Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcription

MAPK-regulated transcription: a continuously variable gene switch?

Abstract

Switching mechanisms that control genes could be viewed either as stable binary switches, in which genes exist in 'on' or 'off' states; or as quantitative rheostat-like switches, in which the rate of transcription is continuously variable and coupled directly to the strength of intracellular signalling events. Here, we discuss the biological need for quantitative gene regulation and, using mitogen-activated protein kinase (MAPK)-controlled transcription as a model, assess the evidence for its existence and postulate mechanisms by which it might occur.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concentration-dependent specification of cell fate by diffusion of morphogen.
Figure 2: Differential expression of IE genes in response to various stimuli.
Figure 3: Transcription-factor binding sites involved in IE gene expression.
Figure 4: Mammalian MAPK cascades.

Similar content being viewed by others

References

  1. Cohen, P. The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol. 7, 353–361 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Kyriakis, J. M. & Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81, 807–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, R.-H., Sarnecki, C. & Blenis, J. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol. 12, 915–927 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lenormand, P. et al. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not their activator MAP kinase kinase (p45mapk) in fibroblasts. J. Cell Biol. 122, 1079–1088 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).The description and development of key concepts.

    Article  CAS  PubMed  Google Scholar 

  6. Gurdon, J. B. & Bourillot, P.-Y. Morphogen gradient interpretation. Nature 413, 797–803 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Green, J. B. A. & Smith, J. C. Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347, 391–394 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Green J. B. A., New, H. V. & Smith, J. C. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71, 731–739 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Gurdon, J. B., Harger, P., Mitchell, A. & Lemaire, P. Activin signalling and response to a morphogen gradient. Nature 371, 487–492 (1994).References 7–9 are key papers on concentration-dependent effects and thresholds.

    Article  CAS  PubMed  Google Scholar 

  10. Traverse, S., Gomez, N., Paterson, H., Marshall, C. & Cohen, P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J. 288, 351–355 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cook, S. J., Aziz, N. & McMahon, M. The repertoire of Fos and Jun proteins expressed during the G1 phase of the cell cycle is determined by the duration of mitogen-activated protein kinase activation. Mol. Cell. Biol. 19, 330–341 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Herschman, H. R. Primary response genes induced by growth factors and tumor promoters. Annu. Rev. Biochem. 60, 281–319 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. McMahon, S. B. & Monroe, J. G. Role of primary response genes in generating cellular responses to growth factors. FASEB J. 6, 2707–2715 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Almendral, J. M. et al. Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol. Cell. Biol. 8, 2140–2148 (1988).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cano, E., Hazzalin, C. A., Kardalinou, E., Buckle, R. S. & Mahadevan, L. C. Neither ERK nor JNK/SAPK MAP kinase subtypes are essential for histone H3/HMG-14 phosphorylation or c-fos and c-jun induction. J. Cell Sci. 108, 3599–3609 (1995).

    CAS  PubMed  Google Scholar 

  17. Hazzalin, C. A., Cuenda, A., Cano, E., Cohen, P. & Mahadevan, L. C. Effects of the inhibition of p38/RK MAP kinase on induction of five fos and jun genes by diverse stimuli. Oncogene 15, 2321–2331 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Hazzalin, C. A., Le Panse, R., Cano, E. & Mahadevan, L. C. Anisomycin selectively desensitizes signalling components involved in stress kinase activation and fos and jun induction. Mol. Cell. Biol. 18, 1844–1854 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nakabeppu, Y., Ryder, K. & Nathans, D. DNA-binding activities of 3 murine Jun proteins: stimulation by Fos. Cell 55, 907–916 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Halazonetis, T. D., Georgopoulos, K., Greenberg, M. E. & Leder, P. c-Jun dimerises with itself and c-fos forming complexes of differing DNA-binding affinities. Cell 55, 917–924 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Ryseck, R.-P. & Bravo, R. c-Jun, Jun B, and Jun D differ in their binding affinities to AP-1 and CRE consensus sequences: effect of Fos proteins. Oncogene 6, 533–542 (1991).

    CAS  PubMed  Google Scholar 

  22. Hai, T. & Curran, T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl Acad. Sci. USA 88, 3720–3724 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karin, M., Liu, Z. G. & Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Kovary, K. & Bravo, R. Expression of different Jun and Fos proteins during the G0 to G1 transition in mouse fibroblasts: in vitro and in vivo associations. Mol. Cell. Biol. 11, 2451–2459 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kovary, K. & Bravo, R. Existence of different Fos/Jun complexes during the G0 to G1 transition and during exponential growth in mouse fibroblasts: differential role of Fos proteins. Mol. Cell. Biol. 12, 5015–5023 (1992).References 19–25 describe the complexity of AP-1 composition and specificity.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Smith, S. et al. Molecular approaches to vertebrate limb morphogenesis. Development (Suppl.) 107, 121–131 (1989).

    CAS  PubMed  Google Scholar 

  27. Cochran, B. H., Reffel, A. C. & Stiles, C. D. Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell 33, 939–947 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Greenberg, M. E. & Ziff, E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311, 433–438 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Lau, L. F. & Nathans, D. Expression of a set of growth-related immediate-early genes in BALB/c3T3 cells: coordinate regulation with c-fos or c-myc. Proc. Natl Acad. Sci. USA 84, 1182–1186 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Herrera, R. E., Shaw, P. E. & Nordheim, A. Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction. Nature 340, 68–70 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Herr, I., van Dam, H. & Angel, P. Binding of promoter-associated AP-1 is not altered during induction and subsequent repression of the c-jun promoter by TPA and UV irradiation. Carcinogenesis 15, 1105–1113 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Rozek, D. & Pfeifer, G. P. In vivo protein–DNA interactions at the c-jun promoter in quiescent and serum-stimulated fibroblasts. J. Cell. Biochem. 57, 479–487 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. McNally, J. G., Muller, W. G., Walker, D., Wolford, R. & Hagar, G. L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).References 33 and 34 are recent descriptions of dynamic movement of proteins in the nucleus studied in vivo.

    Article  CAS  PubMed  Google Scholar 

  35. Wagner, B. J., Hayes, T. E., Hoban, C. J. & Cochran, B. H. The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO J. 9, 4477–4484 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sadowski, H. B., Shuai, K., Darnell, J. E. Jr. & Gilman, M. Z. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 261, 1739–1744 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Fu, X.-Y. & Zhang, J. J. Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Cell 74, 1135–1145 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Karin, M. & Hunter, T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr. Biol. 5, 747–757 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Treisman, R. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8, 205–215 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Sharrocks, A. D., Yang, S. H. & Galanis, A. Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem. Sci. 25, 448–453 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Dérijard, B. et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037 (1994).

    Article  PubMed  Google Scholar 

  43. Boulton, T. G. et al. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663–675 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Kyriakis, J. M. et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Han, J., Lee, J.-D., Bibbs, L. & Ulevitch, R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Rouse, J. et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78, 1027–1037 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Freshney, N. W. et al. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78, 1039–1049 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, J. C. et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746 (1994).This is a seminal paper on p38 MAPK and its inhibitors.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou, G., Bao, Z. Q. & Dixon, J. E. Components of a new human protein kinase signal transduction pathway. J. Biol. Chem. 270, 12665–12669 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, J.-D., Ulevitch, R. J. & Han, J. Primary structure of BMK1: a new mammalian MAP kinase. Biochem. Biophys. Res. Commun. 213, 715–724 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Bagowski, C. & Ferrell, J. Bistability in the JNK cascade Curr. Biol. 11, 1176–1182 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Ferrell, J. E. How regulated protein translocation can produce switch-like responses. Trends Biochem. Sci. 23, 461–465 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J. & Saltiel, A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA 92, 7686–7689 (1995).This was the first description of an inhibitor of ERK/MAPK cascade.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Davies, S. P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Price, M. A., Cruzalegui, F. H. & Treisman, R. The p38 and ERK MAP kinase pathways cooperate to activate ternary complex factor and c-fos transcription in response to UV light. EMBO J. 15, 6552–6563 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Hazzalin, C. A. et al. p38/RK is essential for stress-induced nuclear responses: JNK/SAPKs and c-Jun/ATF-2 phosphorylation are insufficient. Curr. Biol. 6, 1028–1031 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Han, T.-H & Prywes, R. Regulatory role of MEF2D in serum induction of the c-jun promoter. Mol. Cell. Biol. 15, 2907–2915 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Han, J., Jiang, Y., Li, Z., Kravchenko, V. V. & Ulevitch, R. J. MEF2C participates in inflammatory responses via p38-mediated activation. Nature 386, 563–566 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Gupta, S., Campbell, D., Dérijard, B. & Davis, R. J. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267, 389–393 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Raingeaud, J. et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420–7426 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. van Dam, H. et al. ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J. 14, 1798–1811 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Livingstone, C., Patel, G. & Jones, N. ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J. 14, 1785–1797 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Rivera, V. M. et al. A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol. Cell. Biol. 13, 6260–6273 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Gille, H. et al. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14, 951–962 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Marais, R., Wynne, J. & Treisman, R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73, 381–393 (1993).This is definitive work that links ERK/MAPK and Elk-1 to c-fos transcriptional activation.

    Article  CAS  PubMed  Google Scholar 

  66. Whitmarsh, A. J., Shore, P., Sharrocks, A. D. & Davis, R. J. Integration of MAP kinase signal transduction pathways at the serum response element. Science 269, 403–407 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Whitmarsh, A. J., Yang, S. H., Su, M. S., Sharrocks, A. D. & Davis, R. J. Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors. Mol. Cell. Biol. 17, 2360–2371 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Raingeaud, J., Whitmarsh, A. J., Barrett, T., Dérijard, B. & Davis, R. J. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16, 1247–1255 (1996).References 57–68 describe various direct MAPK-transcription factor relationships and their role in gene induction.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Deak, M., Clifton, A. D., Lucocq, J. M. & Alessi, D. R. Mitogen-and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38 and may mediate activation of CREB. EMBO J. 17, 4426–4441 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Arthur, J. S. C. & Cohen, P. MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett. 482, 44–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Kuo, M. H. & Allis, C. D. Roles of histone acetylation and deacetylation in gene regulation. Bioessays 20, 615–626 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Sterner, D. E. & Berger, S. L. Acetylation of histones and transcription related factors. Microbiol. Mol. Biol. Rev. 64, 435–459 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Arias, J. et al. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370, 226–229 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Kouzarides, T. Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev. 9, 40–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, X. J., Ogryzko, V. V., Nishikawa, K., Howard, B. H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).References 74 and 76 report on the discovery of histone acetyltransferase (HAT) activity of coactivators

    Article  CAS  PubMed  Google Scholar 

  77. Kawasaki, H. et al. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405, 195–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Vries, R. G. et al. A specific lysine in c-Jun is required for transcriptional repression by E1A and is acetylated by p300. EMBO J. 20, 6095–6103 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Thomson, S., Clayton, A. L. & Mahadevan, L. C. Independent dynamic regulation of histone phosphorylation and acetylation during immediate-early gene induction. Mol. Cell 8, 1231–1241 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Alberts, A. S., Geneste, O. & Treisman, R. Activation of SRF-regulated chromosomal templates by Rho-family GTPases requires a signal that also induces H4 hyperacetylation. Cell 92, 475–487 (1998).This is a key paper on MAPKs in the context of histone acetylation during immediate-early gene induction.

    Article  CAS  PubMed  Google Scholar 

  81. Mahadevan, L. C., Willis, A. C. & Barratt, M. J. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65, 775–783 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Chadee, D. N. et al. Increased Ser-10 phosphorylation of histone H3 in mitogen-stimulated and oncogene-transformed mouse fibroblasts. J. Biol. Chem. 274, 27914–24920 (1999).

    Article  Google Scholar 

  83. Barratt, M. J., Hazzalin, C. A., Zhelev, N. & Mahadevan, L. C. A mitogen- and anisomycin-stimulated kinase phosphorylates HMG-14 in its basic amino-terminal domain in vivo and on isolated mononucleosomes. EMBO J. 13, 4524–4535 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886–891 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Clayton, A. L., Rose, S., Barratt, M. J. & Mahadevan, L. C. Phosphoacetylation of histone H3 on c-fos and c-jun-associated nucleosomes upon gene activation. EMBO J. 19, 3714–3726 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905–915 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Thomson, S. et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 is a potential histone H3/HMG-14 kinase. EMBO J. 18, 4779–4793 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Rutault, K., Hazzalin, C. A. & Mahadevan, L. C. Combinations of ERK and p38 MAPK inhibitors ablate TNF-α mRNA induction: evidence for selective destabilisation of TNF-α transcripts. J. Biol. Chem. 276, 6666–6674 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Gurdon, J. B. et al. Single cells can sense their position in a morphogen gradient. Development 126, 5309–5317 (1999).

    CAS  PubMed  Google Scholar 

  91. Van Craenenbroeck, K., Vanhoenacker, P. & Haegeman, G. Episomal vectors for gene expression in mammalian cells. Eur. J. Biochem. 267, 5665–5678 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Hazzalin, C. A. Mitogen- and anisomycin-stimulated induction of immediate-early genes. Thesis, Univ. London, UK (1996).

    Google Scholar 

  93. Zervos, A. S., Faccio, L., Gatto, J. P., Kyriakis, J. M. & Brent, R. Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates Max protein. Proc. Natl Acad. Sci. USA 92, 10531–10534 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Treisman, R. The serum response element. Trends Biochem. Sci. 17, 423–426 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Hayes, T. E., Kitchen, A. M. & Cochran, B. H. Inducible binding of a factor to the c-fos regulatory region. Proc. Natl Acad. Sci. USA 84, 1272–1276 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shaw, P. E., Schröter, H. & Nordheim, A. The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell 56, 563–572 (1989).

    Article  CAS  PubMed  Google Scholar 

  97. Sassone-Corsi, P., Visvader, J., Ferland, L., Mellon, P. L. & Verma, I. M. Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: characterization of a cAMP-responsive element. Genes Dev. 2, 1529–1538 (1988).

    Article  CAS  PubMed  Google Scholar 

  98. Fisch, T. M., Prywes, R. & Roeder, R. G. An AP1-binding site in the c-fos gene can mediate induction by epidermal growth factor and 12-O-tetradecanoyl phorbol-13-acetate. Mol. Cell. Biol. 9, 1327–1331 (1989).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Fisch, T. M., Prywes, R. & Roeder, R. G. c-fos sequences necessary for basal expression and induction by epidermal growth factor, 12-O-tetradecanoyl phorbol-13-acetate, and the calcium ionophore. Mol. Cell. Biol. 7, 3490–3502 (1987).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Sheng, M., Dougan, S. T., McFadden, G. & Greenberg, M. E. Calcium and growth factor pathways of c-fos transcriptional activation require distinct upstream regulatory sequences. Mol. Cell. Biol. 8, 2787–2796 (1988).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Lazo, P. S., Dorfman, K., Noguchi, T., Mattéi, M.-G. & Bravo, R. Structure and mapping of the fosB gene. FosB downregulates the activity of the fosB promoter. Nucleic Acids Res. 20, 343–350 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Angel, P., Hattori, K., Smeal, T. & Karin, M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 55, 875–885 (1988).

    Article  CAS  PubMed  Google Scholar 

  103. Han, T.-H., Lamph, W. W. & Prywes, R. Mapping of epidermal growth factor-, serum-, and phorbol ester-responsive sequence elements in the c-jun promoter. Mol. Cell. Biol. 12, 4472–4477 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. de Groot, R. P., Auwerx, J., Karperien, M., Staels, B. & Kruijer, W. Activation of junB by PKC and PKA signal transduction through a novel cis-acting element. Nucleic Acids Res. 19, 775–781 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Perez-Albuerne, E. D., Schatteman, G., Sanders, L. K. & Nathans, D. Transcriptional regulatory elements downstream of the JunB gene. Proc. Natl Acad. Sci. USA 90, 11960–11964 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Phinney, D. G., Keiper, C. L., Francis, M. K. & Ryder, K. Quantitative analysis of the contribution made by 5′-flanking and 3′-flanking sequences to the transcriptional regulation of junB by growth factors. Oncogene 9, 2353–2362 (1994).

    CAS  PubMed  Google Scholar 

  107. Coffer, P. et al. junB promoter regulation: Ras mediated transactivation by c-Ets-1 and c-Ets-2. Oncogene 9, 911–921 (1994).

    CAS  PubMed  Google Scholar 

  108. de Groot, R. P., Karperien, M., Pals, C. & Kruijer, W. Characterization of the mouse junD promoter-high basal level activity due to an octamer motif. EMBO J. 10, 2523–2532 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Galanis, A., Yang, S. H. & Sharrocks, A. D. Selective targeting of MAPKs to the ETS domain transcription factor SAP-1. J. Biol. Chem. 276, 965–973 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Waskiewicz, A. J., Flynn, A., Proud, C. G. & Cooper, J. A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16, 1909–1920 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Fukunaga, R. & Hunter, T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16, 1921–1933 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Frodin, M. & Gammeltoft, S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol. Cell. Endocrinol. 151, 65–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Gille, H., Strahl, T. & Shaw, P. E. Activation of ternary complex factor Elk-1 by stress-activated protein kinases. Curr. Biol. 5, 1191–1200 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Wang, X. Z. & Ron, D. Stress-induced phosphorylation and activation of the transcription factor CHOP (+GADD153) by p38 MAP kinase. Science 272, 1347–1349 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Zhao, M. et al. Regulation of the MEF2 family of transcription factors by p38. Mol. Cell. Biol. 19, 21–30 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Stokoe, D. et al. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J. 11, 3985–3994 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. McLaughlin, M. M. et al. Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP/p38 MAP kinase. J. Biol. Chem. 271, 8488–8492 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. New, L. et al. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J. 17, 3372–3384 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Kato, Y. et al. BMK/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 16, 7054–7066 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Chen, R.-H., Abate, C. & Blenis, J. Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc. Natl Acad. Sci. USA 90, 10952–10956 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We remember Professor Nigel H. K. Holder (1953–1998), Director of the Developmental Biology Research Centre (DBRC), Randall Institute, King's College London. This review benefits from enjoyable and stimulating discussions with him and with other colleagues at the DBRC and at various DBRC retreats. We thank members of our laboratory, especially E. Cano, for their contributions. C. A. H. is funded by the Cancer Research Campaign. We apologize for omitting to cite much related literature due to the breadth of subject matter covered here and space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis C. Mahadevan.

Related links

Related links

DATABASES

LocusLink:

bFGF

EGF

ERK1

ERK2

PCAF

 Swiss-Prot:

ATF-2

CBP

c-fos

c-jun

CREB

Elk-1

fosB

HMG-14

junB

junD

p300

related serum response factor (RSRF)/myocyte enhancer factor (MEF)

RSK2

SRF

Glossary

TISSUE-SPECIFIC GENES

Genes that encode proteins that are required only in certain types of cells.

HOUSEKEEPING GENES

Genes that are expressed in almost every cell, as they encode proteins that are essential for the viability of the cell.

STOCHASTIC

Probabilistic; governed by chance.

IMMEDIATE-EARLY GENES

Genes that are induced rapidly and transiently without a need for new protein synthesis. Many immediate-early genes, such as Fos, control the transcription of other genes, and thereby alter the genetic programme in the nucleus.

JAK/STAT SIGNALLING SYSTEM

There are four Janus kinases (JAKs) (JAK1, JAK2, JAK3 and TYK2), which are activated by growth factors, cytokines and interferons and induce the phosphorylation of the cytokine/interferon receptors and other cellular substrates, including signal transducers and activators of transcription (STAT) proteins. Phosphorylation induces STAT to dimerize and translocate into the nucleus, where they function as transcription factors.

NUCLEOSOME

The basic structural subunit of chromatin, which consists of 150 base pairs of DNA and an octamer of histones.

ACTIVATING PROTEIN 1 TRANSCRIPTION FACTOR COMPLEX

A transcription-factor complex, which comprises a dimer of members of Fos and Jun families of nuclear phosphoproteins.

MORPHOGENESIS

The generation of an ordered form of a part, organ or organism through a collection of developmental processes.

IMAGINAL WING DISC

Single-cell layer epithelial structures of the Drosophila larva that gives rise to wings in the adult form.

NEUROGENESIS

The production of new nervous tissue.

EPISOMALLY REPLICATING PLASMID

A plasmid that can replicate extrachromosomally.

TRANSACTIVATION

The process by which genes are activated by means of a trans-activating domain that is contained in a transcription factor. This enables it to interact with proteins that are involved in binding RNA polymerase to DNA in a sequence-specific manner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazzalin, C., Mahadevan, L. MAPK-regulated transcription: a continuously variable gene switch?. Nat Rev Mol Cell Biol 3, 30–40 (2002). https://doi.org/10.1038/nrm715

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing