Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autophagy at the crossroads of catabolism and anabolism

Key Points

  • Autophagy is a conserved catabolic process that degrades cytoplasmic constituents and organelles in the lysosome.

  • Autophagy was originally believed to non-selectively sequester and degrade cytoplasmic material. However, it is increasingly being appreciated that autophagy is a selective process, resulting in the targeted engulfment of specific cargoes such as mitochondria, peroxisomes and ribosomes, and protein aggregates.

  • Although protein catabolism is a salient feature of autophagy, recent research has uncovered that autophagy mobilizes diverse cellular energy and nutrient stores such as lipids, carbohydrates and iron.

  • In certain contexts, autophagic degradation is tightly linked with anabolic processes within cells. For example, autophagy-derived amino acids are important for enabling protein synthesis in mammalian cells.

  • During starvation, multiple transcriptional networks coordinate the autophagic degradation of intracellular lipids (lipophagy) in conjunction with other processes, promoting lipid catabolism.

  • Recent research demonstrating the selective autophagic degradation of iron–ferritin complexes has uncovered the importance of autophagy in mobilizing cellular nutrient stores.

Abstract

Autophagy is a conserved catabolic process that degrades cytoplasmic constituents and organelles in the lysosome. Starvation-induced protein degradation is a salient feature of autophagy but recent progress has illuminated how autophagy, during both starvation and nutrient-replete conditions, can mobilize diverse cellular energy and nutrient stores such as lipids, carbohydrates and iron. Processes such as lipophagy, glycophagy and ferritinophagy enable cells to salvage key metabolites to sustain and facilitate core anabolic functions. Here, we discuss the established and emerging roles of autophagy in fuelling biosynthetic capacity and in promoting metabolic and nutrient homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of mammalian autophagy pathways.
Figure 2: Autophagy-derived metabolites support diverse anabolic functions.
Figure 3: Transcriptional control of lipophagy.
Figure 4: Ferritinophagy.

Similar content being viewed by others

References

  1. Mizushima, N. & Klionsky, D. J. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr. 27, 19–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495–501 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006). References 4 and 5 demonstrate the importance of basal autophagy in normal neuronal function.

    Article  CAS  PubMed  Google Scholar 

  6. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Li, W.-W., Li, J. & Bao, J.-K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69, 1125–1136 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Cuervo, A. M. & Wong, E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24, 92–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759–774 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Rogov, V., Dötsch, V., Johansen, T. & Kirkin, V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53, 167–178 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell. Biol. 10, 458–467 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, Z. & Klionsky, D. J. An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol. 335, 1–32 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Diao, J. et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563–566 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, R. et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57, 456–466 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki, K. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20, 5971–5981 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, J., Huang, W. P., Stromhaug, P. E. & Klionsky, D. J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J. Biol. Chem. 277, 763–773 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Axe, E. L., Walker, S. A., Manifava, M. & Chandra, P. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mari, M. et al. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 190, 1005–1022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamamoto, H., Kakuta, S. & Watanabe, T. M. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198, 219–233 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamasaki, M. et al. Autophagosomes form at ER–mitochondria contact sites. Nature 495, 389–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12, 747–757 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu, K., Psakhye, I. & Jentsch, S. Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158, 549–563 (2014). This paper identifies a new class of ubiquitin–ATG8 or LC3 adaptor proteins (CUET proteins) that do not contain typical UBDs but instead possess a CUE domain that binds ubiquitylated proteins.

    Article  CAS  PubMed  Google Scholar 

  24. Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell. Biol. 12, 9–14 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okamoto, K. Organellophagy: eliminating cellular building blocks via selective autophagy. J. Cell Biol. 205, 435–445 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria. Autophagy 5, 1203–1205 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, H. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892–10903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500–19505 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 1–10 (2012).

    Google Scholar 

  34. Aoki, Y. et al. Phosphorylation of serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell 22, 3206–3217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu, Y. et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem. 288, 1099–1113 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Farré, J.-C., Manjithaya, R., Mathewson, R. D. & Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell 14, 365–376 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Motley, A. M., Nuttall, J. M. & Hettema, E. H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31, 2852–2868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, P. K., Hailey, D. W., Mullen, R. T. & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl Acad. Sci. USA 105, 20567–20574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deosaran, E. et al. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126, 939–952 (2013).

    CAS  PubMed  Google Scholar 

  40. Schuck, S., Gallagher, C. M. & Walter, P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J. Cell Sci. 127, 4078–4088 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schreiber, A. & Peter, M. Substrate recognition in selective autophagy and the ubiquitin–proteasome system. Biochim. Biophys. Acta 1843, 163–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dowdle, W. E. et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069–1079 (2014). References 43 and 44 reveal that ferritin is selectively degraded via autophagy with the aid of the newly identified cargo receptor NCOA4.

    Article  CAS  PubMed  Google Scholar 

  45. Singh, R. & Cuervo, A. M. Autophagy in the cellular energetic balance. Cell Metab. 13, 495–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schworer, C. M., Shiffer, K. A. & Mortimore, G. E. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J. Biol. Chem. 256, 7652–7658 (1981).

    Article  CAS  PubMed  Google Scholar 

  47. Seglen, P. O. & Gordon, P. B. Vanadate inhibits protein degradation in isolated rat hepatocytes. J. Biol. Chem. 256, 7699–7701 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. Onodera, J. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem. 280, 31582–31586 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Suzuki, S. W., Onodera, J. & Ohsumi, Y. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction. PLoS ONE 6, e17412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsukamoto, S. et al. Autophagy is essential for preimplantation development of mouse embryos. Science 321, 117–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Narita, M. et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332, 966–970 (2011). This paper reports the discovery of a novel membrane compartment called the TASCC, in which autophagy-derived amino acids are used for the synthesis of secretory proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Komatsu, M. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Warr, M. R. et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323–327 (2013). This article provides evidence that autophagy promotes the survival and metabolic adaptation of normal haematopoietic stem cells, but not their myeloid progeny, in response to starvation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ezaki, J. et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 7, 727–736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mathew, R. & White, E. Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger. Cold Spring Harb. Symp. Quant. Biol. 76, 389–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Goldsmith, J., Levine, B. & Debnath, J. Autophagy and cancer metabolism. Methods Enzymol. 542, 25–57 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kenific, C. M. & Debnath, J. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol. 1, 37–45 (2015).

    Article  CAS  Google Scholar 

  59. Guo, J. Y., Xia, B. & White, E. Autophagy-mediated tumor promotion. Cell 155, 1216–1219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mathew, R. et al. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol. Cell 55, 916–930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koga, H., Kaushik, S. & Cuervo, A. M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052–3065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Las, G., Serada, S. B., Wikstrom, J. D., Twig, G. & Shirihai, O. S. Fatty acids suppress autophagic turnover in β-cells. J. Biol. Chem. 286, 42534–42544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010). A paper demonstrating that defective autophagy results in impaired insulin sensitivity and is linked to ER stress in obesity and diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lim, Y.-M. et al. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat. Commun. 5, 4934 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Martinez-Vicente, M. et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 13, 567–576 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaushik, S. et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 14, 173–183 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hernández-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938–946 (2012).

    Article  PubMed  Google Scholar 

  68. van Zutphen, T. et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 25, 290–301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wu, X., Sakata, N., Dixon, J. & Ginsberg, H. N. Exogenous VLDL stimulates apolipoprotein B secretion from HepG2 cells by both pre- and post-translational mechanisms. J. Lipid Res. 35, 1200–1210 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Czaja, M. J. & Cuervo, A. M. Lipases in lysosomes, what for? Autophagy 5, 866–867 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. O'Rourke, E. J. & Ruvkun, G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15, 668–676 (2013). This article demonstrates that lysosomal lipolysis is tightly regulated by two transcription factors, MXL-3 and HLH-30, the activity of which is coupled to the nutritional status of the cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, J. M. et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516, 112–115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Seok, S. et al. Transcriptional regulation of autophagy by an FXR–CREB axis. Nature 516, 108–111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shibata, M. et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Commun. 382, 419–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, K. & Czaja, M. J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20, 3–11 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Schulze, R. J. et al. Lipid droplet breakdown requires Dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J. Cell Biol. 203, 315–326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Baerga, R., Zhang, Y., Chen, P.-H., Goldman, S. & Jin, S. Targeted deletion of autophagy-related 5 (Atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5, 1118–1130 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Singh, R. et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329–3339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (Atg7) in mice reveals a role in adipogenesis. Proc. Natl Acad. Sci. USA 106, 19860–19865 (2009). References 82 and 83 demonstrate that adipocyte-specific deletion of Atg7 affects the differentiation of WAT and results in BAT-like features.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martinez-Lopez, N. et al. Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development. EMBO Rep. 14, 795–803 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, K. H. et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Meng, Q. & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IκB kinase β (IKKβ)/NF-κB pathway. J. Biol. Chem. 286, 32324–32332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kaushik, S. et al. Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 13, 258–265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Coupé, B. et al. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab. 15, 47–255 (2012).

    Article  CAS  Google Scholar 

  89. Quan, W. et al. Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology 153, 1817–1826 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Malhotra, R., Warne, J. P., Salas, E., Xu, A. W. & Debnath, J. Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity. Autophagy 11, 145–154 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Kalamidas, S. A. & Kotoulas, O. B. Glycogen autophagy in newborn rat hepatocytes. Histol. Histopathol. 15, 1011–1018 (2000).

    CAS  PubMed  Google Scholar 

  92. Kotoulas, O. B., Kalamidas, S. A. & Kondomerkos, D. J. Glycogen autophagy in glucose homeostasis. Pathol. Res. Pract. 202, 631–638 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Kondomerkos, D. J., Kalamidas, S. A., Kotoulas, O. B. & Hann, A. C. Glycogen autophagy in the liver and heart of newborn rats. The effects of glucagon, adrenalin or rapamycin. Histol. Histopathol. 20, 689–696 (2005).

    CAS  PubMed  Google Scholar 

  94. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111 (2003).

    Article  PubMed  Google Scholar 

  95. Karsli-Uzunbas, G. et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 4, 914–927 (2014). This study uses acute ablation of autophagy using conditional whole-body deletion of Atg7 in a mouse model to demonstrate that autophagy deletion impairs glucose homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Malicdan, M. C. V. & Nishino, I. Autophagy in lysosomal myopathies. Brain Pathol. 22, 82–88 (2012).

    Article  PubMed  Google Scholar 

  97. Raben, N. et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet. 17, 3897–3908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shea, L. & Raben, N. Autophagy in skeletal muscle: implications for Pompe disease. Int. J. Clin. Pharmacol. Ther. 47, S42–S47 (2009).

    CAS  PubMed  Google Scholar 

  99. Spampanato, C. et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 5, 691–706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zirin, J., Nieuwenhuis, J. & Perrimon, N. Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol. 11, e1001708 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511–515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ebato, C. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8, 325–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Jung, H. S. et al. Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia. Cell Metab. 8, 318–324 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Marsh, B. J. et al. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells. Mol. Endocrinol. 21, 2255–2269 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Goginashvili, A. et al. Insulin secretory granules control autophagy in pancreatic β cells. Science 347, 878–882 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Lock, R., Kenific, C. M., Leidal, A. M., Salas, E. & Debnath, J. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov. 4, 466–479 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pantopoulos, K., Porwal, S. K., Tartakoff, A. & Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry 51, 5705–5724 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Asano, T. et al. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol. Cell. Biol. 31, 2040–2052 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kishi-Itakura, C., Koyama-Honda, I., Itakura, E. & Mizushima, N. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci. 127, 4089–4102 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Yeh, S. & Chang, C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl Acad. Sci. USA 93, 5517–5521 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Haack, T. B. et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am. J. Hum. Genet. 91, 1144–1149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Saitsu, H. et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet. 45, 445–449 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nakai, A. et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13, 619–624 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Masiero, E. et al. Autophagy is required to maintain muscle mass. Cell Metab. 10, 507–515 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Pandey, U. B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 860–864 (2007).

    Article  CAS  Google Scholar 

  117. Zheng, Q., Su, H., Tian, Z. & Wang, X. Proteasome malfunction activates macroautophagy in the heart. Am. J. Cardiovasc. Dis. 1, 214–226 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Suraweera, A., Münch, C., Hanssum, A. & Bertolotti, A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 48, 242–253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vabulas, R. M. & Hartl, F. U. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310, 1960–1963 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Quy, P. N., Kuma, A., Pierre, P. & Mizushima, N. Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation. J. Biol. Chem. 288, 1125–1134 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Teckman, J. H. & Perlmutter, D. H. Retention of mutant α1-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G961–G974 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Bernales, S., McDonald, K. L. & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4, e423 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Yorimitsu, T., Nair, U., Yang, Z. & Klionsky, D. J. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 30299–30304 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Ogata, M. et al. Reticulophagy and ribophagy: regulated degradation of protein production factories. Mol. Cell. Biol. 2012, 9220–9231 (2006).

    Article  CAS  Google Scholar 

  125. Ding, W. X. et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 282, 4702–4710 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Nickel, W. & Rabouille, C. Mechanisms of regulated unconventional protein secretion. Nat. Rev. Mol. Cell Biol. 10, 148–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Manjithaya, R., Anjard, C., Loomis, W. F. & Subramani, S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 188, 537–546 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Duran, J. M., Anjard, C., Stefan, C., Loomis, W. F. & Malhotra, V. Unconventional secretion of Acb1 is mediated by autophagosomes. J. Cell Biol. 188, 527–536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bruns, C., McCaffery, J. M. & Curwin, A. J. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J. Cell Biol. 195, 979–992 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dupont, N. et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30, 4701–4711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gee, H. Y., Noh, S. H., Tang, B. L., Kim, K. H. & Lee, M. G. Rescue of ΔF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell 146, 746–760 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Kinseth, M. A. et al. The Golgi-associated protein GRASP is required for unconventional protein secretion during development. Cell 130, 524–534 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Cruz-Garcia, D. et al. Remodeling of secretory compartments creates CUPS during nutrient starvation. J. Cell Biol. 207, 695–703 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ushio, H. et al. Crucial role for autophagy in degranulation of mast cells. J. Allergy Clin. Immunol. 127, 1267–1276.e6 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Murrow, L., Malhotra, R. & Debnath, J. ATG12–ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat. Cell Biol. 17, 300–310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Deretic, V., Jiang, S. & Dupont, N. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol. 22, 397–406 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Young, A. R. J. et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23, 798–803 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Raben, N., Wong, A., Ralston, E. & Myerowitz, R. Autophagy and mitochondria in Pompe disease: nothing is so new as what has long been forgotten. Am. J. Med. Genet. C Semin. Med. Genet. 160C, 13–21 (2012).

    Article  PubMed  CAS  Google Scholar 

  139. Nishino, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906–910 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to T. Marsh for critically reading the manuscript. J.D. is supported by the US National Institutes of Health (CA126792 and CA188404), the Department of Defense Breast Cancer Research Program (W81XWH-11-1-0130) and the Samuel Waxman Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Debnath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Ubiquitin–proteasome system

(UPS). The cellular quality control pathway that tags and degrades unwanted or superfluous proteins.

Basal autophagy

A constitutive autophagic degradation process that proceeds in the absence of any overt stress or stimulus and serves important housekeeping roles.

Autophagosomes

Double membrane-bound vesicles that sequester cytoplasmic materials and target them for lysosomal degradation during macroautophagy.

Unfolded protein response

The activation of a stress response in the endoplasmic reticulum due to an increase in misfolded or aggregated proteins.

Autophagy-related proteins

(ATGs). Autophagy regulators.

Autophagy cargo receptors

Adaptor proteins that mediate the targeting of autophagosomes to cargo (for example, mitochondria and protein aggregates), often via ubiquitin and LC3-binding domains.

Methylotrophic yeasts

A genera of yeast that can only use methanol as the sole source of carbon and energy.

Midbody

An intercellular bridge connecting the two dividing cells at the end of cytokinesis that functions to localize the site of abscission.

Midbody ring

A densely ubiquitylated ring-like macromolecular assembly of several proteins located at the midbody during the telomeric phase of cytokinesis.

mTOR–autophagy special coupling compartment

(TASCC). A recently discovered membrane compartment that is adjacent to Golgi apparatus. The TASCC is highly enriched for both mTOR and autolysosomes and promotes the synthesis of secretory proteins.

Glomerular podocytes

Highly specialized epithelial cells in kidney that are terminally differentiated and serve as an important component of the glomerular filtration barrier.

Gluconeogenesis

A process of glucose production by the metabolism of non-carbohydrate substrates such as pyruvate, lactate, oxaloacetate, glucogenic amino acids or fatty acids.

β-oxidation

The breakdown of fatty acids in the mitochondria into two carbon units of acetyl-CoA, which enter the citric acid cycle, and NADH and FADH2.

Hepatic steatosis

The accumulation of fat in the liver.

Orexigenic

A stimulant (drug or hormone) that increases appetite.

Hyperphagia

An abnormal increase in appetite for the consumption of food, which is frequently associated with a defect in hypothalamic function.

Phosphorolytic degradation

The addition of a phosphate group to a substrate that initiates its cleavage.

Extensor digitorum longus muscle fibres

An example of a type II, fast-twitch muscle that has the ability to contract quickly and strongly but gets fatigued very rapidly.

Soleus muscles

An example of a type I, slow-twitch muscle that contains more mitochondria than type II, fast-twitch muscles; type I muscles contract for longer periods of time than type II muscles.

Pompe disease

Also called glycogen storage disease type II, Pompe disease is caused by a defect in lysosomal acid α-glucosidase.

Danon disease

A glycogen storage disease caused by a mutation in the gene encoding lysosome-associated membrane protein 2 (LAMP2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, J., Debnath, J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16, 461–472 (2015). https://doi.org/10.1038/nrm4024

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4024

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing