Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The functions and regulation of the PTEN tumour suppressor

Key Points

  • PTEN (phosphatase and tensin homologue) is frequently disrupted in multiple sporadic tumours, and targeted by germline mutations in patients with cancer predisposition syndromes.

  • PTEN antagonizes the phosphoinositide 3-kinase (PI3K)–AKT–mammalian target of rapamycin (mTOR) pathway through its lipid phosphatase activity and governs a plethora of cellular processes including survival, proliferation, energy metabolism and cellular architecture.

  • The repertoire of PTEN functions has recently been expanded to include phosphatase-independent activities and crucial functions within the nucleus.

  • The molecular mechanisms regulating PTEN expression and function include transcriptional regulation, post-transcriptional regulation by microRNAs (miRNAs) and competitive endogenous RNA (ceRNAs), post-translational modifications and protein interactions.

  • The increasing knowledge of PTEN and pathologies that alter its function undoubtedly informs the rational design of novel cancer therapies.

Abstract

The importance of the physiological function of phosphatase and tensin homologue (PTEN) is illustrated by its frequent disruption in cancer. By suppressing the phosphoinositide 3-kinase (PI3K)–AKT–mammalian target of rapamycin (mTOR) pathway through its lipid phosphatase activity, PTEN governs a plethora of cellular processes including survival, proliferation, energy metabolism and cellular architecture. Consequently, mechanisms regulating PTEN expression and function, including transcriptional regulation, post-transcriptional regulation by non-coding RNAs, post-translational modifications and protein–protein interactions, are all altered in cancer. The repertoire of PTEN functions has recently been expanded to include phosphatase-independent activities and crucial functions within the nucleus. Our increasing knowledge of PTEN and pathologies in which its function is altered will undoubtedly inform the rational design of novel therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the PTEN tumour suppressor.
Figure 2: The PTEN–PI3K–AKT–mTOR pathway.
Figure 3: Functions of PTEN in the nucleus.
Figure 4: Molecular mechanisms of PTEN regulation.

Similar content being viewed by others

References

  1. Bigner, S. H., Mark, J., Mahaley, M. S. & Bigner, D. D. Patterns of the early, gross chromosomal changes in malignant human gliomas. Hereditas 101, 103–113 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet. 19, 348–355 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8, 1169–1178 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA 96, 1563–1568 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Di Cristofano, A., De Acetis, M., Koff, A., Cordon-Cardo, C. & Pandolfi, P. P. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nature Genet. 27, 222–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/− mice. Science 285, 2122–2125 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Alimonti, A. et al. Subtle variations in Pten dose determine cancer susceptibility. Nature Genet. 42, 454–458 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Berger, A. H., Knudson, A. G. & Pandolfi, P. P. A continuum model for tumour suppression. Nature 476, 163–169 (2011). References 9 and 10 demonstrate the crucial role of PTEN as a haploinsufficient tumour suppressor gene and propose a continuum model for tumour suppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knudson, A. G. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Sun, H. et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5-trisphosphate and Akt/protein kinase B signaling pathway. Proc. Natl Acad. Sci. USA 96, 6199–6204 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Denu, J. M., Stuckey, J. A., Saper, M. A. & Dixon, J. E. Form and function in protein dephosphorylation. Cell 87, 361–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Myers, M. P. et al. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl Acad. Sci. USA 94, 9052–9057 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, J. O. et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99, 323–334 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Raftopoulou, M., Etienne-Manneville, S., Self, A., Nicholls, S. & Hall, A. Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science 303, 1179–1181 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol. 12, 21–35 (2011).

    Article  CAS  Google Scholar 

  21. Guertin, D. A. & Sabatini, D. M. Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Vander Haar, E., Lee, S. I., Bandhakavi, S., Griffin, T. J. & Kim, D. H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature Cell Biol. 9, 316–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Ma, X. M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nature Rev. Mol. Cell Biol. 10, 307–318 (2009).

    Article  CAS  Google Scholar 

  24. Dowling, R. J. et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328, 1172–1176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hsieh, A. C. et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP–eIF4E. Cancer Cell 17, 249–261 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. She, Q. B. et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18, 39–51 (2010). References 24, 25 and 26 describe a key role for 4EBP1-mediated translational control in the proliferation and survival of cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Radimerski, T., Montagne, J., Hemmings-Mieszczak, M. & Thomas, G. Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6K signaling. Genes Dev. 16, 2627–2632 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, H. et al. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J. Clin. Invest. 112, 1223–1233 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harrington, L. S. et al. The TSC1–2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins. J. Cell Biol. 166, 213–223 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Carracedo, A. et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118, 3065–3074 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kinkade, C. W. et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J. Clin. Invest. 118, 3051–3064 (2008). References 31 and 32 provide evidence that mTORC1 inhibitors result in increased activation of the RAS–MAPK pathway through a PI3K-dependent feedback loop.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wan, X., Harkavy, B., Shen, N., Grohar, P. & Helman, L. J. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26, 1932–1940 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Tamburini, J. et al. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood 111, 379–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Hsu, P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317–1322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu, Y. et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322–1326 (2011). References 35 and 36 report GRB10 as an mTORC1 substrate and an effector of the mTORC1–PI3K feedback loop.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manning, B. D. et al. Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev. 19, 1773–1778 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nardella, C. et al. Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev. 22, 2172–2177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. Cell 133, 403–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    Article  CAS  PubMed  Google Scholar 

  41. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009). This review comprehensively discusses the links between cell metabolism and cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eguez, L. et al. Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab. 2, 263–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Sundqvist, A. et al. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab. 1, 379–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Li, X., Monks, B., Ge, Q. & Birnbaum, M. J. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 447, 1012–1016 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Horie, Y. et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest. 113, 1774–1783 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fang, M. et al. The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. Cell 143, 711–724 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Kalaany, N. Y. & Sabatini, D. M. Tumours with PI3K activation are resistant to dietary restriction. Nature 458, 725–731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liliental, J. et al. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr. Biol. 10, 401–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Tamura, M. et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280, 1614–1617 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Song, L. B. et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J. Clin. Invest. 119, 3626–3636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trimboli, A. J. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461, 1084–1091 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nature Rev. Cancer 6, 392–401 (2006).

    Article  CAS  Google Scholar 

  54. Bronisz, A. et al. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nature Cell Biol. 14, 159–167 (2012). References 52 and 54 demonstrate a key role of PTEN in shaping the tumour microenvironment.

    Article  CAS  Google Scholar 

  55. Kurose, K. et al. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nature Genet. 32, 355–357 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Hu, M. et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genet. 37, 899–905 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Lin, H. K. et al. Skp2 targeting suppresses tumorigenesis by Arf–p53-independent cellular senescence. Nature 464, 374–379 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alimonti, A. et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J. Clin. Invest. 120, 681–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005). References 58 and 59 provide evidence that p53-mediated cellular senescence suppresses PTEN -deficient tumorigenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nardella, C. et al. Differential requirement of mTOR in postmitotic tissues and tumorigenesis. Sci. Signal. 2, ra2 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Chen, Z. et al. Differential p53-independent outcomes of p19(Arf) loss in oncogenesis. Sci. Signal. 2, ra44 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. Palmero, I., Pantoja, C. & Serrano, M. p19ARF links the tumour suppressor p53 to Ras. Nature 395, 125–126 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Ohtani, N. et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409, 1067–1070 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Song, M. S. et al. Nuclear PTEN regulates the APC–CDH1 tumor-suppressive complex in a phosphatase-independent manner. Cell 144, 187–199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, M. et al. The adaptor protein of the anaphase promoting complex Cdh1 is essential in maintaining replicative lifespan and in learning and memory. Nature Cell Biol. 10, 1083–1089 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Ding, Z. et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470, 269–273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nardella, C., Clohessy, J. G., Alimonti, A. & Pandolfi, P. P. Pro-senescence therapy for cancer treatment. Nature Rev. Cancer 11, 503–511 (2011).

    Article  CAS  Google Scholar 

  68. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294, 2186–2189 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Bonaguidi, M. A. et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145, 1142–1155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Ito, K., Bernardi, R. & Pandolfi, P. P. A novel signaling network as a critical rheostat for the biology and maintenance of the normal stem cell and the cancer-initiating cell. Curr. Opin. Genet. Dev. 19, 51–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, J. Y. et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 7, 593–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo, W. et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 453, 529–533 (2008). References 70–74 demonstrate the crucial role of PTEN for cancer stem cell formation and haematopoietic stem cell homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lindsay, Y. et al. Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J. Cell Sci. 119, 5160–5168 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Shen, W. H. et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128, 157–170 (2007). References 64 and 76 identify novel tumour suppressive functions of nuclear PTEN in its phosphatase-independent mode.

    Article  CAS  PubMed  Google Scholar 

  77. Puc, J. et al. Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell 7, 193–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Mendes-Pereira, A. M. et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McEllin, B. et al. PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res. 70, 5457–5464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dedes, K. J. et al. PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci. Transl. Med. 2, 53ra75 (2010).

    Article  PubMed  CAS  Google Scholar 

  81. Liu, X. S. et al. Polo-like kinase 1 facilitates loss of Pten tumor suppressor-induced prostate cancer formation. J. Biol. Chem. 286, 35795–35800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Blanco-Aparicio, C., Renner, O., Leal, J. F. & Carnero, A. PTEN, more than the AKT pathway. Carcinogenesis 28, 1379–1386 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Kharas, M. G. et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115, 1406–1415 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vivanco, I. et al. Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 11, 555–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Okumura, K., Zhao, M., Depinho, R. A., Furnari, F. B. & Cavenee, W. K. Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proc. Natl Acad. Sci. USA 102, 2703–2706 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mounir, Z. et al. Tumor suppression by PTEN requires the activation of the PKR–eIF2α phosphorylation pathway. Sci. Signal. 2, ra85 (2009).

    PubMed  PubMed Central  Google Scholar 

  87. Gu, T. et al. CREB is a novel nuclear target of PTEN phosphatase. Cancer Res. 71, 2821–2825 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, S. et al. Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nature Med. 17, 461–469 (2011).

    Article  PubMed  CAS  Google Scholar 

  89. Hollander, M. C., Blumenthal, G. M. & Dennis, P. A. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nature Rev. Cancer 11, 289–301 (2011).

    Article  CAS  Google Scholar 

  90. Eng, C. PTEN: one gene, many syndromes. Hum. Mutat. 22, 183–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Trotman, L. C. et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128, 141–156 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou, X. P. et al. Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am. J. Hum. Genet. 73, 404–411 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu, J. et al. Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex. PLoS ONE 4, e5577 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Agrawal, S. & Eng, C. Differential expression of novel naturally occurring splice variants of PTEN and their functional consequences in Cowden syndrome and sporadic breast cancer. Hum. Mol. Genet. 15, 777–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Escriva, M. et al. Repression of PTEN phosphatase by Snail1 transcriptional factor during γ-radiation-induced apoptosis. Mol. Cell. Biol. 28, 1528–1540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, J. Y. et al. Id-1 activates Akt-mediated Wnt signaling and p27(Kip1) phosphorylation through PTEN inhibition. Oncogene 28, 824–831 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Stambolic, V. et al. Regulation of PTEN transcription by p53. Mol. Cell 8, 317–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Yoshimi, A. et al. Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood 117, 3617–3628 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Whelan, J. T., Forbes, S. L. & Bertrand, F. E. CBF-1 (RBP-Jκ) binds to the PTEN promoter and regulates PTEN gene expression. Cell Cycle 6, 80–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Hettinger, K. et al. c-Jun promotes cellular survival by suppression of PTEN. Cell Death Differ. 14, 218–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Xia, D. et al. Mitogen-activated protein kinase kinase-4 promotes cell survival by decreasing PTEN expression through an NF-κB-dependent pathway. J. Biol. Chem. 282, 3507–3519 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Patel, L. et al. Tumor suppressor and anti-inflammatory actions of PPARγ agonists are mediated via upregulation of PTEN. Curr. Biol. 11, 764–768 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Virolle, T. et al. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nature Cell Biol. 3, 1124–1128 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nature Immunol. 9, 405–414 (2008).

    Article  CAS  Google Scholar 

  106. Olive, V. et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 23, 2839–2849 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mavrakis, K. J. et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nature Cell Biol. 12, 372–379 (2010). References 105, 106 and107 identify oncogenic miR-19 as PTEN-targeting for tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  108. Meng, F. et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Ma, X. et al. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc. Natl Acad. Sci. USA 108, 10144–10149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mu, P. et al. Genetic dissection of the miR-1792 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev. 23, 2806–2811 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Karreth, F. A. et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147, 382–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sumazin, P. et al. An extensive microRNA-mediated network of RNA–RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147, 370–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tay, Y. et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147, 344–357 (2011). References 111–115 provide evidence that RNA transcripts communicate through a new 'language' mediated by miRNA-binding sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rabinovsky, R. et al. p85 associates with unphosphorylated PTEN and the PTEN-associated complex. Mol. Cell. Biol. 29, 5377–5388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vazquez, F. et al. Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J. Biol. Chem. 276, 48627–48630 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Liang, K. et al. Recombinant human erythropoietin antagonizes trastuzumab treatment of breast cancer cells via Jak2-mediated Src activation and PTEN inactivation. Cancer Cell 18, 423–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Al-Khouri, A. M., Ma, Y., Togo, S. H., Williams, S. & Mustelin, T. Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3β. J. Biol. Chem. 280, 35195–35202 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Xu, D., Yao, Y., Jiang, X., Lu, L. & Dai, W. Regulation of PTEN stability and activity by Plk3. J. Biol. Chem. 285, 39935–39942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, Z. et al. Regulation of PTEN by Rho small GTPases. Nature Cell Biol. 7, 399–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Yim, E. K. et al. Rak functions as a tumor suppressor by regulating PTEN protein stability and function. Cancer Cell 15, 304–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, X. et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128, 129–139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Okumura, K. et al. PCAF modulates PTEN activity. J. Biol. Chem. 281, 26562–26568 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Chae, H. D. & Broxmeyer, H. E. SIRT1 deficiency downregulates PTEN/JNK/FOXO1 pathway to block reactive oxygen species-induced apoptosis in mouse embryonic stem cells. Stem Cells Dev. 20, 1277–1285 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Lee, S. R. et al. Reversible inactivation of the tumor suppressor PTEN by H2O2 . J. Biol. Chem. 277, 20336–20342 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Silva, A. et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J. Clin. Invest. 118, 3762–3774 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hui, S. T. et al. Txnip balances metabolic and growth signaling via PTEN disulfide reduction. Proc. Natl Acad. Sci. USA 105, 3921–3926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cao, J. et al. Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J. 28, 1505–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Drinjakovic, J. et al. E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron 65, 341–357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fouladkou, F. et al. The ubiquitin ligase Nedd4-1 is dispensable for the regulation of PTEN stability and localization. Proc. Natl Acad. Sci. USA 105, 8585–8590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Van Themsche, C., Leblanc, V., Parent, S. & Asselin, E. X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. J. Biol. Chem. 284, 20462–20466 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Maddika, S. et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nature Cell Biol. 13, 728–733 (2011).

    Article  PubMed  CAS  Google Scholar 

  134. Gunaratne, J. et al. Protein interactions of phosphatase and tensin homologue (PTEN) and its cancer-associated G20E mutant compared by using stable isotope labeling by amino acids in cell culture-based parallel affinity purification. J. Biol. Chem. 286, 18093–18103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Song, M. S. et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP–PML network. Nature 455, 813–817 (2008). References 91, 123 and 135 provide evidence that PTEN is modified by an ubiquitylation–deubiquitylation network.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Takahashi, Y., Morales, F. C., Kreimann, E. L. & Georgescu, M. M. PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO J. 25, 910–920 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Molina, J. R. et al. PTEN, NHERF1 and PHLPP form a tumor suppressor network that is disabled in glioblastoma. Oncogene 31, 1264–1274 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Lima-Fernandes, E. et al. Distinct functional outputs of PTEN signalling are controlled by dynamic association with β-arrestins. EMBO J. 30, 2557–2568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wu, X. et al. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc. Natl Acad. Sci. USA 97, 4233–4238 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. van Diepen, M. T. et al. MyosinV controls PTEN function and neuronal cell size. Nature Cell Biol. 11, 1191–1196 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Cotter, L. et al. Dlg1–PTEN interaction regulates myelin thickness to prevent damaging peripheral nerve overmyelination. Science 328, 1415–1418 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Chagpar, R. B. et al. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 107, 5471–5476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Taniguchi, C. M. et al. The phosphoinositide 3-kinase regulatory subunit p85α can exert tumor suppressor properties through negative regulation of growth factor signaling. Cancer Res. 70, 5305–5315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kim, R. H. et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7, 263–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Kim, Y. C., Kitaura, H., Taira, T., Iguchi-Ariga, S. M. & Ariga, H. Oxidation of DJ-1-dependent cell transformation through direct binding of DJ-1 to PTEN. Int. J. Oncol. 35, 1331–1341 (2009).

    CAS  PubMed  Google Scholar 

  146. Fine, B. et al. Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. Science 325, 1261–1265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. He, L., Ingram, A., Rybak, A. P. & Tang, D. Shank-interacting protein-like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells. J. Clin. Invest. 120, 2094–2108 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. He, L. et al. α-mannosidase 2C1 attenuates PTEN function in prostate cancer cells. Nature Commun. 2, 307 (2011).

    Article  CAS  Google Scholar 

  149. Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Rev. Genet. 7, 606–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nature Rev. Mol. Cell Biol. 11, 329–341 (2010).

    Article  CAS  Google Scholar 

  151. Juhasz, G. et al. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181, 655–666 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Scheid, M. P. & Woodgett, J. R. PKB/AKT: functional insights from genetic models. Nature Rev. Mol. Cell Biol. 2, 760–768 (2001).

    Article  CAS  Google Scholar 

  153. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  154. Backman, S. A. et al. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nature Genet. 29, 396–403 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Kwon, C. H. et al. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nature Genet. 29, 404–411 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Meng, F. et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130, 2113–2129 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Carver, B. S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nature Genet. 41, 619–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. King, J. C. et al. Cooperativity of TMPRSS2–ERG with PI3-kinase pathway activation in prostate oncogenesis. Nature Genet. 41, 524–526 (2009). References 157 and 158 provide evidence that ERG (v-ets erythroblastosis virus E26 oncogene homologue) cooperates with PTEN to promote cancer progression.

    Article  CAS  PubMed  Google Scholar 

  159. Okahara, F., Ikawa, H., Kanaho, Y. & Maehama, T. Regulation of PTEN phosphorylation and stability by a tumor suppressor candidate protein. J. Biol. Chem. 279, 45300–45303 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all members of the Pandolfi laboratory for insightful comments and discussion. The authors also thank H. M. Kim for providing the modified PTEN structures. L.S. was supported by fellowships from the Canadian Institutes of Health Research and the Human Frontier Science Program. This work was supported by US National Institutes of Health (NIH) grant R01 CA-82328-09 awarded to P.P.P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Sup Song, Leonardo Salmena or Pier Paolo Pandolfi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Pier Paolo Pandolfi's homepage

The Sanger Institute Catalogue of Somatic Mutations in Cancer (COSMIC)

CEFINDER

Tumorscape

SUPPLEMENTARY INFORMATION

S1 (table)

Glossary

Cowden disease

An autosomal dominant multiple hamartoma syndrome that results most commonly (in 80% of cases) from a mutation in the phosphatase and tensin homologue (PTEN) gene. The disease was named after the family in which it was first reported. Although the tumours are largely benign, people with Cowden syndrome have an increased risk of developing several types of cancer, including cancers of the breast, thyroid and uterus.

Haploinsufficient tumour suppressor

A tumour suppressor gene is haploinsufficient when loss of one functional copy in a diploid organism compromises tumour suppression, because the remaining copy of the gene is incapable of providing sufficient protein for tumour suppressive function.

Two-hit model

Mutation or deletion of one allele induces cancer susceptibility (the first hit) and mutation or loss of the other allele induces cancer (the second hit).

C2 domains

Protein structural domains involved in targeting proteins to cell membranes. They are composed of eight β-strands that coordinate calcium ions, which bind in a cavity formed by the first and final loops of the domain on the membrane binding face.

PDZ domain

(Postsynaptic-density protein of 95 kDa, discs large, zona occludens-1). A protein-interaction domain that often occurs in scaffolding proteins and is named after the founding members of this protein family.

Pleckstrin homology domains

(PH domains). Protein structural domains composed of two perpendicular antiparallel β-sheets followed by a carboxy-terminal α-helix. They are capable of binding phosphatidylinositol lipids in cell membranes and thus targeting proteins to the membranes.

Metabolic reprogramming

Reprogramming of cellular metabolism allows quiescent cells to proliferate. Proliferating cells often take up nutrients in excess of bioenergetic needs (for example, ATP) and shunt metabolites into pathways that support a platform for biosynthesis (for example, amino acids, lipids and nucleic acids).

Warburg effect

A phenomenon first described by Otto Warburg in which rapidly proliferating tumour cells consume glucose at a higher rate than normal cells and secrete most of the glucose-derived carbon as lactate rather than oxidizing it completely.

Pro-senescence therapy

Novel therapeutic approach to treat cancers by inducing cellular senescence — a robust physiological antitumour response that is engaged by tissues to counteract oncogenic insults. Senescent cells can be cleared through an innate immune response.

PTEN hamartoma tumour syndromes

(PHTSs). Patients with PHTS harbour phosphatase and tensin homologue (PTEN) mutations and develop non-malignant tumours. In PHTSs the proliferation of normal cellular elements is accompanied by disordered architecture. PHTSs include Cowden syndrome, Bannayan–Riley–Ruvalcaba syndrome (BRRS), Proteus syndrome (PS), Proteus-like syndrome (PSL) and autism spectrum disorder with macrocephaly.

miR-1792 cluster

The miR-1792 cluster is a polycistron that generates six different miRNAs (miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a) from one transcript.

ceRNA hypothesis

A unifying hypothesis introducing a new level of post-transcriptional regulation. According to this hypothesis, different RNA transcripts are competing for binding of microRNAs (miRNAs) to their miRNA-binding sites ('miRNA response elements' or 'MREs').

Acute promyelocytic leukaemia

(APL). A subtype of acute myeloid leukaemia that stems from a t(15;17)(q24;q21) translocation. APL is characterized by an abnormal accumulation of immature granulocytes called promyelocytes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M., Salmena, L. & Pandolfi, P. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13, 283–296 (2012). https://doi.org/10.1038/nrm3330

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing