D. Molecular architecture of a kinetochore-microtubule attachment site. Nature Cell Biol. 8, 581–585 (2006). Reports on the protein composition of the budding yeast kinetochore using quantitative fluorescence microscopy and proposes the architecture of a kinetochore–microtubule attachment.

    Article  CAS  PubMed  Google Scholar 

  148. Joglekar, A. P., Bloom, K. & Salmon, E. D. In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr. Biol. 19, 694–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wan, X. et al. Protein architecture of the human kinetochore microtubule attachment site. Cell 137, 672–684 (2009). Determination of the organization of a human kinetochore using two-colour fluorescence light microscopy, proposing a mechanism of tension-sensing within the kinetochore that contributes to spindle assembly checkpoint activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Johnston, K. et al. Vertebrate kinetochore protein architecture: protein copy number. J. Cell Biol. 189, 937–943 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dong, Y., Vanden Beldt, K. J., Meng, X., Khodjakov, A. & McEwen, B. F. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nature Cell Biol. 9, 516–522 (2007).

    Article  PubMed  CAS  Google Scholar 

  152. McEwen, B. F. & Dong, Y. Contrasting models for kinetochore microtubule attachment in mammalian cells. Cell. Mol. Life Sci. 67, 2163–2172 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010). Maps whole-genome organization of the budding yeast genome by capturing inter- and intra-chromosome interactions, illustrating the higher-order organization and clustering of the chromosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bloom, K. Centromere dynamics. Curr. Opin. Genet. Dev. 17, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Grosberg, A. Y. & Khokhlov, A. R. Giant Molecules: Here, There, And Everywhere. (Academic Press, San Diego, 1997).

    Google Scholar 

  156. Jun, S. & Wright, A. Entropy as the driver of chromosome segregation. Nature Rev. Microbiol. 8, 600–607 (2010).

    Article  CAS  Google Scholar 

  157. Finan, K., Cook, P. R. & Marenduzzo, D. Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes. Chromosome Res. 19, 53–61 (2010).

    Article  CAS  Google Scholar 

  158. Marko, J. F. Linking topology of tethered polymer rings with applications to chromosome segregation and estimation of the knotting length. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 051905 (2009).

    Article  PubMed  CAS  Google Scholar 

  159. Koszul, R. & Kleckner, N. Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol. 19, 716–724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Marenduzzo, D., Micheletti, C. & Cook, P. R. Entropy-driven genome organization. Biophys. J. 90, 3712–3721 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Marenduzzo, D., Finan, K. & Cook, P. R. The depletion attraction: an underappreciated force driving cellular organization. J. Cell Biol. 175, 681–686 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bohn, M. & Heermann, D. W. Repulsive forces between looping chromosomes induce entropy-driven segregation. PLoS ONE 6, e14428 (2011). Recent work that reports on the entropic forces between eukaryotic chromosomes and the effects of chromosome looping on transcriptional regulation, chromosome order and segregation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Jannink, G., Duplantier, B. & Sikorav, J. L. Forces on chromosomal DNA during anaphase. Biophys. J. 71, 451–465 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Nicklas, R. B. Measurements of the force produced by the mitotic spindle in anaphase. J. Cell Biol. 97, 542–548 (1983). Measures forces produced by the mitotic spindle using a flexible glass needle on intact grasshopper spermatocytes to determine the force generated by the mitotic spindle on the chromosome.

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, T., Lim, H. H., Cheng, C. S. & Surana, U. Deficiency of centromere-associated protein Slk19 causes premature nuclear migration and loss of centromeric elasticity. J. Cell Sci. 119, 519–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Chai, C. C., Teh, E. M. & Yeong, F. M. Unrestrained spindle elongation during recovery from spindle checkpoint activation in cdc15-2 cells results in mis-segregation of chromosomes. Mol. Biol. Cell 21, 2384–2398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tanaka, T. U., Stark, M. J. & Tanaka, K. Kinetochore capture and bi-orientation on the mitotic spindle. Nature Rev. Mol. Cell Biol. 6, 929–942 (2005).

    Article  CAS  Google Scholar 

  168. Bouck, D. C. & Bloom, K. Pericentric chromatin is an elastic component of the mitotic spindle. Curr. Biol. 17, 741–748 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Marshall, W. F., Marko, J. F., Agard, D. A. & Sedat, J. W. Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis. Curr. Biol. 11, 569–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Brinkley, B. R. & Stubblefield, E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19, 28–43 (1966).

    Article  CAS  PubMed  Google Scholar 

  171. Jokelainen, P. T. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res. 19, 19–44 (1967).

    Article  CAS  PubMed  Google Scholar 

  172. Welburn, J. P. & Cheeseman, I. M. Toward a molecular structure of the eukaryotic kinetochore. Dev. Cell 15, 645–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Sedwick, C. Ted Salmon: kinetochores at the core of it all. J. Cell Biol. 191, 896–897 (2010).

    Article  PubMed Central  Google Scholar 

  174. Canman, J. C. et al. Determining the position of the cell division plane. Nature 424, 1074–1078 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. Bancaud, A. et al. Nucleosome chiral transition under positive torsional stress in single chromatin fibers. Mol. Cell 27, 135–147 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Black, B. E. & Cleveland, D. W. Epigenetic centromere propagation and the nature of CENP-A nucleosomes. Cell 144, 471–479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ohta, S. et al. The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142, 810–821 (2010). A thorough characterization of centromere-associated proteins using quantitative proteomics and bioinformatic analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Bloom laboratory for discussions and editorial suggestions. We also thank the anonymous referees for their useful comments. We apologize to those authors whose work was not included owing to space limitations. This work was supported by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry Bloom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Kerry Bloom's homepage

Glossary

Kinetochore

A multiprotein complex that assembles on centromeric DNA and mediates the attachment and movement of chromosomes along the microtubules of the mitotic spindle.

Holocentric chromosomes

Chromosomes lacking a localized centromere and primary constriction site. In holocentric chromosomes, kinetochores are diffuse and kinetochore microtubules attach along the length of the chromosome.

Centrosomes

Specialized organelles that duplicate during interphase and that constitute the centre of the mitotic spindle.

Centromeric chromatin

The chromatin where centromeric protein A is incorporated, underlying the kinetochore.

Pericentromeric chromatin

The chromatin flanking the centromeric chromatin.

Nucleosome

The basic structural subunit of chromatin, which consists of 147 base pairs of DNA wrapped 1.7 times around an octamer of histones (2 copies each of H2A, H2B, H3 and H4).

Satellite repeats

Specific DNA sequences that are repeated many times in long tandem arrays.

Dicentric chromosome

A chromosome that carries two centromeres, which arise from the aberrant fusion of 'naked' telomeres or interstitial double-strand breaks. These can also be experimentally generated by inserting a second conditional centromere into a chromosome.

Position effect variegation

Variable expression of DNA sequence based on temporal or quantitative effects from adjacent chromatin; for example, if an active gene is relocated to a heterochromatic region, it can randomly be silenced

Tetrasomes

(Homotypic tetramers). Proposed nucleosome structures found at the centromere and composed of two copies each of centromeric protein A and H4.

Hemisome

(Heterotypic tetramer). A proposed nucleosome structure found at the centromere and composed of one copy each of H2A, H2B, centromeric protein A and H4.

Homotypic octamers

In the context of nucleosome composition, octamers in which both copies of H3 have been replaced by centromeric protein A.

Heterotypic octamer

In the context of nucleosome composition, an octamer in which only one copy of H3 has been replaced by centromeric protein A.

Amphitelic attachment

Connection of sister kinetochores to microtubules that emanate from opposite spindle pole bodies.

Intramolecular loop

A loop of chromatin formed by bringing distant regions of the same sister chromatid together, as opposed to intermolecular interactions between sister chromatid pairs. It is the proposed structure of the pericentromeric chromatin in budding yeast.

Entropy

A thermodynamic property related to the state of disorder of a system.

Thermal motion

The random motion and collision of particles owing to temperature.

Young's modulus

(Also known as elastic modulus). A measure of the stiffness of a polymer, measured as stress divided by strain.

Stress

In the context of polymer physics, stress is defined as the force per unit area and measures how a material responds to external force.

Strain

In the context of polymer physics, strain measures the deformation of the material, measured as change in length over length (ΔL/L).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdaasdonk, J., Bloom, K. Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol 12, 320–332 (2011). https://doi.org/10.1038/nrm3107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing