Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs in metabolism and metabolic disorders

An Erratum to this article was published on 23 April 2012

This article has been updated

Key Points

  • MicroRNAs (miRNAs) such as miR-33a and miR-33b are key regulators of cholesterol and lipid homeostasis and represent attractive therapeutic targets for raising high-density lipoprotein (HDL) levels and lowering triglyceride levels.

  • A role has recently been elucidated for miRNAs (for example, miR-103, miR-107 and let-7) in regulation of insulin signalling and control of glucose homeostasis.

  • An emerging link of certain miRNAs to metabolic dysregulation in adipogenesis and obesity suggests that this class of non-coding RNAs may have important roles in disorders associated with metabolic syndrome (MetS).

  • Aberrant hepatic miRNA expression may also contribute to other aspects of MetS, such as non-alcoholic fatty liver disease (NAFLD).

  • Circulating miRNAs have recently been identified in the blood, including as part of HDL. Data suggest that circulating miRNAs may exert effects on gene expression in target cells and tissues.

  • The link of abnormal miRNA expression to metabolic disorders has highlighted the therapeutic potential of antisense targeting of specific miRNAs (for example, miR-122, miR-33a and miR-33b).

Abstract

MicroRNAs (miRNAs) have recently emerged as key regulators of metabolism. For example, miR-33a and miR-33b have a crucial role in controlling cholesterol and lipid metabolism in concert with their host genes, the sterol-regulatory element-binding protein (SREBP) transcription factors. Other metabolic miRNAs, such as miR-103 and miR-107, regulate insulin and glucose homeostasis, whereas miRNAs such as miR-34a are emerging as key regulators of hepatic lipid homeostasis. The discovery of circulating miRNAs has highlighted their potential as both endocrine signalling molecules and disease markers. Dysregulation of miRNAs may contribute to metabolic abnormalities, suggesting that miRNAs may potentially serve as therapeutic targets for ameliorating cardiometabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of the SREBP and miR-33 circuit.
Figure 2: miRNA regulation of insulin signalling and glucose homeostasis.
Figure 3: The regulatory loop of miR-34a, SIRT1, FXR and p53.
Figure 4: Model for the function of circulating miRNAs associated with HDL.

Similar content being viewed by others

Change history

  • 26 March 2012

    On page 250 of this article, the competing financial interests statement incorrectly stated that the authors had no competing interests. The authors' statement is reproduced below, and the article has been corrected online. The editors apologize for this omission.

References

  1. Lehrke, M. & Lazar, M. A. The many faces of PPARγ. Cell 123, 993–999 (2005).

    CAS  PubMed  Google Scholar 

  2. Zelcer, N. & Tontonoz, P. Liver X receptors as integrators of metabolic and inflammatory signaling. J. Clin. Invest. 116, 607–614 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakae, J., Oki, M. & Cao, Y. The FoxO transcription factors and metabolic regulation. FEBS Lett. 582, 54–67 (2008).

    CAS  PubMed  Google Scholar 

  5. Uyeda, K. & Repa, J. J. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 4, 107–110 (2006).

    CAS  PubMed  Google Scholar 

  6. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  7. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669–687 (2009).

    CAS  PubMed  Google Scholar 

  9. Fabian, M. R. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868–880 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Betel, D., Wilson, M., Gabow, A., Marks, D. S. & Sander, C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 36, D149–D153 (2008).

    CAS  PubMed  Google Scholar 

  12. Krek, A. et al. Combinatorial microRNA target predictions. Nature Genet. 37, 495–500 (2005).

    CAS  PubMed  Google Scholar 

  13. Hon, L. S. & Zhang, Z. The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol. 8, R166 (2007).

    PubMed  PubMed Central  Google Scholar 

  14. Rottiers, V. et al. MicroRNAs in metabolism and metabolic diseases. Cold Spring Harb. Symp. Quant. Biol. 12 Dec 2011 (doi:10.1101/sqb.2011.76.011049).

    CAS  PubMed  Google Scholar 

  15. Tsang, J., Zhu, J. & van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26, 753–767 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Raghow, R., Yellaturu, C., Deng, X., Park, E. A. & Elam, M. B. SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol. Metab. 19, 65–73 (2008).

    CAS  PubMed  Google Scholar 

  17. Cornier, M. A. et al. The metabolic syndrome. Endocr. Rev. 29, 777–822 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Angulo, P. Obesity and nonalcoholic fatty liver disease. Nutr. Rev. 65, S57–S63 (2007).

    PubMed  Google Scholar 

  19. Lewis, A. P. & Jopling, C. L. Regulation and biological function of the liver-specific miR-122. Biochem. Soc. Trans. 38, 1553–1557 (2010).

    CAS  PubMed  Google Scholar 

  20. Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98 (2006).

    CAS  PubMed  Google Scholar 

  21. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005). References 20 and 21 report two pioneering studies utilizing antisense approaches to elucidate in vivo roles of an miRNA (miR-122).

    PubMed  Google Scholar 

  22. Veedu, R. N. & Wengel, J. Locked nucleic acid as a novel class of therapeutic agents. RNA Biol. 6, 321–323 (2009).

    CAS  PubMed  Google Scholar 

  23. Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008). In this study LNA-antisense oligonucleotides were used to inhibit miR-122 in the livers of non-human primates. This is the first study of miRNAs in a primate model.

    CAS  PubMed  Google Scholar 

  24. Elmen, J. et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 36, 1153–1162 (2008).

    CAS  PubMed  Google Scholar 

  25. Iliopoulos, D., Drosatos, K., Hiyama, Y., Goldberg, I. J. & Zannis, V. I. MicroRNA-370 controls the expression of microRNA-122 and Cpt1α and affects lipid metabolism. J. Lipid Res. 51, 1513–1523 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Coulouarn, C., Factor, V. M., Andersen, J. B., Durkin, M. E. & Thorgeirsson, S. S. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28, 3526–3536 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bai, S. et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J. Biol. Chem. 284, 32015–32027 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jopling, C. L., Schutz, S. & Sarnow, P. Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4, 77–85 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Norman, K. L. & Sarnow, P. Modulation of hepatitis C virus RNA abundance and the isoprenoid biosynthesis pathway by microRNA miR-122 involves distinct mechanisms. J. Virol. 84, 666–670 (2010).

    CAS  PubMed  Google Scholar 

  30. Roberts, A. P., Lewis, A. P. & Jopling, C. L. miR-122 activates hepatitis C virus translation by a specialized mechanism requiring particular RNA components. Nucleic Acids Res. 39, 7716–7729 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gerin, I. et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J. Biol. Chem. 285, 33652–33661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Horie, T. et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc. Natl Acad. Sci. USA 107, 17321–17326 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Marquart, T. J., Allen, R. M., Ory, D. S. & Baldan, A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl Acad. Sci. USA 107, 12228–12232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Najafi-Shoushtari, S. H. et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328, 1566–1569 (2010).

    CAS  PubMed  Google Scholar 

  35. Rayner, K. J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573 (2010). This study shows, together with references 31, 32 and 33, that miR-33a and miR-33b within introns in the SREBP genes act in concert with their host genes as crucial regulators of cholesterol and lipid homeostasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Davalos, A. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl Acad. Sci. USA 108, 9232–9237 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang, C. & Oram, J. F. The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochim. Biophys. Acta 1791, 563–572 (2009).

    CAS  PubMed  Google Scholar 

  38. Rye, K. A., Bursill, C. A., Lambert, G., Tabet, F. & Barter, P. J. The metabolism and anti-atherogenic properties of HDL. J. Lipid Res. 50, S195–S200 (2009).

    PubMed  PubMed Central  Google Scholar 

  39. Rayner, K. J. et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121, 2921–2931 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown, M. S., Ye, J. & Goldstein, J. L. Medicine. HDL miR-ed down by SREBP introns. Science 328, 1495–1496 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rayner, K. J. et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478, 404–407 (2011). This paper shows the therapeutic promise of antisense targeting of miR-33a and miR-33b to raise HDL and lower triglyceride levels in a non-human primate model.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramirez, C. M. et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler. Thromb. Vasc. Biol. 31, 2707–2714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, J. et al. miR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. Exp. Neurol. 18 Nov 2011 (doi:10.1016/j.expneurol.2011.11.010).

    CAS  PubMed  Google Scholar 

  44. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    CAS  PubMed  Google Scholar 

  45. Michishita, E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492–496 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao, C. et al. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J. Biol. Chem. 285, 36776–36784 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhong, L. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hifα. Cell 140, 280–293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, H. S. et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 12, 224–236 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hardie, D. G. AMP-activated protein kinase: a cellular energy sensor with a key role in metabolic disorders and in cancer. Biochem. Soc. Trans. 39, 1–13 (2011).

    CAS  PubMed  Google Scholar 

  50. Yap, F., Craddock, L. & Yang, J. Mechanism of AMPK suppression of LXR-dependent Srebp-1c transcription. Int. J. Biol. Sci. 7, 645–650 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376–388 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Matsumoto, M. et al. Role of the insulin receptor substrate 1 and phosphatidylinositol 3-kinase signaling pathway in insulin-induced expression of sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes. Diabetes 51, 1672–1680 (2002).

    CAS  PubMed  Google Scholar 

  53. Taniguchi, C. M., Ueki, K. & Kahn, R. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J. Clin. Invest. 115, 718–727 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tobe, K. et al. Increased expression of the sterol regulatory element-binding protein-1 gene in insulin receptor substrate-2−/− mouse liver. J. Biol. Chem. 276, 38337–38340 (2001).

    CAS  PubMed  Google Scholar 

  55. Kohjima, M. et al. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int. J. Mol. Med. 21, 507–511 (2008).

    CAS  PubMed  Google Scholar 

  56. Guay, C., Roggli, E., Nesca, V., Jacovetti, C. & Regazzi, R. Diabetes mellitus, a microRNA-related disease? Transl. Res. 157, 253–264 (2011).

    CAS  PubMed  Google Scholar 

  57. Herman, M. A. & Kahn, B. B. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Invest. 116, 1767–1775 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Siddle, K. Signalling by insulin and IGF receptors: supporting acts and new players. J. Mol. Endocrinol. 47, R1–R10 (2011).

    CAS  PubMed  Google Scholar 

  59. Leavens, K. F. & Birnbaum, M. J. Insulin signaling to hepatic lipid metabolism in health and disease. Crit. Rev. Biochem. Mol. Biol. 46, 200–215 (2011).

    CAS  PubMed  Google Scholar 

  60. Osborne, T. F. & Espenshade, P. J. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been. Genes Dev. 23, 2578–2591 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kloosterman, W. P., Lagendijk, A. K., Ketting, R. F., Moulton, J. D. & Plasterk, R. H. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 5, e203 (2007).

    PubMed  PubMed Central  Google Scholar 

  62. Poy, M. N. et al. miR-375 maintains normal pancreatic α- and β-cell mass. Proc. Natl Acad. Sci. USA 106, 5813–5818 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Poy, M. N. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004). This study provides the first evidence for miRNA regulation of insulin secretion, suggesting that miRNAs may represent important regulators of glucose homeostasis.

    CAS  PubMed  Google Scholar 

  64. El Ouaamari, A. et al. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells. Diabetes 57, 2708–2717 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Baroukh, N. N. & Van Obberghen, E. Function of microRNA-375 and microRNA-124a in pancreas and brain. FEBS J. 276, 6509–6521 (2009).

    CAS  PubMed  Google Scholar 

  66. Baroukh, N. et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines. J. Biol. Chem. 282, 19575–19588 (2007).

    CAS  PubMed  Google Scholar 

  67. Lovis, P., Gattesco, S. & Regazzi, R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol. Chem. 389, 305–312 (2008).

    CAS  PubMed  Google Scholar 

  68. Ramachandran, D. et al. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J. 278, 1167–1174 (2011).

    CAS  PubMed  Google Scholar 

  69. Plaisance, V. et al. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J. Biol. Chem. 281, 26932–26942 (2006).

    CAS  PubMed  Google Scholar 

  70. Pullen, T. J., da Silva Xavier, G., Kelsey, G. & Rutter, G. A. miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol. Cell. Biol. 31, 3182–3194 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. He, A., Zhu, L., Gupta, N., Chang, Y. & Fang, F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol. Endocrinol. 21, 2785–2794 (2007).

    CAS  PubMed  Google Scholar 

  72. Kim, S. & Pak, Y. Caveolin-2 regulation of the cell cycle in response to insulin in Hirc-B fibroblast cells. Biochem. Biophys. Res. Commun. 330, 88–96 (2005).

    CAS  PubMed  Google Scholar 

  73. Pandey, A. K. et al. miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol. Cell. Endocrinol. 332, 125–133 (2011).

    CAS  PubMed  Google Scholar 

  74. Ryu, H. S., Park, S. Y., Ma, D., Zhang, J. & Lee, W. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS ONE 6, e17343 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lu, H., Buchan, R. J. & Cook, S. A. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc. Res. 86, 410–420 (2010).

    CAS  PubMed  Google Scholar 

  76. Esguerra, J. L., Bolmeson, C., Cilio, C. M. & Eliasson, L. Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto–Kakizaki rat. PLoS ONE 6, e18613 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jordan, S. D. et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nature Cell Biol. 13, 434–446 (2011).

    CAS  PubMed  Google Scholar 

  78. Li, S. et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J. Lipid Res. 50, 1756–1765 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakanishi, N. et al. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem. Biophys. Res. Commun. 385, 492–496 (2009).

    CAS  PubMed  Google Scholar 

  80. Takanabe, R. et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem. Biophys. Res. Commun. 376, 728–732 (2008).

    CAS  PubMed  Google Scholar 

  81. Trajkovski, M. et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474, 649–653 (2011).

    CAS  PubMed  Google Scholar 

  82. Xie, H., Lim, B. & Lodish, H. F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58, 1050–1057 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wilfred, B. R., Wang, W. X. & Nelson, P. T. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol. Genet. Metab. 91, 209–217 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Naar, A. M. MiRs with a sweet tooth. Cell Metab. 14, 149–150 (2011).

    PubMed  Google Scholar 

  85. Martello, G. et al. A MicroRNA targeting dicer for metastasis control. Cell 141, 1195–1207 (2010).

    CAS  PubMed  Google Scholar 

  86. Morita, S. et al. Dicer is required for maintaining adult pancreas. PLoS ONE 4, e4212 (2009).

    PubMed  PubMed Central  Google Scholar 

  87. Lynn, F. C. et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56, 2938–2945 (2007).

    CAS  PubMed  Google Scholar 

  88. Lovis, P. et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes 57, 2728–2736 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Roggli, E. et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells. Diabetes 59, 978–986 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yamakuchi, M. & Lowenstein, C. J. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 8, 712–715 (2009).

    CAS  PubMed  Google Scholar 

  91. Zhu, H. et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 147, 81–94 (2011). This paper, together with references 77 and 81, links aberrant expression of an miRNA in obesity-related disorders to impaired insulin signalling and glucose homeostasis, thereby providing important evidence that dysregulation of miRNA expression may contribute to human metabolic diseases.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lefterova, M. I. & Lazar, M. A. New developments in adipogenesis. Trends Endocrinol. Metab. 20, 107–114 (2009).

    CAS  PubMed  Google Scholar 

  93. Alexander, R., Lodish, H. & Sun, L. MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin. Ther. Targets 15, 623–636 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Esau, C. et al. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279, 52361–52365 (2004). The first study linking an miRNA to the differentiation and function of a metabolically important tissue, highlighting the potential for dysregulation of miRNAs in metabolic disorders.

    CAS  PubMed  Google Scholar 

  95. Romao, J. M. et al. MicroRNA regulation in mammalian adipogenesis. Exp. Biol. Med. (Maywood) 236, 997–1004 (2011).

    CAS  Google Scholar 

  96. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun, L. et al. Mir193b-365 is essential for brown fat differentiation. Nature Cell Biol. 13, 958–965 (2011).

    CAS  PubMed  Google Scholar 

  98. Kloting, N. et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE 4, e4699 (2009).

    PubMed  PubMed Central  Google Scholar 

  99. Heneghan, H. M., Miller, N., McAnena, O. J., O'Brien, T. & Kerin, M. J. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J. Clin. Endocrinol. Metab. 96, e846–e850 (2011).

    CAS  PubMed  Google Scholar 

  100. Ortega, F. J. et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE 5, e9022 (2010).

    PubMed  PubMed Central  Google Scholar 

  101. Cheung, O. et al. Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression. Hepatology 48, 1810–1820 (2008).

    CAS  PubMed  Google Scholar 

  102. Cermelli, S., Ruggieri, A., Marrero, J. A., Ioannou, G. N. & Beretta, L. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS ONE 6, e23937 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kong, L. et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 48, 61–69 (2011).

    CAS  PubMed  Google Scholar 

  104. Lee, J. & Kemper, J. K. Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging (Albany NY) 2, 527–534 (2010).

    CAS  Google Scholar 

  105. Kemper, J. K. et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10, 392–404 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, X. et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 28, 91–106 (2007).

    PubMed  Google Scholar 

  107. Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).

    CAS  PubMed  Google Scholar 

  108. Ponugoti, B. et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 285, 33959–33970 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Purushotham, A. et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9, 327–338 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Vaziri, H. et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).

    CAS  PubMed  Google Scholar 

  111. Walker, A. K. et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24, 1403–1417 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Yeung, F. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yamakuchi, M., Ferlito, M. & Lowenstein, C. J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl Acad. Sci. USA 105, 13421–13426 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, J. et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 285, 12604–12611 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Chang, T. C. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Raver-Shapira, N. et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell 26, 731–743 (2007).

    CAS  PubMed  Google Scholar 

  118. Tarasov, V. et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6, 1586–1593 (2007).

    CAS  PubMed  Google Scholar 

  119. Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Feige, J. N. et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8, 347–358 (2008).

    CAS  PubMed  Google Scholar 

  122. Chen, X., Liang, H., Zhang, J., Zen, K. & Zhang, C. Y. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 22, 125–132 (2012).

    CAS  PubMed  Google Scholar 

  123. Creemers, E. E., Tijsen, A. J. & Pinto, Y. M. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res. 110, 483–495 (2012).

    CAS  PubMed  Google Scholar 

  124. Hunter, M. P. et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3, e3694 (2008). The first demonstration of the presence of miRNAs in circulating microvesicles.

    PubMed  PubMed Central  Google Scholar 

  125. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Turchinovich, A., Weiz, L., Langheinz, A. & Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39, 7223–7233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, K., Zhang, S., Weber, J., Baxter, D. & Galas, D. J. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38, 7248–7259 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biol. 13, 423–433 (2011). The first demonstration that miRNAs are present in circulating HDL, indicating that disease-associated miRNAs may traffic in lipoprotein particles and convey regulatory information to distant target tissues.

    CAS  PubMed  Google Scholar 

  129. Zampetaki, A. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810–817 (2010).

    CAS  PubMed  Google Scholar 

  130. Li, S. et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 124, 175–184 (2011).

    CAS  PubMed  Google Scholar 

  131. Kosaka, N. et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Bagamasbad, P. & Denver, R. J. Mechanisms and significance of nuclear receptor auto- and cross-regulation. Gen. Comp. Endocrinol. 170, 3–17 (2011).

    CAS  PubMed  Google Scholar 

  133. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 9, 654–659 (2007). This study identified miRNAs in circulating exosome vesicles and suggested that exosome-associated miRNAs may transmit gene regulatory cues between cells.

    CAS  PubMed  Google Scholar 

  134. Yang, J. S. & Lai, E. C. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43, 892–903 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Herker, E. & Ott, M. Unique ties between hepatitis C virus replication and intracellular lipids. Trends Endocrinol. Metab. 22, 241–248 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

    CAS  PubMed  Google Scholar 

  137. Stenvang, J., Petri, A., Lindow, M., Obad, S. & Kauppinen, S. Inhibition of microRNA function by antimiR oligonucleotides. Silence 3, 1 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Laudadio, I. et al. A feedback loop between the liver-enriched transcription factor network and Mir-122 controls hepatocyte differentiation. Gastroenterology 142, 119–129 (2012).

    CAS  PubMed  Google Scholar 

  139. Chang, J. et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 1, 106–113 (2004).

    CAS  PubMed  Google Scholar 

  140. Tsai, W. C. et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49, 1571–1582 (2009).

    CAS  PubMed  Google Scholar 

  141. Lin, Q., Gao, Z., Alarcon, R. M., Ye, J. & Yun, Z. A role of miR-27 in the regulation of adipogenesis. FEBS J. 276, 2348–2358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kim, S. Y. et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression. Biochem. Biophys. Res. Commun. 392, 323–328 (2010).

    CAS  PubMed  Google Scholar 

  143. Li, W. Q. et al. The rno-miR-34 family is upregulated and targets ACSL1 in dimethylnitrosamine-induced hepatic fibrosis in rats. FEBS J. 278, 1522–1532 (2011).

    CAS  PubMed  Google Scholar 

  144. Gerin, I. et al. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am. J. Physiol. Endocrinol. Metab. 299, e198–e206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Jin, W., Dodson, M. V., Moore, S. S., Basarab, J. A. & Guan, L. L. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development. BMC Mol. Biol. 11, 29 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Eichner, L. J. et al. miR-378* mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway. Cell Metab. 12, 352–361 (2010).

    CAS  PubMed  Google Scholar 

  147. Lee, E. K. et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression. Mol. Cell. Biol. 31, 626–638 (2011).

    CAS  PubMed  Google Scholar 

  148. Sun, T., Fu, M., Bookout, A. L., Kliewer, S. A. & Mangelsdorf, D. J. MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol. Endocrinol. 23, 925–931 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants R21DK084459 and R01DK094184. The authors apologize for their inability to discuss and cite all relevant papers owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders M. Näär.

Ethics declarations

Competing interests

Anders M. Näär has patents pending on miR-33a and miR-33b antisense targeting for the treatment of cardiometabolic disorders. These patents have been licensed by Santaris Pharma, Denmark. Veerle Rottiers declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Anders M. Näär's homepage

Glossary

P-bodies

Distict cytoplasmic foci that contain a number of enzymes involved in mRNA turnover. They are important for mRNA degradation, storage of mRNA for translation and translational repression by microRNAs.

Metabolic syndrome

(MetS). A combination of metabolic disorders characterized by insulin resistance, obesity, abnormalities in circulating cholesterol and lipid profiles, non-alcoholic fatty liver disease and hypertension. MetS is associated with increased risk of type 2 diabetes and cardiovascular disease (coronary artery disease and stroke).

Endocrine signalling

Hormonal signal, secreted from a specific cell and causing a specific effect in distal target cells. Hormones produced by endocrine cells can travel through the blood to reach all parts of the body.

Triglycerides

Esters of glycerol and fatty acids, used for the storage of energy.

Antagomirs

Small, synthetic, cholesterol-conjugated DNA oligonucleotides that are complementary to an endogenous microRNA (miRNA) of interest. The cholesterol moiety allows antagomirs to enter most cell types efficiently, where they specifically bind and sequester endogenous miRNAs.

Fatty acid β-oxidation

Degradation process of fatty acids to acetyl-CoA primarily in the mitochondria. Long chain fatty acids need to be transported via binding to carnitine.

Locked nucleic acid

(LNA). A modified DNA oligonucleotide analogue that is locked in an 'N-type conformation'. LNA is capable of recognizing DNA and RNA with high affinity and is resistant to degradation.

Apolipoprotein A1

(APOA1). The major protein component of high-density lipoprotein (HDL) in plasma. It promotes the efflux of cholesterol from tissues to the liver, and defects cause low HDL levels, which are often associated with cardiovascular disease.

Atherogenic macrophages

Cholesterol-loaded macrophages that accumulate in the arterial wall and can lead to atherosclerotic lesions.

Lipid raft

Microdomain of the cell plasma membrane with high cholesterol and sphingolipid content that compartmentalizes cellular processes by acting as a platform to colocalize proteins such as signalling molecules and receptors.

Exosomes

Small (30–90 nm) vesicles secreted from the plasma membrane of mammalian cells. They contain proteins, RNA and microRNA molecules and can be transported from cell to cell.

Paracrine signalling

Signalling mediated by secreted molecules that act locally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rottiers, V., Näär, A. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13, 239–250 (2012). https://doi.org/10.1038/nrm3313

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing