Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aspergillus fumigatus morphology and dynamic host interactions

Key Points

  • The interaction between Aspergillus fumigatus and the host immune system is highly complex, owing to the capacity of the fungus to adapt to its environment.

  • The different morphological forms of A. fumigatus result in the exposure of different pathogen-associated molecular patterns that trigger distinct sets of pattern recognition receptors, which, in turn, will generate various immune responses that are not always beneficial.

  • Within the host, during infection, environments will change over time, such as the development of a hypoxic environment in the lungs or altered nutritional supply, making it important to realize that additional immunomodulatory treatment has to be tailored for a certain stage of infection.

  • A. fumigatus can adapt and become resistant to antifungal drugs, highlighting the importance of designing novel antifungal drugs and strategies, such as immunotherapy.

Abstract

Aspergillus fumigatus is an environmental filamentous fungus that can cause life-threatening disease in immunocompromised individuals. The interactions between A. fumigatus and the host environment are dynamic and complex. The host immune system needs to recognize the distinct morphological forms of A. fumigatus to control fungal growth and prevent tissue invasion, whereas the fungus requires nutrients and needs to adapt to the hostile environment by escaping immune recognition and counteracting host responses. Understanding these highly dynamic interactions is necessary to fully understand the pathogenesis of aspergillosis and to facilitate the design of new therapeutics to overcome the morbidity and mortality caused by A. fumigatus. In this Review, we describe how A. fumigatus adapts to environmental change, the mechanisms of host defence, and our current knowledge of the interplay between the host immune response and the fungus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aspergillus fumigatus life cycle and its dynamic cell wall.
Figure 2: Innate host defence and T cell responses to Aspergillus fumigatus infection.
Figure 3: NADPH oxidase complex in Aspergillus fumigatus host defence.
Figure 4: Evasion and adaptation strategies of Aspergillus fumigatus.

Similar content being viewed by others

References

  1. Tekaia, F. & Latge, J. P. Aspergillus fumigatus: saprophyte or pathogen? Curr. Opin. Microbiol. 8, 385–392 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Bellocchio, S. et al. Immunity to Aspergillus fumigatus: the basis for immunotherapy and vaccination. Med. Mycol. 43 (Suppl. 1), S181–S188 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Lehrnbecher, T. et al. Immunotherapy in invasive fungal infection — focus on invasive aspergillosis. Curr. Pharm. Des. 19, 3689–3712 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Svirshchevskaya, E. V. & Kurup, V. P. Immunotherapy of allergic bronchopulmonary aspergillosis: a clinical and experimental approach. Front. Biosci. 8, s92–s101 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Kwon-Chung, K. J. & Sugui, J. A. Aspergillus fumigatus — what makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 9, e1003743 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Taha, M. P., Pollard, S. J., Sarkar, U. & Longhurst, P. Estimating fugitive bioaerosol releases from static compost windrows: feasibility of a portable wind tunnel approach. Waste Manag. 25, 445–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Abdel Hameed, A. A., Yasser, I. H. & Khoder, I. M. Indoor air quality during renovation actions: a case study. J. Environ. Monit. 6, 740–744 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Mahieu, L. M., De Dooy, J. J., Van Laer, F. A., Jansens, H. & Ieven, M. M. A prospective study on factors influencing Aspergillus spore load in the air during renovation works in a neonatal intensive care unit. J. Hosp. Infect. 45, 191–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Pini, G., Faggi, E., Donato, R., Sacco, C. & Fanci, R. Invasive pulmonary aspergillosis in neutropenic patients and the influence of hospital renovation. Mycoses 51, 117–122 (2008).

    Article  PubMed  Google Scholar 

  10. Latge, J. P. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 12, 310–350 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sugui, J. A. et al. Identification and characterization of an Aspergillus fumigatus “supermater” pair. mBio 2, e00234-11 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. O'Gorman, C. M., Fuller, H. & Dyer, P. S. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457, 471–474 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Beauvais, A. et al. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell. Microbiol. 9, 1588–1600 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Loussert, C. et al. In vivo biofilm composition of Aspergillus fumigatus. Cell. Microbiol. 12, 405–410 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Beauvais, A., Fontaine, T., Aimanianda, V. & Latge, J. P. Aspergillus cell wall and biofilm. Mycopathologia 178, 371–377 (2014).

    Article  PubMed  Google Scholar 

  16. Rhodes, J. C. Aspergillus fumigatus: growth and virulence. Med. Mycol. 44 (Suppl. 1), S77–S81 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Fortwendel, J. R. et al. A fungus-specific Ras homolog contributes to the hyphal growth and virulence of Aspergillus fumigatus. Eukaryot. Cell 4, 1982–1989 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Winkelstroter, L. K. et al. High osmolarity glycerol response PtcB phosphatase is important for Aspergillus fumigatus virulence. Mol. Microbiol. 96, 42–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Puttikamonkul, S. et al. Trehalose 6-phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen Aspergillus fumigatus. Mol. Microbiol. 77, 891–911 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Beauvais, A. et al. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog. 9, e1003716 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hartmann, T. et al. Shaping the fungal adaptome — stress responses of Aspergillus fumigatus. Int. J. Med. Microbiol. 301, 408–416 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Monod, M., Jousson, O. & Reichard, U. in Aspergillus fumigatus and Aspergillosis (eds Latge, J. P. & Steinbach, W. J.) 87–106 (ASM press, 2009).

    Book  Google Scholar 

  23. de Vries, R. P. & Visser, J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65, 497–522 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. McDonagh, A. et al. Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog. 4, e1000154 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Krappmann, S. et al. The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol. Microbiol. 52, 785–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Hensel, M., Arst, H. N. Jr., Aufauvre-Brown, A. & Holden, D. W. The role of the Aspergillus fumigatus areA gene in invasive pulmonary aspergillosis. Mol. Gen. Genet. 258, 553–557 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Ries, L. N., Beattie, S. R., Espeso, E. A., Cramer, R. A. & Goldman, G. H. Diverse regulation of the CreA carbon catabolite repressor in Aspergillus nidulans. Genetics 203, 335–352 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Beattie, S. R., Dhingra, S., Caffrey, A., Obar, J. J. & Cramer, R. A. Regulation of in vivo fitness and virulence through the Aspergillus fumigatus transcription factor CreA. The Aspergillus Website http://www.aspergillus.org.uk/content/regulation-vivo-fitness-and-virulence-through-aspergillus-fumigatus-transcription-factor (2016).

    Google Scholar 

  29. Haas, H. Iron — A key nexus in the virulence of Aspergillus fumigatus. Front. Microbiol. 3, 28 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schrettl, M. et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol. Microbiol. 70, 27–43 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Schrettl, M. et al. HapX-mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog. 6, e1001124 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gsaller, F. et al. The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess. EMBO J. 33, 2261–2276 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Amich, J. et al. The ZrfC alkaline zinc transporter is required for Aspergillus fumigatus virulence and its growth in the presence of the Zn/Mn-chelating protein calprotectin. Cell. Microbiol. 16, 548–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Moreno, M. A. et al. The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Mol. Microbiol. 64, 1182–1197 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Brown, N. A. & Goldman, G. H. The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. J. Microbiol. 54, 243–253 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Munoz, A. et al. Different stress-induced calcium signatures are reported by aequorin-mediated calcium measurements in living cells of Aspergillus fumigatus. PloS ONE 10, e0138008 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Juvvadi, P. R. & Steinbach, W. J. Calcineurin orchestrates hyphal growth, septation, drug resistance and pathogenesis of Aspergillus fumigatus: where do we go from here? Pathogens 4, 883–893 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gresnigt, M. S. et al. Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the interleukin-1 receptor. Sci. Rep. 6, 26490 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Grahl, N. et al. In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog. 7, e1002145 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ibrahim-Granet, O. et al. In vivo bioluminescence imaging and histopathopathologic analysis reveal distinct roles for resident and recruited immune effector cells in defense against invasive aspergillosis. BMC Microbiol. 10, 105 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Grahl, N., Dinamarco, T. M., Willger, S. D., Goldman, G. H. & Cramer, R. A. Aspergillus fumigatus mitochondrial electron transport chain mediates oxidative stress homeostasis, hypoxia responses and fungal pathogenesis. Mol. Microbiol. 84, 383–399 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chung, D. et al. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog. 10, e1004487 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Willger, S. D. et al. Dsc orthologs are required for hypoxia adaptation, triazole drug responses, and fungal virulence in Aspergillus fumigatus. Eukaryot. Cell 11, 1557–1567 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Willger, S. D. et al. A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog. 4, e1000200 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Barker, B. M. et al. Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter. BMC Genomics 13, 62 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ben-Ami, R., Lewis, R. E., Leventakos, K. & Kontoyiannis, D. P. Aspergillus fumigatus inhibits angiogenesis through the production of gliotoxin and other secondary metabolites. Blood 114, 5393–5399 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Latge, J. P. & Beauvais, A. Functional duality of the cell wall. Curr. Opin. Microbiol. 20, 111–117 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Bernard, M. et al. Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus. Microbiology 148, 2819–2829 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Cagas, S. E., Jain, M. R., Li, H. & Perlin, D. S. Profiling the Aspergillus fumigatus proteome in response to caspofungin. Antimicrob. Agents Chemother. 55, 146–154 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Asif, A. R. et al. Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. J. Proteome Res. 5, 954–962 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Bruneau, J. M. et al. Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis 22, 2812–2823 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Chai, L. Y. et al. Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology 215, 915–920 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Luther, K., Torosantucci, A., Brakhage, A. A., Heesemann, J. & Ebel, F. Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 β-glucan receptor and Toll-like receptor 2. Cell. Microbiol. 9, 368–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Aimanianda, V. et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121 (2009). This paper is the first to demonstrate that hydrophobic RodA proteins that comprise the rodlet layer on the conidial surface mediate immune evasion both in vitro and in vivo.

    Article  CAS  PubMed  Google Scholar 

  55. Aimanianda, V. & Latge, J. P. Fungal hydrophobins form a sheath preventing immune recognition of airborne conidia. Virulence 1, 185–187 (2010).

    Article  PubMed  Google Scholar 

  56. Carrion Sde, J. et al. The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J. Immunol. 191, 2581–2588 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Langfelder, K., Philippe, B., Jahn, B., Latge, J. P. & Brakhage, A. A. Differential expression of the Aspergillus fumigatus pksP gene detected in vitro and in vivo with green fluorescent protein. Infect. Immun. 69, 6411–6418 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Beauvais, A. & Latge, J. P. Aspergillus biofilm in vitro and in vivo. Microbiol. Spectr. 3, MB-0017-2015 (2015).

    Article  CAS  Google Scholar 

  59. Briard, B., Heddergott, C. & Latge, J. P. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. mBio 7, e00219 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Becker, K. L., Ifrim, D. C., Quintin, J., Netea, M. G. & van de Veerdonk, F. L. Antifungal innate immunity: recognition and inflammatory networks. Semin. Immunopathol. 37, 107–116 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Gresnigt, M. S., Netea, M. G. & van de Veerdonk, F. L. Pattern recognition receptors and their role in invasive aspergillosis. Ann. NY Acad. Sci. 1273, 60–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Hohl, T. M. et al. Aspergillus fumigatus triggers inflammatory responses by stage-specific β-glucan display. PLoS Pathog. 1, e30 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Brown, G. D. & Gordon, S. Immune recognition. A new receptor for β-glucans. Nature 413, 36–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Werner, J. L. et al. Requisite role for the dectin-1 β-glucan receptor in pulmonary defense against Aspergillus fumigatus. J. Immunol. 182, 4938–4946 (2009).

    Article  PubMed  CAS  Google Scholar 

  65. Gessner, M. A. et al. Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect. Immun. 80, 410–417 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Reedy, J. L., Wuethrich, M. A., Latge, J. P. & Vyas, J. M. Dectin-2 is a receptor for galactomannan. The Aspergillus Website http://www.aspergillus.org.uk/content/dectin-2-receptor-galactomannan (2016).

    Google Scholar 

  67. Loures, F. V. et al. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog. 11, e1004643 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Taylor, P. R. et al. Activation of neutrophils by autocrine IL-17A–IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat. Immunol. 15, 143–151 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Serrano-Gomez, D. et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J. Immunol. 173, 5635–5643 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Meier, A. et al. Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell. Microbiol. 5, 561–570 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Braedel, S. et al. Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. Br. J. Haematol. 125, 392–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Mambula, S. S., Sau, K., Henneke, P., Golenbock, D. T. & Levitz, S. M. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J. Biol. Chem. 277, 39320–39326 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, J. E. et al. Involvement of CD14 and Toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect. Immun. 69, 2402–2406 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Balloy, V. et al. Involvement of Toll-like receptor 2 in experimental invasive pulmonary aspergillosis. Infect. Immun. 73, 5420–5425 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bellocchio, S. et al. TLRs govern neutrophil activity in aspergillosis. J. Immunol. 173, 7406–7415 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Rubino, I. et al. Species-specific recognition of Aspergillus fumigatus by Toll-like receptor 1 and Toll-like receptor 6. J. Infect. Dis. 205, 944–954 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Said-Sadier, N., Padilla, E., Langsley, G. & Ojcius, D. M. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS ONE 5, e10008 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Moretti, S. et al. IL-37 inhibits inflammasome activation and disease severity in murine aspergillosis. PLoS Pathog. 10, e1004462 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Iannitti, R. G. et al. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. Nat. Commun. 7, 10791 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Karki, R. et al. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe. 17, 357–368 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Garlanda, C. et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 420, 182–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Cunha, C. et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N. Engl. J. Med. 370, 421–432 (2014). This paper demonstrates a strong association between the deficiency of PTX3 and susceptibility to aspergillosis.

    Article  CAS  PubMed  Google Scholar 

  83. Wojtowicz, A. et al. PTX3 polymorphisms and invasive mold infections after solid organ transplant. Clin. Infect. Dis. 61, 619–622 (2015).

    Article  PubMed  Google Scholar 

  84. D'Angelo, C. et al. Exogenous pentraxin 3 restores antifungal resistance and restrains inflammation in murine chronic granulomatous disease. J. Immunol. 183, 4609–4618 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Gaziano, R. et al. Anti-Aspergillus fumigatus efficacy of pentraxin 3 alone and in combination with antifungals. Antimicrob. Agents Chemother. 48, 4414–4421 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Moalli, F. et al. Role of complement and Fcγ receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood 116, 5170–5180 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Becker, K. L. et al. Pattern recognition pathways leading to a Th2 cytokine bias in allergic bronchopulmonary aspergillosis patients. Clin. Exp. Allergy 45, 423–437 (2014).

    Article  CAS  Google Scholar 

  88. Gresnigt, M. S. et al. Aspergillus fumigatus-induced IL-22 is not restricted to a specific Th cell subset and is dependent on complement receptor 3. J. Immunol. 190, 5629–5639 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Gazendam, R. P. et al. Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects. J. Immunol. 196, 1272–1283 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Becker, K. L. et al. Aspergillus cell wall chitin induces anti- and proinflammatory cytokines in human PBMCs via the Fc-γ receptor/Syk/PI3K pathway. mBio 7, e01823-15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Akoumianaki, T. et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19, 79–90 (2016). This paper is the first to demonstrate that Aspergillus spp. melanin can block the LAP pathway, which is required for the efficient killing of phagocytosed Aspergillus spp. spores.

    Article  CAS  PubMed  Google Scholar 

  92. Kyrmizi, I. et al. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J. Immunol. 191, 1287–1299 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. de Luca, A. et al. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc. Natl Acad. Sci. USA 111, 3526–3531 (2014). This paper demonstrates that the deficient LAP pathway in patients with CGD can be restored by treatment with IL-1Ra.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015). This paper details the full characterization of the molecular pathways that are required for activation of LAP.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Oikonomou, V. et al. Noncanonical fungal autophagy inhibits inflammation in response to IFN-γ via DAPK1. Cell Host Microbe 20, 1–14 (2016).

    Article  CAS  Google Scholar 

  96. Ma, J., Becker, C., Lowell, C. A. & Underhill, D. M. Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J. Biol. Chem. 287, 34149–34156 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Rohm, M. et al. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. Infect. Immun. 82, 1766–1777 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15, 1017–1025 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. McCormick, A. et al. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect. 12, 928–936 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Bruns, S. et al. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog. 6, e1000873 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Lee, M. J. et al. The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog. 11, e1005187 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Bianchi, M. et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114, 2619–2622 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Askew, D. S. Aspergillus fumigatus: virulence genes in a street-smart mold. Curr. Opin. Microbiol. 11, 331–337 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Fuller, K. K. et al. Divergent protein kinase A isoforms co-ordinately regulate conidial germination, carbohydrate metabolism and virulence in Aspergillus fumigatus. Mol. Microbiol. 79, 1045–1062 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Casadevall, A. Amoeba provide insight into the origin of virulence in pathogenic fungi. Adv. Exp. Med. Biol. 710, 1–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Briard, B. et al. Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci. Rep. 5, 8220 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Casadevall, A. & Pirofski, L. A. Accidental virulence, cryptic pathogenesis, martians, lost hosts, and the pathogenicity of environmental microbes. Eukaryot. Cell 6, 2169–2174 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Montesinos, E. Plant-associated microorganisms: a view from the scope of microbiology. Int. Microbiol. 6, 221–223 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Casadevall, A., Steenbergen, J. N. & Nosanchuk, J. D. 'Ready made' virulence and 'dual use' virulence factors in pathogenic environmental fungi — the Cryptococcus neoformans paradigm. Curr. Opin. Microbiol. 6, 332–337 (2003).

    Article  PubMed  Google Scholar 

  110. Hillmann, F. et al. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ. Microbiol. 17, 2858–2869 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Van Waeyenberghe, L. et al. Interaction of Aspergillus fumigatus conidia with Acanthamoeba castellanii parallels macrophage–fungus interactions. Environ. Microbiol. Rep. 5, 819–824 (2013).

    Article  PubMed  Google Scholar 

  112. Shah, A. et al. Calcineurin orchestrates lateral transfer of Aspergillus fumigatus during macrophage cell death. Am. J. Respir. Crit. Care Med. 194, 1127–1139 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Jahn, B., Langfelder, K., Schneider, U., Schindel, C. & Brakhage, A. A. PKSP-dependent reduction of phagolysosome fusion and intracellular kill of Aspergillus fumigatus conidia by human monocyte-derived macrophages. Cell. Microbiol. 4, 793–803 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Chamilos, G. et al. Melanin targets LC3-associated phagocytosis (LAP): a novel pathogenetic mechanism in fungal disease. Autophagy 12, 888–889 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Jahn, B. et al. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect. Immun. 65, 5110–5117 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Fontaine, T. et al. Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog. 7, e1002372 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Robinet, P. et al. A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells. J. Immunol. 192, 5332–5342 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Fallon, J. P., Reeves, E. P. & Kavanagh, K. Inhibition of neutrophil function following exposure to the Aspergillus fumigatus toxin fumagillin. J. Med. Microbiol. 59, 625–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Schlam, D. et al. Gliotoxin suppresses macrophage immune function by subverting phosphatidylinositol 3,4,5-trisphosphate homeostasis. mBio 7, e02242 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Lessing, F. et al. The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. Eukaryot. Cell 6, 2290–2302 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lamarre, C., Ibrahim-Granet, O., Du, C., Calderone, R. & Latge, J. P. Characterization of the SKN7 ortholog of Aspergillus fumigatus. Fungal Genet. Biol. 44, 682–690 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Ibrahim-Granet, O. et al. Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect. Immun. 71, 891–903 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Brakhage, A. A. & Langfelder, K. Menacing mold: the molecular biology of Aspergillus fumigatus. Annu. Rev. Microbiol. 56, 433–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 11, 275–288 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Moretti, S. et al. A mast cell–ILC2–Th9 pathway promotes lung inflammation in cystic fibrosis. Nat. Commun. 8, 14017 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Carvalho, A. et al. TLR3 essentially promotes protective class I-restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood 119, 967–977 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. De Luca, A. et al. CD4+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. J. Clin. Invest. 122, 1816–1831 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Kreindler, J. L. et al. Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. J. Clin. Invest. 120, 3242–3254 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Zelante, T. et al. CD103+ dendritic cells control Th17 cell function in the lung. Cell Rep. 12, 1789–1801 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. McAleer, J. P. et al. Pulmonary Th17 antifungal immunity is regulated by the gut microbiome. J. Immunol. 197, 97–107 (2016).

    Article  PubMed  CAS  Google Scholar 

  131. Bacher, P. et al. Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal Immunol. 7, 916–928 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Bedke, T. et al. Distinct and complementary roles for Aspergillus fumigatus-specific Tr1 and Foxp3+ regulatory T cells in humans and mice. Immunol. Cell Biol. 92, 659–670 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Montagnoli, C. et al. Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism. J. Immunol. 176, 1712–1723 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Bacher, P. et al. Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell 167, 1067–1078.e16 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Bacher, P. et al. Identification of immunogenic antigens from Aspergillus fumigatus by direct multiparameter characterization of specific conventional and regulatory CD4+ T cells. J. Immunol. 193, 3332–3343 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Stuehler, C. et al. Multispecific Aspergillus T cells selected by CD137 or CD154 induce protective immune responses against the most relevant mold infections. J. Infect. Dis. 211, 1251–1261 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Jolink, H. et al. Induction of A. fumigatus-specific CD4-positive T cells in patients recovering from invasive aspergillosis. Haematologica 99, 1255–1263 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Gresnigt, M. S. et al. A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of interleukin-1 receptor antagonist. PLoS Pathog. 10, e1003936 (2014). This paper demonstrates that A. fumigatus GAG specifically induces the anti-inflammatory molecule IL-1Ra to modulate host responses in favour of the fungus.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Zelante, T. et al. Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nat. Commun. 3, 683 (2012). This paper is the first to demonstrate that A. fumigatus can adapt its metabolism and virulence on the basis of sensing host cytokines.

    Article  CAS  PubMed  Google Scholar 

  140. de Groot, P. W., Bader, O., de Boer, A. D., Weig, M. & Chauhan, N. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot. Cell 12, 470–481 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Wasylnka, J. A. & Moore, M. M. Adhesion of Aspergillus species to extracellular matrix proteins: evidence for involvement of negatively charged carbohydrates on the conidial surface. Infect. Immun. 68, 3377–3384 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Sheppard, D. C. Molecular mechanism of Aspergillus fumigatus adherence to host constituents. Curr. Opin. Microbiol. 14, 375–379 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Gravelat, F. N. et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog. 9, e1003575 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Beaussart, A., El-Kirat-Chatel, S., Fontaine, T., Latge, J. P. & Dufrene, Y. F. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus. Nanoscale 7, 14996–15004 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Brown, G. D. et al. Hidden killers: human fungal infections. Sci. Transl Med. 4, 165rv113 (2012).

    Article  CAS  Google Scholar 

  146. Delsing, C. E. et al. Interferon-γ as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect. Diseases 14, 166 (2014).

    Article  CAS  Google Scholar 

  147. Cheng, S. C. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 17, 406–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Zelante, T. et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur. J. Immunol. 37, 2695–2706 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Chai, L. Y. et al. Anti-Aspergillus human host defence relies on type 1 T helper (Th1), rather than type 17 T helper (Th17), cellular immunity. Immunology 130, 46–54 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Cenci, E. et al. T cell vaccination in mice with invasive pulmonary aspergillosis. J. Immunol. 165, 381–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Perruccio, K. et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood 106, 4397–4406 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Kumaresan, P. R. et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc. Natl Acad. Sci. USA 111, 10660–10665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Van Der Linden, J. W., Warris, A. & Verweij, P. E. Aspergillus species intrinsically resistant to antifungal agents. Med. Mycol. 49 (Suppl. 1), S82–S89 (2011).

    Article  PubMed  Google Scholar 

  154. Alastruey-Izquierdo, A. et al. Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study). Antimicrob. Agents Chemother. 57, 3380–3387 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Snelders, E. et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 5, e219 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Meneau, I., Coste, A. T. & Sanglard, D. Identification of Aspergillus fumigatus multidrug transporter genes and their potential involvement in antifungal resistance. Med. Mycol. 54, 616–627 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. van Paassen, J., Russcher, A., In 't Veld-van Wingerden, A. W., Verweij, P. E. & Kuijper, E. J. Emerging aspergillosis by azole-resistant Aspergillus fumigatus at an intensive care unit in the Netherlands, 2010 to 2013. Euro Surveill. 21 http://dx.doi.org/10.2807/1560-7917.ES.2016.21.30.30300 (2016).

  158. Kolwijck, E. et al. Voriconazole-susceptible and voriconazole-resistant Aspergillus fumigatus coinfection. Am. J. Respir. Crit. Care Med. 193, 927–929 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Saijo, S. et al. Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.G.N. was supported by an European Research Council (ERC) Consolidator Grant (#310372) and a Spinoza Grant of the Netherlands Organization for Scientific Research. F.L.v.d.V. was supported by the E-rare project EURO-CMC. L.R. was funded by a Specific Targeted Research Project FunMeta (ERC-2011-AdG-293714). J.-P.L. was supported by grants from Aviesan Fungi grant Aspergillus, Labex IBEID, ANR grant ASP2R2 and ANR-DST grant ANR-13-ISV3-0004-01. The authors thank P. Verweij for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.L.v.d.V, M.S.G, L.R., M.G.N and J-.P.L. researched the data for the article. F.L.v.d.V, M.S.G, L.R., M.G.N and J-.P.L. provided a substantial contribution to discussions of the content. F.L.v.d.V, M.S.G, L.R., M.G.N and J.-P.L. contributed equally to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Frank L. van de Veerdonk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Saprotrophic fungi

Fungi that obtain their nutrition by decomposing organic matter, such as dead plants or animals.

NADPH oxidase complex

A membrane-bound protein complex that produces reactive oxygen species in the form of O2 through the reduction of NADPH.

Conidia

Asexual fungal spores of filamentous fungi.

Conidiophores

Highly organized structures of fungi that successively produce conidia on characteristic conidial heads.

Ascospores

Sexual spores that are produced in cleistothecia when two strains of opposite mating types of Aspergillus fumigatus are grown together.

Aspergilloma

A clump of fungus in a body cavity, such as the lungs.

Siderophore

A high-affinity iron-chelating molecule that is secreted by many bacterial and fungal species.

Galactosaminogalactan

(GAG). A specific carbohydrate polymer that consists of galactose, galactosamine (GalNH2) and N-acetylgalactosamine (GalNAc). GAG is exclusively expressed by hyphae and is also secreted into the environment as an extracellular polysaccharide.

Hydrophobins

Hydrophobic proteins that are present on the surface of Aspergillus fumigatus conidia and are responsible for the typical rodlet configuration of the outer conidial layer.

Pathogen-associated molecular patterns

(PAMPs). Pathogen molecular structures that are recognized by pattern recognition receptors (PRRs) and activate host immune responses.

Pattern recognition receptors

(PRRs). Receptors expressed in host cells that bind to and recognize pathogen-associated molecular patterns (PAMPs), which causes the activation of signalling cascades for the induction of cytokine secretion and activation of the immune response.

Cytokines

Molecules, such as interleukins, chemokines and interferons, that are released mostly, but not exclusively, by immune cells to mediate communication between cells to either activate or suppress the host response directed against an invading pathogen. Chemokines are cytokines that regulate the migration of immune cells.

Pentraxin 3

(PTX3). A soluble pattern recognition receptor that is released by immune cells, including phagocytic cells.

Chronic granulomatous disease

(CGD). A disease caused by genetic defects in the NADPH oxidase complex, resulting in an inability to produce NADPH-dependent reactive oxygen species and an extreme susceptibility to specific infectious diseases, such as infection with Staphylococcus aureus and aspergillosis.

LC3-associated phagocytosis

(LAP). A process in which the autophagy machinery is used to insert lipidated microtubule-associated protein 1 light chain 3 (LC3) molecules into the membrane of phagosomes for the efficient targeting of their contents for degradation.

Interleukin-1 receptor antagonist

(IL-1Ra). An anti-inflammatory cytokine that competitively antagonizes the function of the pro-inflammatory cytokine IL-1 by occupying the IL-1 receptor without activating the downstream signalling pathway.

Neutrophil extracellular traps

(NETs). A network of DNA that is covered with antimicrobial peptides and is released by dying neutrophils to trap and damage particles that are too large to be phagocytosed.

Type 1 T helper cells

(TH1 cells). A lineage of T helper cells that express the surface molecule CD4 and are characterized by the transcription factor TBET and the production of interferon-γ. The primary function of TH1 cells is to augment phagocytosis and kill pathogens.

TH2 cells

(Type 2 T helper cells). A lineage of T cells that express the surface molecule CD4 and are characterized by the transcription factor GATA3 and the production of interleukin-4 (IL-4), IL-5 and IL-13, which induces the production of immunoglobulin E (IgE) and stimulates mucous production by airway epithelial cells.

TH17 cells

(Type 17 T helper cells). A lineage of T cells that express the surface molecule CD4 and are characterized by the transcription factor RAR-related orphan receptor C (RORC) and the production of interleukin-17 (IL-17) and IL-22. TH17 cells induce neutrophil chemotactic activity (IL-17) and have the potential to induce the release of antimicrobial peptides by epithelial cells (IL-17 and IL-22).

TH9 cells

(Type 9 T helper cells). A lineage of T cells that express the surface molecule CD4 and are characterized by the expression of the transcription factor PU.1, and the production of iinterleukin-9 (IL-9) and transforming growth factor-β (TGFβ).

Dendritic cells

(DCs). Antigen-presenting cells that regulate the induction of the adaptive immune response by activating T cell differentiation through antigen presentation and specific cytokine signalling pathways.

Regulatory T cells

(Treg cells). A lineage of T cells that express the surface molecule CD4 and the transcription factor forkhead box P3 (FOXP3), and that regulate pro-inflammatory immune cells.

Type 1 regulatory T cells

(Tr1 cells). A lineage of T cells that express the surface molecule CD4 and regulate the inflammatory response through the secretion of the anti-inflammatory cytokines interleukin-10 (IL-10) and transforming growth factor β1 (TGFβ1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van de Veerdonk, F., Gresnigt, M., Romani, L. et al. Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol 15, 661–674 (2017). https://doi.org/10.1038/nrmicro.2017.90

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.90

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing