Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular regulation of stem cell quiescence

Subjects

Key Points

  • In contrast to terminally differentiated cells that reside in an irreversible, post-mitotic G0 state of the cell cycle, subsets of mammalian adult stem cells reside in a reversible G0 state (which is also referred to as the quiescent state) for prolonged periods of time. The ability of stem cells to remain quiescent is critical for the maintenance of stem cell potency and for their function during tissue homeostasis and tissue repair in the event of an injury.

  • The quiescent state has long been viewed as a dormant state with minimal basal activity. Increasing evidence from mammalian stem cell systems suggests that various signalling pathways actively maintain the quiescent state.

  • The identification of quiescent stem cells has been hampered by their rarity in tissues. Traditionally, the identification of quiescent stem cells is based on label retention techniques. Recent advances in genetic lineage tracing approaches has allowed the characterization of quiescent and active stem cells in various tissues.

  • Quiescent stem cells have several protective mechanisms and mechanisms involved in the maintenance of stemness. To achieve the goal of maintaining a stem cell unperturbed, regulatory mechanisms are in place to respond to environmental stress, to regulate metabolism and to preserve genomic integrity.

  • The ability of stem cells to self-renew and replenish the quiescent stem cell pool in adult tissues subserves tissue homeostasis and assures tissue repair and regeneration in case of injury. Epigenetic, transcriptional and post-transcriptional mechanisms involving multiple regulators are in place to control these processes.

  • Quiescent stem cells respond to extrinsic stimuli rapidly for activation. How a quiescent stem cell responds to such stimuli is poorly understood. Signalling networks that regulate stem cell quiescence are integrated to allow rapid activation.

Abstract

Subsets of mammalian adult stem cells reside in the quiescent state for prolonged periods of time. This state, which is reversible, has long been viewed as dormant and with minimal basal activity. Recent advances in adult stem cell isolation have provided insights into the epigenetic, transcriptional and post-transcriptional control of quiescence and suggest that quiescence is an actively maintained state in which signalling pathways are involved in maintaining a poised state that allows rapid activation. Deciphering the molecular mechanisms regulating adult stem cell quiescence will increase our understanding of tissue regeneration mechanisms and how they are dysregulated in pathological conditions and in ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular regulation of stem cell quiescence.
Figure 2: Survival mechanisms of quiescent and activated stem cells.
Figure 3: Quiescent stem cells are poised for activation.
Figure 4: Transcriptional control of stem cell quiescence.

Similar content being viewed by others

References

  1. Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000).

    CAS  PubMed  Google Scholar 

  2. Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Orford, K. W. & Scadden, D. T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nature Rev. Genet. 9, 115–128 (2008).

    CAS  PubMed  Google Scholar 

  4. Howard, A. & Pelc, S. R. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Hered. (Lond.) [Suppl.] 6, 261–273 (1953).

    CAS  Google Scholar 

  5. Baserga, R. Biochemistry of the cell cycle: a review. Cell Prolifer. 1, 167–191 (1968).

    CAS  Google Scholar 

  6. Patt, H. M. & Quastler, H. Radiation effects on cell renewal and related systems. Physiol. Rev. 43, 357–396 (1963).

    CAS  PubMed  Google Scholar 

  7. Stoker, M. G. P. The Leeuwenhoek Lecture, 1971: tumour viruses and the sociology of fibroblasts. Proc. R. Soc. Series B, Biol. Sci. 181, 1–17 (1972).

    CAS  Google Scholar 

  8. Temin, H. M. Stimulation by serum of multiplication of stationary chicken cells. J. Cell. Physiol. 78, 161–170 (1971).

    CAS  PubMed  Google Scholar 

  9. Pardee, A. B. A restriction point for control of normal animal cell proliferation. Proc. Natl Acad. Sci. USA 71, 1286–1290 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zetterberg, A. & Larsson, O. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc. Natl Acad. Sci. USA 82, 5365–5369 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gray, J. V. et al. 'Sleeping beauty': quiescence in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 68, 187–206 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Amen, R. D. A model of seed dormancy. Bot. Rev. 34, 1–31 (1968).

    CAS  Google Scholar 

  13. Fausto, N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39, 1477–1487 (2004).

    PubMed  Google Scholar 

  14. Hüttmann, A., Liu, S. L., Boyd, A. W. & Li, C. L. Functional heterogeneity within rhodamine123lo Hoechst33342lo/sp primitive hemopoietic stem cells revealed by pyronin Y. Exp. Hematol. 29, 1109–1116 (2001).

    PubMed  Google Scholar 

  15. Fukada, S. et al. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25, 2448–2459 (2007).

    CAS  PubMed  Google Scholar 

  16. Gerdes, J., Schwab, U., Lemke, H. & Stein, H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int. J. Cancer 31, 13–20 (1983).

    CAS  PubMed  Google Scholar 

  17. Conboy, M. J., Karasov, A. O. & Rando, T. A. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biol. 5, e102 (2007).

    PubMed  PubMed Central  Google Scholar 

  18. Shinin, V., Gayraud-Morel, B., Gomès, D. & Tajbakhsh, S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nature Cell Biol. 8, 677–687 (2006).

    CAS  PubMed  Google Scholar 

  19. Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    CAS  PubMed  Google Scholar 

  20. Potten, C. S., Hume, W. J., Reid, P. & Cairns, J. The segregation of DNA in epithelial stem cells. Cell 15, 899–906 (1978).

    CAS  PubMed  Google Scholar 

  21. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004). Reports a conditional genetic approach by expressing an H2B—GFP fusion protein to label slow-cycling cells and identifies LRCs in the skin.

    CAS  PubMed  Google Scholar 

  22. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    CAS  PubMed  Google Scholar 

  23. Foudi, A. et al. Analysis of histone 2B–GFP retention reveals slowly cycling hematopoietic stem cells. Nature Biotechnol. 27, 84–90 (2008).

    Google Scholar 

  24. Chakkalakal, J. V., Jones, K. M., Basson, M. A. & Brack, A. S. The aged niche disrupts muscle stem cell quiescence. Nature 490, 355–360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Buczacki, S. J. A. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69 (2013). Describes a strategy to genetically mark quiescent crypt cells in the gut and provides a new method to document the behaviour of LRCs over time.

    CAS  PubMed  Google Scholar 

  26. Bickenbach, J. R. Identification and behavior of label-retaining cells in oral mucosa and skin. J. Dent. Res. 60, 1611–1620 (1981).

    PubMed  Google Scholar 

  27. Grompe, M. Tissue stem cells: new tools and functional diversity. Cell Stem Cell 10, 685–689 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Takeda, N. et al. Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420–1424 (2011). Using genetic approaches, this paper demonstrates that quiescent ISCs could be interconverted to active ISCs and displayed stem cell identity.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007). Using knock-in reporter alleles, this paper shows the expression of LGR5 in the crypt in actively cycling basal columnar cells and suggests that LGR5 is a stem cell marker in the intestine, multiple adult tissues and cancers.

    CAS  PubMed  Google Scholar 

  30. Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    CAS  PubMed  Google Scholar 

  31. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotechol. 22, 411–417 (2004).

    CAS  Google Scholar 

  32. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genet. 40, 1291–1299 (2008).

    CAS  PubMed  Google Scholar 

  33. Rompolas, P. et al. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487, 496–499 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007).

    CAS  PubMed  Google Scholar 

  35. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med. 11, 1351–1354 (2005). Shows that ablation of hair follicle stem cells in the bulge leads to complete loss of hair follicles but the survival of the epidermis, suggesting that quiescent hair follicle stem cells are only called into action during would repair but not during normal homeostasis of the epidermis.

    CAS  PubMed  Google Scholar 

  36. Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189–193 (2011).

    CAS  PubMed  Google Scholar 

  37. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    CAS  PubMed  Google Scholar 

  38. Ousset, M. et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nature Cell Biol. 14, 1131–1138 (2012).

    CAS  PubMed  Google Scholar 

  39. Joe, A. W. B. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biol. 12, 153–163 (2010).

    CAS  PubMed  Google Scholar 

  40. Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S. & Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nature Cell Biol. 12, 143–152 (2010). References 39 and 40 reveal the existence of a fibrogenic and/or adipogenic progenitor population that resides in skeletal muscle. Together with muscle stem cells, these progenitors facilitate myogenesis in response to muscle injury.

    CAS  PubMed  Google Scholar 

  41. Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    CAS  PubMed  Google Scholar 

  42. Muñoz, J. et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. EMBO J. 31, 3079–3091 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    CAS  PubMed  Google Scholar 

  44. Pastrana, E., Cheng, L.-C. & Doetsch, F. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc. Natl Acad. Sci. USA 106, 6387–6392 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Forsberg, E. C. et al. Molecular signatures of quiescent, mobilized and leukemia-initiating hematopoietic stem cells. PLoS ONE 5, e8785 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Pagano, M., Pepperkok, R., Verde, F., Ansorge, W. & Draetta, G. Cyclin A is required at two points in the human cell cycle. EMBO J. 11, 961–971 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lauper, N. et al. Cyclin E2: a novel CDK2 partner in the late G1 and S phases of the mammalian cell cycle. Oncogene 17, 2637–2643 (1998).

    CAS  PubMed  Google Scholar 

  48. Kalaszczynska, I. et al. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell 138, 352–365 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pines, J. & Hunter, T. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58, 833–846 (1989).

    CAS  PubMed  Google Scholar 

  50. Li, F. et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584 (1998).

    CAS  PubMed  Google Scholar 

  51. Cheung, T. H. et al. Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482, 524–528 (2012). Proposes that the miRNA pathway is essential for the maintenance of muscle stem cell quiescence and identifies the quiescence-specific miRNA miR-489 that functions as a regulator of muscle stem cell quiescence by inhibiting DEK.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Arnold, C. P. et al. microRNA programs in normal and aberrant stem and progenitor cells. Genome Res. 21, 798–810 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, L., Stokes, N., Polak, L. & Fuchs, E. Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 8, 294–308 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell 128, 669–681 (2007).

    CAS  PubMed  Google Scholar 

  55. Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  57. Ezhkova, E. et al. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 25, 485–498 (2011). Suggests that the H3K27 methyltransferases EZH1 and EZH2 are essential for hair follicle and wound repair and demonstrates an important role of the Polycomb group complex in regulating the hair follicle lineage in an epigenetic manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Juan, A. H. et al. Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes Dev. 25, 789–794 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kamminga, L. M. et al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107, 2170–2179 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hidalgo, I. et al. Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. Cell Stem Cell 11, 649–662 (2012).

    CAS  PubMed  Google Scholar 

  61. Lien, W.-H. et al. Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell 9, 219–232 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Woodhouse, S., Pugazhendhi, D., Brien, P. & Pell, J. M. Ezh2 maintains a key phase of muscle satellite cell expansion but does not regulate terminal differentiation. J. Cell. Sci. 126, 565–579 (2013).

    CAS  PubMed  Google Scholar 

  63. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, Y. et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37–48 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000). This is one of the earliest papers to suggest stem cell quiescence is actively regulated. Shows, using p21-deficent mice that HSC proliferation increases and the proportion of quiescent HSCs decreases.

    CAS  PubMed  Google Scholar 

  66. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    CAS  PubMed  Google Scholar 

  67. Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409 (2000).

    CAS  PubMed  Google Scholar 

  68. Jacques, T. S. et al. Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. EMBO J. 29, 222–235 (2010).

    CAS  PubMed  Google Scholar 

  69. Dannenberg, J. H., van Rossum, A., Schuijff, L. & te Riele, H. Ablation of the retinoblastoma gene family deregulates G1 control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14, 3051–3064 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hosoyama, T., Nishijo, K., Prajapati, S. I., Li, G. & Keller, C. Rb1 gene inactivation expands satellite cell and postnatal myoblast pools. J. Biol. Chem. 286, 19556–19564 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Viatour, P. et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 3, 416–428 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kippin, T. E. & Martens, D. J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19, 756–767 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cheng, T., Rodrigues, N., Dombkowski, D., Stier, S. & Scadden, D. T. Stem cell repopulation efficiency but not pool size is governed by p27kip1. Nature Med. 6, 1235–1240 (2000).

    CAS  PubMed  Google Scholar 

  74. Matsumoto, A. et al. p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 9, 262–271 (2011).

    CAS  PubMed  Google Scholar 

  75. Zou, P. et al. p57Kip2 and p27Kip1 cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell 9, 247–261 (2011).

    CAS  PubMed  Google Scholar 

  76. Luo, D., Renault, V. M. & Rando, T. A. The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin. Cell Dev. Biol. 16, 612–622 (2005).

    CAS  PubMed  Google Scholar 

  77. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    CAS  PubMed  Google Scholar 

  78. Bjornson, C. R. R. et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30, 232–242 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mourikis, P. et al. A critical requirement for Notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30, 243–252 (2012). References 78 and 79 demonstrate that Notch signalling has a role in regulating muscle stem cell quiescence, by showing that genetic ablation of RBP-J specifically in quiescent muscle stem cells results in spontaneous cell cycle entry and, ultimately, the depletion of the stem cell pool.

    CAS  PubMed  Google Scholar 

  80. Chapouton, P. et al. Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J. Neurosci. 30, 7961–7974 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Maillard, I. et al. Canonical Notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2, 356–366 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Estrach, S., Cordes, R., Hozumi, K., Gossler, A. & Watt, F. M. Role of the Notch ligand Delta1 in embryonic and adult mouse epidermis. J. Invest. Dermatol. 128, 825–832 (2007).

    PubMed  Google Scholar 

  83. Williams, S. E., Beronja, S., Pasolli, H. A. & Fuchs, E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470, 353–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Conboy, I. M. & Rando, T. A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 3, 397–409 (2002).

    CAS  PubMed  Google Scholar 

  85. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  PubMed  Google Scholar 

  86. Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. & Bartel, D. P. Vertebrate microRNA genes. Science 299, 1540–1540 (2003).

    CAS  PubMed  Google Scholar 

  87. Bartel, D. P. microRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  88. Lechman, E. R. et al. Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell 11, 799–811 (2012). Suggests that the HSC pool size could be fine-tuned by altering the level of miR-126 in HSCs and shows that miR-126 regulates HSC activation by targeting the PI3K—AKT— glycogen synthase kinase 3β pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Guo, S. et al. microRNA miR-125a controls hematopoietic stem cell number. Proc. Natl Acad. Sci. USA 107, 14229–14234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ageberg, M., Gullberg, U. & Lindmark, A. The involvement of cellular proliferation status in the expression of the human proto-oncogene DEK. Haematologica 91, 268–269 (2006).

    CAS  PubMed  Google Scholar 

  91. Crist, C. G., Montarras, D. & Buckingham, M. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 11, 118–126 (2012).

    CAS  PubMed  Google Scholar 

  92. Boutet, S. C. et al. Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell 10, 327–336 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Miura, P., Amirouche, A., Clow, C., Bélanger, G. & Jasmin, B. J. Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. J. Neurochem. 120, 230–238 (2012).

    CAS  PubMed  Google Scholar 

  94. Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mayr, C. & Bartel, D. P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, M. & Manley, J. L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nature Rev. Mol. Cell. Biol. 10, 741–754 (2009).

    CAS  Google Scholar 

  97. Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mueller, A. A., Cheung, T. H. & Rando, T. A. All's well that ends well: alternative polyadenylation and its implications for stem cell biology. Curr. Opin. Cell Biol. 25, 22–32 (2013).

    Google Scholar 

  99. Ji, Z. & Tian, B. Reprogramming of 3' untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS ONE 4, e8419 (2009).

    PubMed  PubMed Central  Google Scholar 

  100. Mukherji, S. et al. microRNAs can generate thresholds in target gene expression. Nature Genet. 43, 854–859 (2011).

    CAS  PubMed  Google Scholar 

  101. Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123, 1133–1146 (2005).

    CAS  PubMed  Google Scholar 

  102. Farh, K. K.-H. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    CAS  PubMed  Google Scholar 

  103. Rando, T. A. Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086 (2006).

    CAS  PubMed  Google Scholar 

  104. Kregel, K. C. & Zhang, H. J. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R18–R36 (2007).

    CAS  PubMed  Google Scholar 

  105. Rossi, D. J., Jamieson, C. H. M. & Weissman, I. L. Stems cells and the pathways to aging and cancer. Cell 132, 681–696 (2008).

    CAS  PubMed  Google Scholar 

  106. Tothova, Z. & Gilliland, D. G. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1, 140–152 (2007).

    CAS  PubMed  Google Scholar 

  107. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    CAS  PubMed  Google Scholar 

  108. Renault, V. M. et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527–539 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Latil, M. et al. Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity. Nature Commun. 3, 903 (2012).

    Google Scholar 

  110. Mounier, R., Chrétien, F. & Chazaud, B. Blood vessels and the satellite cell niche. Curr. Top. Dev. Biol. 96, 121–138 (2011).

    CAS  PubMed  Google Scholar 

  111. Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Parmar, K., Mauch, P., Vergilio, J.-A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA 104, 5431–5436 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Shima, H. et al. Acquisition of G0 state by CD34-positive cord blood cells after bone marrow transplantation. Exp. Hematol. 38, 1231–1240 (2010).

    CAS  PubMed  Google Scholar 

  114. Hermitte, F., Brunet de la Grange, P., Belloc, F., Praloran, V. & Ivanovic, Z. Very low O2 concentration (0.1%) favors G0 return of dividing CD34+ cells. Stem Cells 24, 65–73 (2006).

    PubMed  Google Scholar 

  115. Suda, T., Takubo, K. & Semenza, G. L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9, 298–310 (2011).

    CAS  PubMed  Google Scholar 

  116. Takubo, K. et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391–402 (2010).

    CAS  PubMed  Google Scholar 

  117. Blagih, J., Krawczyk, C. M. & Jones, R. G. LKB1 and AMPK: central regulators of lymphocyte metabolism and function. Immunol. Rev. 249, 59–71 (2012).

    CAS  PubMed  Google Scholar 

  118. Gurumurthy, S. et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468, 659–663 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gan, B. et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468, 701–704 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Nakada, D., Saunders, T. L. & Morrison, S. J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653–658 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Klionsky, D. J. & Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 208, 455–467 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005).

    CAS  PubMed  Google Scholar 

  124. Sancar, A., Lindsey-Boltz, L. A., Ünsal-Kaçmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    CAS  PubMed  Google Scholar 

  125. Shrivastav, M., Haro, L. P. D. & Nickoloff, J. A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 18, 134–147 (2008).

    CAS  PubMed  Google Scholar 

  126. Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7, 174–185 (2010). Proposes that HSCs preferentially use a more error-prone DNA repair mechanism in the quiescent state and that HSCs might accumulate mutations as a consequence.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    CAS  PubMed  Google Scholar 

  128. Charville, G. W. & Rando, T. A. Stem cell ageing and non-random chromosome segregation. Phil. Trans. R. Soc., B, Biol. Sci. 366, 85–93 (2011).

    CAS  Google Scholar 

  129. Rocheteau, P., Gayraud-Morel, B., Siegl-Cachedenier, I., Blasco, M. A. & Tajbakhsh, S. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148, 112–125 (2012).

    CAS  PubMed  Google Scholar 

  130. Falconer, E. et al. Identification of sister chromatids by DNA template strand sequences. Nature 463, 93–97 (2009).

    PubMed  PubMed Central  Google Scholar 

  131. Potten, C. S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell. Sci. 115, 2381–2388 (2002).

    CAS  PubMed  Google Scholar 

  132. Karpowicz, P. et al. Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. J. Cell Biol. 170, 721–732 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Rando, T. A. The immortal strand hypothesis: segregation and reconstruction. Cell 129, 1239–1243 (2007).

    CAS  PubMed  Google Scholar 

  134. Lansdorp, P. M. Immortal strands? Give me a break. Cell 129, 1244–1247 (2007).

    CAS  PubMed  Google Scholar 

  135. Kiel, M. J. et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449, 238–242 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sotiropoulou, P. A., Candi, A. & Blanpain, C. The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation. Stem Cells 26, 2964–2973 (2008).

    CAS  PubMed  Google Scholar 

  137. Kuroki, T. & Murakami, Y. Random segregation of DNA strands in epidermal basal cells. Jpn J. Cancer Res. 80, 637–642 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Schepers, A. G., Vries, R., van den Born, M., van de Wetering, M. & Clevers, H. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J. 30, 1104–1109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Linsley, P. S. et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell. Biol. 27, 2240–2252 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Fuda, N. J., Ardehali, M. B. & Lis, J. T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51 (1999).

    CAS  PubMed  Google Scholar 

  143. Marshall, N. F., Peng, J., Xie, Z. & Price, D. H. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J. Biol. Chem. 271, 27176–27183 (1996).

    CAS  PubMed  Google Scholar 

  144. Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Wade, J. T. & Struhl, K. The transition from transcriptional initiation to elongation. Curr. Opin. Genet. Dev. 18, 130–136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Levine, M. Paused RNA polymerase II as a developmental checkpoint. Cell 145, 502–511 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Freter, R., Osawa, M. & Nishikawa, S. Adult stem cells exhibit global suppression of RNA polymerase II serine-2 phosphorylation. Stem cells 28, 1571–1580 (2010).

    CAS  PubMed  Google Scholar 

  148. Campisi, J. Cellular senescence: putting the paradoxes in perspective. Curr. Opin. Genet. Dev. 21, 107–112 (2011).

    CAS  PubMed  Google Scholar 

  149. Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, e301 (2008).

    PubMed Central  Google Scholar 

  150. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Brockes, J. P. & Kumar, A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nature Rev. Mol. Cell Biol. 3, 566–574 (2002).

    CAS  Google Scholar 

  152. Kumar, A., Velloso, C. P., Imokawa, Y. & Brockes, J. P. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev. Biol. 218, 125–136 (2000).

    CAS  PubMed  Google Scholar 

  153. McGann, C. J., Odelberg, S. J. & Keating, M. T. Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc. Natl Acad. Sci. USA 98, 13699–13704 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Simon, H.-G. et al. Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs. Dev. Dynam. 202, 1–12 (1995).

    CAS  Google Scholar 

  155. Odelberg, S. J., Kollhoff, A. & Keating, M. T. Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 1099–1109 (2000).

    CAS  PubMed  Google Scholar 

  156. Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

    PubMed  PubMed Central  Google Scholar 

  157. Pajcini, K. V., Corbel, S. Y., Sage, J., Pomerantz, J. H. & Blau, H. M. Transient Inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell 7, 198–213 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Hsu, Y.-C. & Fuchs, E. A family business: stem cell progeny join the niche to regulate homeostasis. Nature Rev. Mol. Cell Biol. 13, 103–114 (2012).

    CAS  Google Scholar 

  159. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

    CAS  PubMed  Google Scholar 

  160. Lander, A. D. et al. What does the concept of the stem cell niche really mean today? BMC Biol. 10, 19 (2012).

    PubMed  PubMed Central  Google Scholar 

  161. Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    CAS  PubMed  Google Scholar 

  162. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    CAS  PubMed  Google Scholar 

  163. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Conboy, I. M., Conboy, M. J., Smythe, G. M. & Rando, T. A. Notch-mediated restoration of regenerative potential to aged muscle. Science 302, 1575–1577 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the Rando laboratory is supported by awards from the Glenn Foundation for Medical Research, the US National Institutes of Health (P01 AG036695, R37 MERIT Award AG023806, R01 AR056849, and R01 AR062185), the Muscular Dystrophy Association and the Department of Veterans Affairs (Merit Review) to T.A.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Rando.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information Table S1

Quiescent stem cell gene signature (PDF 122 kb)

Related links

Related links

FURTHER INFORMATION

Thomas Rando's homepage

Glossary

Progenitor cell

Proliferating stem cell progeny that can differentiate into specific cell types.

Heterochronic parabiosis

Whereby an old animal is surgically connected to a young animal to promote the establishment of a single, shared circulatory system between the two.

Lineage tracing

The process of identifying all progeny of a single cell.

Transit amplifying progenitors

Progenitor cells that replicate rapidly with very short cell cycle times for progenitor cell expansion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, T., Rando, T. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14, 329–340 (2013). https://doi.org/10.1038/nrm3591

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3591

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing