Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Regulated necrosis: the expanding network of non-apoptotic cell death pathways

Abstract

Cell death research was revitalized by the understanding that necrosis can occur in a highly regulated and genetically controlled manner. Although RIPK1 (receptor-interacting protein kinase 1)- and RIPK3–MLKL (mixed lineage kinase domain-like)-mediated necroptosis is the most understood form of regulated necrosis, other examples of this process are emerging, including cell death mechanisms known as parthanatos, oxytosis, ferroptosis, NETosis, pyronecrosis and pyroptosis. Elucidating how these pathways of regulated necrosis are interconnected at the molecular level should enable this process to be therapeutically targeted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An integrated view of the emerging modes of regulated necrosis.
Figure 2: TNFR1-mediated necroptosis: the prototype of regulated necrosis.
Figure 3: Emerging modes of regulated necrosis involving the cellular redox metabolome.
Figure 4: Regulated necrosis mediated by inflammasomes.

Similar content being viewed by others

References

  1. Vogt, C. Untersuchungen über die Entwicklungsgeschichte der Geburtshelferkröte (Alytes obstetricans). (Solothurn: Jent und Gassmann, 1842).

    Google Scholar 

  2. Lockshin, R. A. & Williams, C. M. Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J. Insect. Physiol. 10, 643–649 (1964).

    Article  CAS  Google Scholar 

  3. Schweichel, J. U. & Merker, H. J. The morphology of various types of cell death in prenatal tissues. Teratology 7, 253–266 (1973).

    Article  CAS  PubMed  Google Scholar 

  4. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Crawford, E. D. & Wells, J. A. Caspase substrates and cellular remodeling. Annu. Rev. Biochem. 80, 1055–1087 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Suzanne, M. & Steller, H. Shaping organisms with apoptosis. Cell Death Differ. 20, 669–675 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaczmarek, A., Vandenabeele, P. & Krysko, D. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Taylor, R., Cullen, S. & Martin, S. Apoptosis: controlled demolition at the cellular level. Nature Rev. Mol. Cell Biol. 9, 231–241 (2008).

    Article  CAS  Google Scholar 

  9. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol. 1, 489–495 (2000).

    Article  CAS  Google Scholar 

  10. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Rev. Mol. Cell Biol. 11, 700–714 (2010).

    Article  CAS  Google Scholar 

  12. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng, S. et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal. 19, 2056–2067 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chem. Biol. 4, 313–321 (2008).

    Article  CAS  Google Scholar 

  17. Teng, X. et al. Structure–activity relationship study of novel necroptosis inhibitors. Bioorg. Med. Chem. Lett. 15, 5039–5044 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chem. Biol. 1, 112–119 (2005).

    Article  CAS  Google Scholar 

  19. Laster, S., Wood, J. & Gooding, L. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 141, 2629–2634 (1988).

    CAS  PubMed  Google Scholar 

  20. Grooten, J., Goossens, V., Vanhaesebroeck, B. & Fiers, W. Cell membrane permeabilization and cellular collapse, followed by loss of dehydrogenase activity: early events in tumour necrosis factor-induced cytotoxicity. Cytokine 5, 546–555 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalai, M. et al. Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death Differ. 9, 981–994 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19, 107–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Wilson, N. S., Dixit, V. & Ashkenazi, A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunol. 10, 348–355 (2009).

    Article  CAS  Google Scholar 

  26. Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moquin, D., McQuade, T. & Chan, F. CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PloS ONE 8, e76841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, W. et al. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J. Biol. Chem. 288, 16247–16261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McQuade, T., Cho, Y. & Chan, F. positive and negative phosphorylation regulates RIP1 and RIP3-induced programmed necrosis. Biochem. J. 456, 409–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Xie, T. et al. Structural insights into RIP3-mediated necroptotic signaling. Cell Rep. 5, 70–78 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA 109, 5322–5327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shulga, N. & Pastorino, J. GRIM-19-mediated translocation of STAT3 to mitochondria is necessary for TNF-induced necroptosis. J. Cell Sci. 125, 2995–3003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schulze-Osthoff, K. et al. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317–5323 (1992).

    CAS  PubMed  Google Scholar 

  34. Tait, Stephen, W. G. et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 5, 878–885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murphy, J. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, J. et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 23, 994–1006 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    CAS  PubMed  Google Scholar 

  38. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kB activation, and TNF-dependent apoptosis. Cell 131, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, Q.-H. & Du, C. Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. J. Biol. Chem. 279, 16963–16970 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mahoney, D. J. et al. Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. Proc. Natl Acad. Sci. USA 105, 11778–11783 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zarnegar, B. J. et al. Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nature Immunol. 9, 1371–1378 (2008).

    Article  CAS  Google Scholar 

  45. Vanlangenakker, N., Vanden Berghe, T., Krysko, D. V., Festjens, N. & Vandenabeele, P. Molecular mechanisms and pathophysiology of necrotic cell death. Curr. Mol. Med. 8, 207–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Galluzzi, L. et al. Programmed necrosis from molecules to health and disease. Int. Rev. Cell. Mol. Biol. 289, 1–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Moriwaki, K. & Chan, F. RIP3: a molecular switch for necrosis and inflammation. Genes Dev. 27, 1640–1649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou, Z., Han, V. & Han, J. New components of the necroptotic pathway. Protein Cell 3, 811–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Newton, K., Sun, X. & Dixit, V. M. Kinase RIP3 is dispensable for normal NF-κBs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol. Cell Biol. 24, 1464–1469 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaiser, W., Upton, J. & Mocarski, E. Viral modulation of programmed necrosis. Curr. Opin. Virol. 3, 296–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Mack, C., Sickmann, A., Lembo, D. & Brune, W. Inhibition of proinflammatory and innate immune signaling pathways by a cytomegalovirus RIP1-interacting protein. Proc. Natl Acad. Sci. USA 105, 3094–3099 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Skaletskaya, A. et al. A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc. Natl Acad. Sci. USA 98, 7829–7834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi, N. et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 3, e437 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Degterev, A., Maki, J. & Yuan, J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ. 20, 366 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Zheng, W., Degterev, A., Hsu, E., Yuan, J. & Yuan, C. Structure–activity relationship study of a novel necroptosis inhibitor, necrostatin-7. Bioorg. Med. Chem. Lett. 18, 4932–4935 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Wu, Z., Li, Y., Cai, Y., Yuan, J. & Yuan, C. A novel necroptosis inhibitor-necrostatin-21 and its SAR study. Bioorg. Med. Chem. Lett. 23, 4903–4906 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Kaiser, W. et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3 and MLKL. J. Biol. Chem. 288, 31268–31279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morgan, M., Kim, Y.-S. & Liu, Z.-G. Membrane-bound Fas ligand requires RIP1 for efficient activation of caspase-8 within the death-inducing signaling complex. J. Immunol. 183, 3278–3284 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Kang, T.-B., Yang, S.-H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Lukens, J. et al. RIP1-driven autoinflammation targets IL-1α independently of inflammasomes and RIP3. Nature 498, 224–227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell http://dx.doi.org/10.1016/j.cell.2013.12.010 (2014).

  64. Kurz, T., Gustafsson, B. & Brunk, U. T. Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. FEBS J. 273, 3106–3117 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Vanden Berghe, T. et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 17, 922–930 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Tan, S., Schubert, D. & Maher, P. Oxytosis: novel form of programmed cell death. Curr. Top. Med. Chem. 1, 497–506 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Pérez-De La Cruz, V., Carrillo-Mora, P. & Santamaría, A. Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int. J. Tryptophan Res. 5, 1–8 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. Henke, N. et al. The plasma membrane channel ORAI1 mediates detrimental calcium influx caused by endogenous oxidative stress. Cell Death Dis. 4, e470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yamashima, T. Ca2+-dependent proteases in ischemic neuronal death: a conserved 'calpain–cathepsin cascade' from nematodes to primates. Cell Calcium 36, 285–293 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Syntichaki, P., Xu, K., Driscoll, M. & Tavernarakis, N. Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419, 939–944 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Kleikers, P. et al. NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J. Mol. Med. 90, 1391–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Valencia, A. et al. Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington's disease. Hum. Mol. Genet. 22, 1112–1131 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Song, S. X. et al. Attenuation of brain edema and spatial learning de fi cits by the inhibition of NADPH oxidase activity using apocynin following diffuse traumatic brain injury in rats. Mol. Med. Rep. 7, 327–331 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, M., Perino, A., Ghigo, A., Hirsch, E. & Shah, A. NADPH oxidases in heart failure: poachers or gamekeepers? Antioxid. Redox Signal. 18, 1024–1041 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yazdanpanah, B. et al. Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460, 1159–1163 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Gabelloni, M. L. et al. NADPH oxidase derived reactive oxygen species are involved in human neutrophil IL-1β secretion but not in inflammasome activation. Eur. J. Immunol. 43, 3324–3335 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Sokolovska, A. et al. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nature Immunol. 14, 543–553 (2013).

    Article  CAS  Google Scholar 

  79. Remijsen, Q. et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 18, 581–588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Remijsen, Q. et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 21, 290–304 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Wartha, F. & Henriques-Normark, B. ETosis: a novel cell death pathway. Sci. Signal. 1, pe25 (2008).

    Article  PubMed  Google Scholar 

  83. Yipp, B. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nature Med. 18, 1386–1393 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. van den Berg, J. et al. Chronic granulomatous disease: the European experience. PloS ONE 4, e5234 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Elrod, J. & Molkentin, J. Physiologic functions of cyclophilin d and the mitochondrial permeability transition pore. Circ. J. 77, 1111–1122 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Javadov, S. & Kuznetsov, A. Mitochondrial permeability transition and cell death: the role of cyclophilin D. Front. Physiol. 4, 76 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Clarke, S., McStay, G. & Halestrap, A. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J. Biol. Chem. 277, 34793–34799 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Schinzel, A. C. et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl Acad. Sci. USA 102, 12005–12010 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bonora, M. et al. Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12, 674–683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Giorgio, V. et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl Acad. Sci. USA 110, 5887–5892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Basso, E. et al. Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J. Biol. Chem. 280, 18558–18561 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Kokoszka, J. E. et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427, 461–465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Devalaraja-Narashimha, K., Diener, A. & Padanilam, B. Cyclophilin D gene ablation protects mice from ischemic renal injury. Am. J. Physiol. Renal Physiol. 297, 59 (2009).

    Article  CAS  Google Scholar 

  96. Piot, C. et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. New Engl. J. Med. 359, 473–481 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Vaseva, A. et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536–1548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Baumann, K. Cell death: multitasking p53 promotes necrosis. Nature reviews. Mol. Cell Biol. 13, 480–481 (2012).

    CAS  Google Scholar 

  99. Karch, J. & Molkentin, J. Is p53 the long-sought molecular trigger for cyclophilin D-regulated mitochondrial permeability transition pore formation and necrosis? Circul. Res. 111, 1258–1260 (2012).

    Article  CAS  Google Scholar 

  100. Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 110, 12024–12029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gibson, B. & Kraus, W. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nature Rev. Mol. Cell Biol. 13, 411–424 (2012).

    Article  CAS  Google Scholar 

  102. Lonskaya, I. et al. Regulation of poly(ADP-ribose) polymerase-1 by DNA structure-specific binding. J. Biol. Chem. 280, 17076–17083 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Bürkle, A. & Virág, L. Poly(ADP-ribose): PARadigms and PARadoxes. Mol. Aspects Med. 34, 1046–1065 (2013).

    Article  PubMed  CAS  Google Scholar 

  104. Andrabi, S., Dawson, T. & Dawson, V. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. NY Acad. Sci. 1147, 233–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Los, M. et al. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell 13, 978–988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Simbulan-Rosenthal, C. M. et al. Inhibition of poly(ADP-ribose) polymerase activity is insufficient to induce tetraploidy. Nucleic Acids Res. 29, 841–849 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Virag, L., Robaszkiewicz, A., Vargas, J. M. & Javier Oliver, F. Poly(ADP-ribose) signaling in cell death. Mol. Aspects Med. 34, 1153–1167 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Jagtap, P. & Szabó, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nature Rev. Drug Discov. 4, 421–440 (2005).

    Article  CAS  Google Scholar 

  109. Curtin, N. & Szabo, C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol. Aspects Med. 34, 1217–56 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Jouan-Lanhouet, S. et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. 19, 2003–2014 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sosna, J. et al. TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol. Life Sci. http://dx.doi.org/10.1007/s00018-013-1381-6 (2013)

  112. Xu, X. et al. The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Res. 1343, 206–212 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Cookson, B. & Brennan, M. Pro-inflammatory programmed cell death. Trends Microbiol. 9, 113–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. von Moltke, J., Ayres, J. S., Kofoed, E. M., Chavarria-Smith, J. & Vance, R. E. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31, 73–106 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Fink, S. & Cookson, B. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8, 1812–1825 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Brennan, M. & Cookson, B. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Miao, E. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunol. 11, 1136–1142 (2010).

    Article  CAS  Google Scholar 

  118. Sauer, J.-D. et al. Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. Proc. Natl Acad. Sci. USA 108, 12419–12424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Case, C., Shin, S. & Roy, C. Asc and Ipaf inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infection Immun. 77, 1981–1991 (2009).

    Article  CAS  Google Scholar 

  120. Zamboni, D. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nature Immunol. 7, 318–325 (2006).

    Article  CAS  Google Scholar 

  121. Derré, I. & Isberg, R. Macrophages from mice with the restrictive Lgn1 allele exhibit multifactorial resistance to Legionella pneumophila. Infection Immun. 72, 6221–6229 (2004).

    Article  CAS  Google Scholar 

  122. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Case, C. et al. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proc. Natl Acad. Sci. USA 110, 1851–1856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Aachoui, Y. et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339, 975–978 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hagar, J., Powell, D., Aachoui, Y., Ernst, R. & Miao, E. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250–1253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rathinam, V. et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150, 606–619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Willingham, S. et al. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2, 147–159 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Duncan, J. et al. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J. Immunol. 182, 6460–6469 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Zhao, Y., Khaminets, A., Hunn, J. & Howard, J. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNγ-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog. 5, e1000288 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Averette, K. et al. Anthrax lethal toxin induced lysosomal membrane permeabilization and cytosolic cathepsin release is Nlrp1b/Nalp1b-dependent. PloS ONE 4, e7913 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Holzinger, D. et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J. Leukocyte Biol. 92, 1069–1081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Oka, S.-I., Hsu, C.-P. & Sadoshima, J. Regulation of cell survival and death by pyridine nucleotides. Circul. Res. 111, 611–627 (2012).

    Article  CAS  Google Scholar 

  133. Kristian, T., Balan, I., Schuh, R. & Onken, M. Mitochondrial dysfunction and nicotinamide dinucleotide catabolism as mechanisms of cell death and promising targets for neuroprotection. J. Neurosci. Res. 89, 1946–1955 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Belenky, P., Bogan, K. & Brenner, C. NAD+ metabolism in health and disease. Trends Biochem. Sci. 32, 12–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Sattler, R. & Tymianski, M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol. Neurobiol. 24, 107–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Yoshida, M. et al. Primate neurons show different vulnerability to transient ischemia and response to cathepsin inhibition. Acta Neuropathol. 104, 267–272 (2002).

    CAS  PubMed  Google Scholar 

  137. Bano, D. et al. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120, 275–285 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Orabi, A. et al. Dantrolene mitigates caerulein-induced pancreatitis in vivo in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G196–G204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Staats, K. et al. Dantrolene is neuroprotective in vitro, but does not affect survival in SOD1G93A mice. Neuroscience 220, 26–31 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Mattson, M., Zhu, H., Yu, J. & Kindy, M. Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J. Neurosci. 20, 1358–1364 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen, X. et al. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model. Mol. Neurodegener. 6, 81 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Yu, G., Zucchi, R., Ronca-Testoni, S. & Ronca, G. Protection of ischemic rat heart by dantrolene, an antagonist of the sarcoplasmic reticulum calcium release channel. Bas. Res. Cardiol 95, 137–143 (2000).

    Article  CAS  Google Scholar 

  143. Javadov, S. A. et al. Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovasc. Res. 45, 360–369 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Kourtis, N., Nikoletopoulou, V. & Tavernarakis, N. Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature 490, 213–218 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Artal-Sanz, M., Samara, C., Syntichaki, P. & Tavernarakis, N. Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J. Cell Biol. 173, 231–239 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Aits, S. & Jäättelä, M. Lysosomal cell death at a glance. J. Cell Sci. 126, 1905–1912 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Kagedal, K., Zhao, M., Svensson, I. & Brunk, U. T. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J. 359, 335–343 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Feofanov, A. et al. Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage. Biochem. J. 390, 11–18 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Malagoli, D., Marchesini, E. & Ottaviani, E. Lysosomes as the target of yessotoxin in invertebrate and vertebrate cell lines. Toxicol. Lett. 167, 75–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Kreuzaler, P. et al. Stat3 controls lysosomal-mediated cell death in vivo. Nature Cell Biol. 13, 303–309 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Vanlangenakker, N., Bertrand, M., Bogaert, P., Vandenabeele, P. & Vanden Berghe, T. TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis. 2, e230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Upton, J., Kaiser, W. & Mocarski, E. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7, 302–313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Vince, J. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Jamison, J., Gilloteaux, J., Taper, H., Calderon, P. & Summers, J. Autoschizis: a novel cell death. Biochem. Pharmacol. 63, 1773–1783 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Gilloteaux, J. et al. Cell damage and death by autoschizis in human bladder (RT4) carcinoma cells resulting from treatment with ascorbate and menadione. Ultrastruct. Pathol. 34, 140–160 (2010).

    Article  PubMed  Google Scholar 

  156. Liu, Y. et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1319661110 (2013).

  157. Wilson, C. & Browning, J. Death of HT29 adenocarcinoma cells induced by TNF family receptor activation is caspase-independent and displays features of both apoptosis and necrosis. Cell Death Differ. 9, 1321–1333 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Tenev, T. et al. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432–448 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Feoktistova, M. et al. cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449–463 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ch'en, I. L. et al. Antigen-mediated T cell expansion regulated by parallel pathways of death. Proc. Natl Acad. Sci. USA 105, 17463–17468 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zou, J. et al. Poly IC triggers a cathepsin D and IPS-1-dependent pathway to enhance cytokine production and mediate dendritic cell necroptosis. Immunity 38, 717–728 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Han, W. et al. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol. Cancer Ther. 6, 1641–1649 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Huang, C. et al. Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS ONE 8, e66326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Basit, F., Cristofanon, S. & Fulda, S. Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ. 20, 1161–1173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Thapa, R. et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc. Natl Acad. Sci. USA 110, 18 (2013).

    Article  Google Scholar 

  166. Williams, B. PKR; a sentinel kinase for cellular stress. Oncogene 18, 6112–6120 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Matsumura, H. et al. Necrotic death pathway in fas receptor signaling. J. Cell Biol. 151, 1247–1256 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Oberst, A. et al. Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Welz, P. S. et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477, 330–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Zhang, H. et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373–376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dillon, C. et al. Survival function of the FADD–CASPASE-8–cFLIPL complex. Cell Rep. 1, 401–407 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. You, Z. et al. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J. Cereb. Blood Flow Metab. 28, 1564–1573 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Lim, S. Y., Davidson, S. M., Mocanu, M. M., Yellon, D. M. & Smith, C. C. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc. Drugs Ther. 21, 467–469 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rosenbaum, D. M. et al. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J. Neurosci. Res. 88, 1569–1576 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Trichonas, G. et al. Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc. Natl Acad. Sci. USA 107, 21695–21700 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Murakami, Y. et al. Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration. Proc. Natl Acad. Sci. USA 109, 14598–14603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Linkermann, A. et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int. 81, 751–761 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Bonnet, M. C. et al. The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35, 572–582 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Robinson, N. et al. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nature Immunol. 13, 954–962 (2012).

    Article  CAS  Google Scholar 

  181. Duprez, L. et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Lin, J. et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep. 3, 200–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Colbert, L. et al. Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma. Cancer 119, 3148–3155 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biol. 16, 55–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Research 24, 105–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature http://dx.doi.org/10.1038/nature12940 (2013).

Download references

Acknowledgements

The authors apologize to colleagues whose work was not discussed in this Opinion owing to space limitations. Research in the group of P.V. is supported by Belgian grants (Interuniversity Attraction Poles, IAP 7/32), Flemish grants (Research Foundation Flanders (FWO) G.0875.11, FWO G.0973.11, FWO G.0A45.12N, FWO G.0787.13N, Methusalem grant - BOF09/01M00709), Ghent University grants (MRP, GROUP-ID consortium, Belgium), a grant from the Foundation against Cancer, F94 and grants from the Flanders Institute for Biotechnology (VIB). H.W. is funded by a Cancer Research UK programme grant, an European Research Council (ERC) Advanced Grant and a Wellcome Trust Senior Investigator Award, UK. T.V.B. holds a postdoctoral fellowship from the FWO. A.L. is funded by the German Society for Nephrology, Novartis, Pfizer, Fresenius and the Hans-Werner Jackstädt Stiftung. S.J.L. is an omics@vib postdoctoral fellow at the VIB, co-funded by the Marie Curie COFUND initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vandenabeele.

Ethics declarations

Competing interests

H.W. is co-founder and shareholder of Apogenix GmbH (Heidelberg, Germany), a biotech company developing innovative drugs that target cell death and inflammatory pathways. T.V.B., A.L., S.J.L. and P.V. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berghe, T., Linkermann, A., Jouan-Lanhouet, S. et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15, 135–147 (2014). https://doi.org/10.1038/nrm3737

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing