Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria

Key Points

  • Malaria has devastating consequences: it strikes over 250 million people worldwide and kills approximately 1 million people each year, many of whom are children under 5 years of age.

  • Malaria can be prevented by interventions focused on breaking the cycle of transmission, either by eliminating the mosquito (through the use of insecticides) or preventing bites (through the use of insecticide-treated bed nets).

  • It can also be treated through the use of antimalarial drugs. Drug resistance, however, remains the biggest threat to current drug efficacy. The former mainstays of antimalarial chemotherapy, chloroquine and sulfadoxine–pyrimethamine, have been rendered ineffective for the treatment of Plasmodium falciparum malaria by the emergence and spread of drug-resistant parasites.

  • Almost all malaria-endemic regions have switched to artemisinin (ART)-based combination therapies (ACTs) for the first-line treatment of P. falciparum malaria.

  • ACTs combine an ART semisynthetic derivative, which has a short half-life, with a longer-lasting partner drug. This results in sustained antimalarial pressure after the plasma concentrations of the ART derivatives have fallen below therapeutic levels

  • ACTs are discussed in terms of their modes of action and pharmacokinetic properties and the proposed mechanisms of resistance to them.

  • We summarize several therapeutic strategies that might decrease the emergence of drug resistance and present a perspective on the current ACT-based efforts to reduce the burden of malaria.

Abstract

Plasmodium falciparum resistance to chloroquine and sulphadoxine–pyrimethamine has led to the recent adoption of artemisinin-based combination therapies (ACTs) as the first line of treatment against malaria. ACTs comprise semisynthetic artemisinin derivatives paired with distinct chemical classes of longer acting drugs. These artemisinins are exceptionally potent against the pathogenic asexual blood stages of Plasmodium parasites and also act on the transmissible sexual stages. These combinations increase the rates of clinical and parasitological cures and decrease the selection pressure for the emergence of antimalarial resistance. This Review article discusses our current knowledge about the mode of action of ACTs, their pharmacological properties and the proposed mechanisms of drug resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The worldwide incidence of malaria and the rapid adoption of artemisinin-based combination therapies across sub-Saharan Africa.
Figure 2: Site of action of antimalarial drugs.
Figure 3: Recent trends in malaria cases and deaths.

Similar content being viewed by others

References

  1. Wellems, T. E. & Plowe, C. V. Chloroquine-resistant malaria. J. Infect. Dis. 184, 770–776 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Gregson, A. & Plowe, C. V. Mechanisms of resistance of malaria parasites to antifolates. Pharmacol. Rev. 57, 117–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Wongsrichanalai, C., Pickard, A. L., Wernsdorfer, W. H. & Meshnick, S. R. Epidemiology of drug-resistant malaria. Lancet Infect. Dis. 2, 209–218 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y. & Hay, S. I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Talisuna, A. O., Okello, P. E., Erhart, A., Coosemans, M. & D'Alessandro, U. Intensity of malaria transmission and the spread of Plasmodium falciparum resistant malaria: a review of epidemiologic field evidence. Am. J. Trop. Med. Hyg. 77, 170–180 (2007).

    Article  PubMed  Google Scholar 

  6. Feachem, R. & Sabot, O. A new global malaria eradication strategy. Lancet 371, 1633–1635 (2008). Discusses the need to coordinate a global strategy to progressively eliminate malaria.

    Article  PubMed  Google Scholar 

  7. Jiang, J. B., Li, G. Q., Guo, X. B., Kong, Y. C. & Arnold, K. Antimalarial activity of mefloquine and qinghaosu. Lancet 2, 285–288 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. White, N. J. Qinghaosu (artemisinin): the price of success. Science 320, 330–334 (2008). Reviews artemisinins, including a historical perspective, their pharmacological properties, their clinical efficacy and initial evidence of emerging resistance.

    Article  CAS  PubMed  Google Scholar 

  9. Ro, D. K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. German, P. I. & Aweeka, F. T. Clinical pharmacology of artemisinin-based combination therapies. Clin. Pharmacokinet. 47, 91–102 (2008).

    Article  PubMed  Google Scholar 

  11. Golenser, J., Waknine, J. H., Krugliak, M., Hunt, N. H. & Grau, G. E. Current perspectives on the mechanism of action of artemisinins. Int. J. Parasitol. 36, 1427–1441 (2006). Summarizes a large and sometimes conflicting body of investigations into the mode of action of artemisinins, their metabolism, suggested mechanisms of resistance and adverse events.

    Article  CAS  PubMed  Google Scholar 

  12. Hartwig, C. L. et al. Accumulation of artemisinin trioxane derivatives within neutral lipids of Plasmodium falciparum malaria parasites is endoperoxide-dependent. Biochem. Pharmacol. 77, 322–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Robert, A., Benoit-Vical, F., Claparols, C. & Meunier, B. The antimalarial drug artemisinin alkylates heme in infected mice. Proc. Natl Acad. Sci. USA 102, 13676–13680 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bousejra- El Garah, F., Claparols, C., Benoit-Vical, F., Meunier, B. & Robert, A. The antimalarial trioxaquine DU1301 alkylates heme in malaria-infected mice. Antimicrob. Agents Chemother. 52, 2966–2969 (2008).

    Article  CAS  Google Scholar 

  15. Creek, D. J. et al. Relationship between antimalarial activity and heme alkylation for spiro- and dispiro-1,2,4-trioxolane antimalarials. Antimicrob. Agents Chemother. 52, 1291–1296 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Creek, D. J. et al. Stability of peroxide antimalarials in the presence of human hemoglobin. Antimicrob. Agents Chemother. 53, 3496–3500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krungkrai, S. R. & Yuthavong, Y. The antimalarial action on Plasmodium falciparum of qinghaosu and artesunate in combination with agents which modulate oxidant stress. Trans. R. Soc. Trop. Med. Hyg. 81, 710–714 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Asawamahasakda, W., Ittarat, I., Pu, Y. M., Ziffer, H. & Meshnick, S. R. Reaction of antimalarial endoperoxides with specific parasite proteins. Antimicrob. Agents Chemother. 38, 1854–1858 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kannan, R., Kumar, K., Sahal, D., Kukreti, S. & Chauhan, V. S. Reaction of artemisinin with haemoglobin: implications for antimalarial activity. Biochem. J. 385, 409–418 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, Y. How might qinghaosu (artemisinin) and related compounds kill the intraerythrocytic malaria parasite? A chemist's view. Acc. Chem. Res. 35, 255–259 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Stocks, P. A. et al. Evidence for a common non-heme chelatable-iron-dependent activation mechanism for semisynthetic and synthetic endoperoxide antimalarial drugs. Angew. Chem. Int. Edn Engl. 46, 6278–6283 (2007).

    Article  CAS  Google Scholar 

  22. del Pilar Crespo, M. et al. Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology. Antimicrob. Agents Chemother. 52, 98–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Bhisutthibhan, J. & Meshnick, S. R. Immunoprecipitation of [3H]-dihydroartemisinin translationally controlled tumor protein (TCTP) adducts from Plasmodium falciparum-infected erythrocytes by using anti-TCTP antibodies. Antimicrob. Agents Chemother. 45, 2397–2399 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Olliaro, P. L., Haynes, R. K., Meunier, B. & Yuthavong, Y. Possible modes of action of the artemisinin-type compounds. Trends Parasitol. 17, 122–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Eckstein-Ludwig, U. et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 424, 957–961 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Jambou, R. et al. Resistance of Plasmodium falciparum field isolates to in vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet 366, 1960–1963 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Dahlstrom, S. et al. Diversity of the sarco/endoplasmic reticulum Ca2+-ATPase orthologue of Plasmodium falciparum (PfATP6). Infect. Genet. Evol. 8, 340–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Valderramos, S. G. & Fidock, D. A. Transporters involved in resistance to antimalarial drugs. Trends Pharmacol. Sci. 27, 594–601 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Price, R. N. et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364, 438–447 (2004). Demonstrates that amplification of pfmdr1 is a major mediator of resistance to mefloquine in P. falciparum malaria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sidhu, A. B. et al. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J. Infect. Dis. 194, 528–535 (2006).

    Article  PubMed  Google Scholar 

  31. Raj, D. K. et al. Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. J. Biol. Chem. 284, 7687–7696 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Noedl, H., Socheat, D. & Satimai, W. Artemisinin-resistant malaria in Asia. N. Engl. J. Med. 361, 540–541 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Dondorp, A. M. et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009). Provides clinical evidence for delayed parasite clearance times in patients with a P. falciparum infection who are treated with AS in western Cambodia, and calls for urgent containment methods to halt the spread of resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wootton, J. C. et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418, 320–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Roper, C. et al. Intercontinental spread of pyrimethamine-resistant malaria. Science 305, 1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Klein, E. Y., Smith, D. L., Boni, M. F. & Laxminarayan, R. Clinically immune hosts as a refuge for drug-sensitive malaria parasites. Malar. J. 7, 67 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rathod, P. K., McErlean, T. & Lee, P.-C. Variations in frequencies of drug resistance in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 94, 9389–9393 (1997). Provides compelling evidence that some P. falciparum strains harbour the ability to rapidly acquire antimalarial drug resistance, termed the 'accelerated resistance to multiple drugs' phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ekland, E. H. & Fidock, D. A. Advances in understanding the genetic basis of antimalarial drug resistance. Curr. Opin. Microbiol. 10, 363–370 (2007). Summarizes recent developments in genetic and genomic tools to explore theresistance of Plasmodium spp. to antimalarial drugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dharia, N. V. et al. Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum. Genome Biol. 10, R21 (2009). Describes a rapid method, based on hybridizations of a P. falciparum 4.8-million-feature tiled array that covers 90% of coding regions, to identify SNPs and copy number variations in drug-pressured mutant parasites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kozarewa, I. et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes. Nature Methods 6, 291–295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Afonso, A. et al. Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob. Agents Chemother. 50, 480–489 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hunt, P. et al. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites. Mol. Microbiol. 65, 27–40 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Woodrow, C. J. & Krishna, S. Antimalarial drugs: recent advances in molecular determinants of resistance and their clinical significance. Cell Mol. Life Sci. 63, 1586–1596 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Bukirwa, H. & Critchley, J. Sulfadoxine-pyrimethamine plus artesunate versus sulfadoxine-pyrimethamine plus amodiaquine for treating uncomplicated malaria. Cochrane Database Syst. Rev. 2006, CD004966 (2006).

    PubMed Central  Google Scholar 

  45. Sullivan, D. J., Jr, Matile, H., Ridley, R. G. & Goldberg, D. E. A common mechanism for blockade of heme polymerization by antimalarial quinolines. J. Biol. Chem. 273, 31103–31107 (1998). Demonstrates that antimalarial–haem complex formation is potentially a common mechanism of drug action.

    Article  CAS  PubMed  Google Scholar 

  46. Rohrbach, P. et al. Genetic linkage of pfmdr1 with food vacuolar solute import in Plasmodium falciparum. EMBO J. 25, 3000–3011 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alker, A. P. et al. Pfmdr1 and in vivo resistance to artesunate-mefloquine in falciparum malaria on the Cambodian-Thai border. Am. J. Trop. Med. Hyg. 76, 641–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Nosten, F. et al. Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet 356, 297–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Nosten, F. et al. Treatment of multidrug-resistant Plasmodium falciparum malaria with 3-day artesunate-mefloquine combination. J. Infect. Dis. 170, 971–977 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Jansen, F. H. et al. Assessment of the relative advantage of various artesunate-based combination therapies by a multi-treatment Bayesian random-effects meta-analysis. Am. J. Trop. Med. Hyg. 77, 1005–1009 (2007).

    Article  PubMed  Google Scholar 

  51. Fitch, C. D. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. Life Sci. 74, 1957–1972 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Hassan Alin, M., Bjorkman, A. & Wernsdorfer, W. H. Synergism of benflumetol and artemether in Plasmodium falciparum. Am. J. Trop. Med. Hyg. 61, 439–445 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Ezzet, F., Mull, R. & Karbwang, J. Population pharmacokinetics and therapeutic response of CGP 56697 (artemether + benflumetol) in malaria patients. Br. J. Clin. Pharmacol. 46, 553–561 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ezzet, F., van Vugt, M., Nosten, F., Looareesuwan, S. & White, N. J. Pharmacokinetics and pharmacodynamics of lumefantrine (benflumetol) in acute falciparum malaria. Antimicrob. Agents Chemother. 44, 697–704 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Checchi, F. et al. Supervised versus unsupervised antimalarial treatment with six-dose artemether-lumefantrine: pharmacokinetic and dosage-related findings from a clinical trial in Uganda. Malar. J. 5, 59 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bloland, P. B., Ettling, M. & Meek, S. Combination therapy for malaria in Africa: hype or hope? Bull. World Health Organ. 78, 1378–1388 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Price, R. N. et al. Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clin. Infect. Dis. 42, 1570–1577 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Sisowath, C. et al. In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether-lumefantrine (Coartem). J. Infect. Dis. 191, 1014–1017 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Dokomajilar, C., Nsobya, S. L., Greenhouse, B., Rosenthal, P. J. & Dorsey, G. Selection of Plasmodium falciparum pfmdr1 alleles following therapy with artemether-lumefantrine in an area of Uganda where malaria is highly endemic. Antimicrob. Agents Chemother. 50, 1893–1895 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sisowath, C. et al. The role of pfmdr1 in Plasmodium falciparum tolerance to artemether-lumefantrine in Africa. Trop. Med. Int. Health 12, 736–742 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Sisowath, C. et al. In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa. J. Infect. Dis. 199, 750–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Abdulla, S. et al. Efficacy and safety of artemether-lumefantrine dispersible tablets compared with crushed commercial tablets in African infants and children with uncomplicated malaria: a randomised, single-blind, multicentre trial. Lancet 372, 1819–1827 (2008). First clinical report of the dispersible formulation of ATM–LMF, showing excellent clinical efficacy in young African children with uncomplicated malaria. This paediatric formulation should substantially improve administration and dosing of this widely used ACT.

    Article  CAS  PubMed  Google Scholar 

  63. Naisbitt, D. J. et al. Metabolism-dependent neutrophil cytotoxicity of amodiaquine: a comparison with pyronaridine and related antimalarial drugs. Chem. Res. Toxicol. 11, 1586–1595 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Olliaro, P. & Mussano, P. Amodiaquine for treating malaria. Cochrane Database Syst. Rev. 2003, CD000016 (2003).

    PubMed Central  Google Scholar 

  65. Gasasira, A. F. et al. High risk of neutropenia in HIV-infected children following treatment with artesunate plus amodiaquine for uncomplicated malaria in Uganda. Clin. Infect. Dis. 46, 985–991 (2008).

    Article  PubMed  Google Scholar 

  66. Pussard, E. et al. Disposition of monodesethylamodiaquine after a single oral dose of amodiaquine and three regimens for prophylaxis against Plasmodium falciparum malaria. Eur. J. Clin. Pharmacol. 33, 409–414 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. White, N. J. et al. Pharmacokinetics of intravenous amodiaquine. Br. J. Clin. Pharmacol. 23, 127–135 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Legrand, E., Volney, B., Meynard, J. B., Mercereau-Puijalon, O. & Esterre, P. In vitro monitoring of Plasmodium falciparum drug resistance in French Guiana: a synopsis of continuous assessment from 1994 to 2005. Antimicrob. Agents Chemother. 52, 288–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. de Dios, A. C., Casabianca, L. B., Kosar, A. & Roepe, P. D. Structure of the amodiaquine-FPIX mu oxo dimer solution complex at atomic resolution. Inorg. Chem. 43, 8078–8084 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Bray, P. G., Hawley, S. R., Mungthin, M. & Ward, S. A. Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum. Mol. Pharmacol. 50, 1559–1566 (1996).

    CAS  PubMed  Google Scholar 

  71. Ochong, E. O., van den Broek, I. V., Keus, K. & Nzila, A. Short report: association between chloroquine and amodiaquine resistance and allelic variation in the Plasmodium falciparum multiple drug resistance 1 gene and the chloroquine resistance transporter gene in isolates from the upper Nile in southern Sudan. Am. J. Trop. Med. Hyg. 69, 184–187 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Holmgren, G. et al. Amodiaquine resistant Plasmodium falciparum malaria in vivo is associated with selection of pfcrt 76T and pfmdr1 86Y. Infect. Genet. Evol. 6, 309–314 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Pradines, B. et al. Prevalence of in vitro resistance to eleven standard or new antimalarial drugs among Plasmodium falciparum isolates from Pointe-Noire, Republic of the Congo. J. Clin. Microbiol. 44, 2404–2408 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Picot, S. et al. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar. J. 8, 89 (2009). Reviews many studies assessing the impact of known P. falciparum drug resistance determinants on the risk of treatment failure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Faye, B. et al. Efficacy and tolerability of four antimalarial combinations in the treatment of uncomplicated Plasmodium falciparum malaria in Senegal. Malar. J. 6, 80 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guthmann, J.-P. et al. High efficacy of two artemisinin-based combinations (artesunate + amodiaquine and artemether + lumefantrine) in Caala, Central Angola. Am. J. Trop. Med. Hyg. 75, 143–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Hasugian, A. R. et al. Dihydroartemisinin-piperaquine versus artesunate-amodiaquine: superior efficacy and posttreatment prophylaxis against multidrug-resistant Plasmodium falciparum and Plasmodium vivax malaria. Clin. Infect. Dis. 44, 1067–1074 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Hien, T. T. et al. Dihydroartemisinin-piperaquine against multidrug-resistant Plasmodium falciparum malaria in Vietnam: randomised clinical trial. Lancet 363, 18–22 (2004).

    Article  CAS  Google Scholar 

  79. Vennerstrom, J. L. et al. Bisquinolines. 1. N,N-bis(7-chloroquinolin-4-yl)alkanediamines with potential against chloroquine-resistant malaria. J. Med. Chem. 35, 2129–2134 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Davis, T. M., Hung, T. Y., Sim, I. K., Karunajeewa, H. A. & Ilett, K. F. Piperaquine: a resurgent antimalarial drug. Drugs 65, 75–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, C. et al. Pharmacokinetics of piperaquine after single and multiple oral administrations in healthy volunteers. Yakugaku Zasshi 127, 1709–1714 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Ashley, E. A. et al. A randomized, controlled study of a simple, once-daily regimen of dihydroartemisinin-piperaquine for the treatment of uncomplicated, multidrug-resistant falciparum malaria. Clin. Infect. Dis. 41, 425–432 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Smithuis, F. et al. Efficacy and effectiveness of dihydroartemisinin-piperaquine versus artesunate-mefloquine in falciparum malaria: an open-label randomised comparison. Lancet 367, 2075–2085 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Karunajeewa, H. et al. Safety evaluation of fixed combination piperaquine plus dihydroartemisinin (Artekin) in Cambodian children and adults with malaria. Br. J. Clin. Pharmacol. 57, 93–99 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Warhurst, D. C. & Duraisingh, M. T. Rational use of drugs against Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg. 95, 345–346 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Basco, L. K. & Ringwald, P. In vitro activities of piperaquine and other 4-aminoquinolines against clinical isolates of Plasmodium falciparum in Cameroon. Antimicrob. Agents Chemother. 47, 1391–1394 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Muangnoicharoen, S., Johnson, D. J., Looareesuwan, S., Krudsood, S. & Ward, S. A. Role of known molecular markers of resistance in the antimalarial potency of piperaquine and dihydroartemisinin in vitro. Antimicrob. Agents Chemother. 53, 1362–1366 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vivas, L. et al. Anti-malarial efficacy of pyronaridine and artesunate in combination in vitro and in vivo. Acta Trop. 105, 222–228 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Basco, L. K., Ringwald, P., Franetich, J. F. & Mazier, D. Assessment of pyronaridine activity in vivo and in vitro against the hepatic stages of malaria in laboratory mice. Trans. R. Soc. Trop. Med. Hyg. 93, 651–652 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Ringwald, P., Meche, F. S. & Basco, L. K. Short report: effects of pyronaridine on gametocytes in patients with acute uncomplicated falciparum malaria. Am. J. Trop. Med. Hyg. 61, 446–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Pagola, S., Stephens, P. W., Bohle, D. S., Kosar, A. D. & Madsen, S. K. The structure of malaria pigment β-haematin. Nature 404, 307–310 (2000). A landmark study that elucidated the structure of β-haematin, the proposed target of several antimalarials, including chloroquine. This structure revealed dimer linkages that are formed through reciprocal iron-carboxylate bonds, which are in turn linked into chains via hydrogen bonds in the haematin crystal.

    Article  CAS  PubMed  Google Scholar 

  92. Auparakkitanon, S., Chapoomram, S., Kuaha, K., Chirachariyavej, T. & Wilairat, P. Targeting of hematin by the antimalarial pyronaridine. Antimicrob. Agents Chemother. 50, 2197–2200 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu, L. J., Rabbege, J. R., Nagasawa, H., Jacobs, G. & Aikawa, M. Morphological effects of pyronaridine on malarial parasites. Am. J. Trop. Med. Hyg. 38, 30–36 (1988).

    Article  CAS  PubMed  Google Scholar 

  94. Chang, C., Lin-Hua, T. & Jantanavivat, C. Studies on a new antimalarial compound: pyronaridine. Trans. R. Soc. Trop. Med. Hyg. 86, 7–10 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Ringwald, P., Bickii, J. & Basco, L. Randomised trial of pyronaridine versus chloroquine for acute uncomplicated falciparum malaria in Africa. Lancet 347, 24–28 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Basco, L. K. & Ringwald, P. Molecular epidemiology of malaria in Yaounde, Cameroon. VII. Analysis of recrudescence and reinfection in patients with uncomplicated falciparum malaria. Am. J. Trop. Med. Hyg. 63, 215–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Ramharter, M. et al. Fixed-dose pyronaridine-artesunate combination for treatment of uncomplicated falciparum malaria in pediatric patients in Gabon. J. Infect. Dis. 198, 911–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Price, R. N. et al. Vivax malaria: neglected and not benign. Am. J. Trop. Med. Hyg. 77, 79–87 (2007). Highlights the burden and impact of the often-overlooked disease, P. vivax malaria.

    Article  PubMed  Google Scholar 

  99. Ratcliff, A. et al. Two fixed-dose artemisinin combinations for drug-resistant falciparum and vivax malaria in Papua, Indonesia: an open-label randomised comparison. Lancet 369, 757–765 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tjitra, E. et al. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med. 5, e128 (2008). Describes severe and fatal malaria resulting from P. vivax infections in an area with high-grade chloroquine resistance in both P. falciparum and P. vivax . Dispels earlier assumptions that P. vivax infection was rarely lethal.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Clark, R. L. et al. Developmental toxicity of artesunate and an artesunate combination in the rat and rabbit. Birth Defects Res. B. Dev. Reprod. Toxicol. 71, 380–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Brewer, T. G., Genovese, R. F., Newman, D. B. & Li, Q. Factors relating to neurotoxicity of artemisinin antimalarial drugs “listening to arteether”. Med. Trop. (Mars) 58, 22–27 (1998).

    CAS  Google Scholar 

  103. McGready, R. et al. Artemisinin antimalarials in pregnancy: a prospective treatment study of 539 episodes of multidrug-resistant Plasmodium falciparum. Clin. Infect. Dis. 33, 2009–2016 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Rijken, M. J. et al. Dihydroartemisinin–piperaquine rescue treatment of multidrug-resistant Plasmodium falciparum malaria in pregnancy: a preliminary report. Am. J. Trop. Med. Hyg. 78, 543–545 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. White, N. J., McGready, R. M. & Nosten, F. H. New medicines for tropical diseases in pregnancy: catch-22. PLoS Med. 5, e133 (2008). Discusses the need for further studies on the use and evaluation of medicines for treatment of diseases during pregnancy.

    Article  PubMed  PubMed Central  Google Scholar 

  106. WHO. World malaria report 2008 (WHO, Geneva, 2008).

  107. Laufer, M. K., Djimde, A. A. & Plowe, C. V. Monitoring and deterring drug-resistant malaria in the era of combination therapy. Am. J. Trop. Med. Hyg. 77, 160–169 (2007).

    Article  PubMed  Google Scholar 

  108. Vestergaard, L. S. & Ringwald, P. Responding to the challenge of antimalarial drug resistance by routine monitoring to update national malaria treatment policies. Am. J. Trop. Med. Hyg. 77, 153–159 (2007).

    Article  PubMed  Google Scholar 

  109. Sibley, C. H., Barnes, K. I., Watkins, W. M. & Plowe, C. V. A network to monitor antimalarial drug resistance: a plan for moving forward. Trends Parasitol. 24, 43–48 (2008). Provides the rationale for the creation of WWARN, which is developing a group of open-access databases to aid antimalarial drug treatment and prevention decisions.

    Article  CAS  PubMed  Google Scholar 

  110. Newton, P. N. et al. A collaborative epidemiological investigation into the criminal fake artesunate trade in South East Asia. PLoS Med. 5, e32 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bate, R., Coticelli, P., Tren, R. & Attaran, A. Antimalarial drug quality in the most severely malarious parts of Africa — a six country study. PLoS ONE 3, e2132 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fidock, D. A., Eastman, R. T., Ward, S. A. & Meshnick, S. R. Recent highlights in antimalarial drug resistance and chemotherapy research. Trends Parasitol. 24, 537–544 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hay, S. I., Smith, D. L. & Snow, R. W. Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect. Dis. 8, 369–378 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Moon, S., Perez Casas, C., Kindermans, J. M., de Smet, M. & von Schoen-Angerer, T. Focusing on quality patient care in the new global subsidy for malaria medicines. PLoS Med. 6, e1000106 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hay, S. I., Rogers, D. J., Toomer, J. F. & Snow, R. W. Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, internet access and review. Trans. R. Soc. Trop. Med. Hyg. 94, 113–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Smith, D. L., Dushoff, J. & McKenzie, F. E. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol. 2, e368 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Coluzzi, M. The clay feet of the malaria giant and its African roots: hypotheses and inferences about origin, spread and control of Plasmodium falciparum. Parassitologia 41, 277–283 (1999).

    CAS  PubMed  Google Scholar 

  118. Obsomer, V., Defourny, P. & Coosemans, M. The Anopheles dirus complex: spatial distribution and environmental drivers. Malar. J. 6, 26 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Struik, S. S. & Riley, E. M. Does malaria suffer from lack of memory? Immunol. Rev. 201, 268–290 (2004).

    Article  PubMed  Google Scholar 

  120. Breman, J. G., Alilio, M. S. & Mills, A. Conquering the intolerable burden of malaria: what's new, what's needed: a summary. Am. J. Trop. Med. Hyg. 71, 1–15 (2004).

    Article  PubMed  Google Scholar 

  121. Hastings, I. M. & Watkins, W. M. Intensity of malaria transmission and the evolution of drug resistance. Acta Trop. 94, 218–229 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Williams, T. N. Human red blood cell polymorphisms and malaria. Curr. Opin. Microbiol. 9, 388–394 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Rogerson, S. J., Hviid, L., Duffy, P. E., Leke, R. F. & Taylor, D. W. Malaria in pregnancy: pathogenesis and immunity. Lancet Infect. Dis. 7, 105–117 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Langhorne, J., Ndungu, F. M., Sponaas, A. M. & Marsh, K. Immunity to malaria: more questions than answers. Nature Immunol. 9, 725–732 (2008).

    Article  CAS  Google Scholar 

  125. Fidock, D. A. et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6, 861–871 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Djimde, A. et al. A molecular marker for chloroquine-resistant falciparum malaria. N. Engl. J. Med. 344, 257–263 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Laufer, M. K. et al. Return of chloroquine antimalarial efficacy in Malawi. N. Engl. J. Med. 355, 1959–1966 (2006). Demonstrates that the strict removal of chloroquine from Malawi resulted in a decrease in the prevalence of drug-resistant parasites, suggesting that there is a fitness cost associated with chloroquine resistance.

    Article  CAS  PubMed  Google Scholar 

  128. Mita, T. et al. Expansion of wild type allele rather than back mutation in pfcrt explains the recent recovery of chloroquine sensitivity of Plasmodium falciparum in Malawi. Mol. Biochem. Parasitol. 135, 159–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Ginsburg, H. Should chloroquine be laid to rest? Acta Trop. 96, 16–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Sowunmi, A., Adedeji, A. A., Gbotosho, G. O., Fateye, B. A. & Happi, T. C. Effects of pyrimethamine-sulphadoxine, chloroquine plus chlorpheniramine, and amodiaquine plus pyrimethamine-sulphadoxine on gametocytes during and after treatment of acute, uncomplicated malaria in children. Mem. Inst. Oswaldo Cruz 101, 887–893 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Ogungbamigbe, T., Ojurongbe, O., Ogunro, P., Okanlawon, B. & Kolawole, S. Chloroquine resistant Plasmodium falciparum malaria in Osogbo Nigeria: efficacy of amodiaquine + sulfadoxine-pyrimethamine and chloroquine + chlorpheniramine for treatment. Mem. Inst. Oswaldo Cruz 103, 79–84 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Sadasivaiah, S., Tozan, Y. & Breman, J. G. Dichlorodiphenyltrichloroethane (DDT) for indoor residual spraying in Africa: how can it be used for malaria control? Am. J. Trop. Med. Hyg. 77, 249–263 (2007).

    Article  PubMed  Google Scholar 

  133. Guyatt, H. L. & Snow, R. W. Malaria in pregnancy as an indirect cause of infant mortality in sub-Saharan Africa. Trans. R. Soc. Trop. Med. Hyg. 95, 569–576 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Steketee, R. W., Nahlen, B. L., Parise, M. E. & Menendez, C. The burden of malaria in pregnancy in malaria-endemic areas. Am. J. Trop. Med. Hyg. 64, 28–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. ter Kuile, F. O., van Eijk, A. M. & Filler, S. J. Effect of sulfadoxine-pyrimethamine resistance on the efficacy of intermittent preventive therapy for malaria control during pregnancy: a systematic review. JAMA 297, 2603–2616 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Schellenberg, D. et al. Intermittent treatment for malaria and anaemia control at time of routine vaccinations in Tanzanian infants: a randomised, placebo-controlled trial. Lancet 357, 1471–1477 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Macete, E. et al. Intermittent preventive treatment for malaria control administered at the time of routine vaccinations in Mozambican infants: a randomized, placebo-controlled trial. J. Infect. Dis. 194, 276–285 (2006).

    Article  PubMed  Google Scholar 

  138. Kobbe, R. et al. Malaria incidence and efficacy of intermittent preventive treatment in infants (IPTi). Malar. J. 6, 163 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  139. White, N. J. How antimalarial drug resistance affects post-treatment prophylaxis. Malar. J. 7, 9 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. UNICEF. Malaria and children: progress in intervention coverage (UNICEF, New York, 2007).

Download references

Acknowledgements

We thank I. Borghini-Fuhrer and C. Li for their critical reading of the manuscript. R.T.E. is supported in part by the Training Program in Microbiology for Infectious Diseases (T32 AI007161, Department of Microbiology & Immunology, Columbia University Health Sciences, New York, USA). Funding for this work was also provided in part by the National Institute of Allergy and Infectious Diseases (R01 AI079709). We also thank T. Harris (Graphic Arts Center, Albert Einstein College of Medicine, Bronx, New York) for her initial input into developing figure 2. Our thanks extend also to A. Guilloux (WHO, Geneva) and P. Salama and E. White Johansson (UNICEF, New York) for providing the information for figures 1 and 3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard T. Eastman or David A. Fidock.

Supplementary information

41579_2009_BFnrmicro2239_MOESM1_ESM.pdf

Supplementary information S1 (figure)| Structures of artemisinin derivatives and partner drugs that comprise the most commonly used artemisinin-based combination therapies (PDF 88 kb)

Related links

Related links

DATABASES

Entrez Genome Project

Anopheles gambiae

Plasmodium berghei

Plasmodium chabaudi

Plasmodium falciparum

Plasmodium vivax

Saccharomyces cerevisiae

Xenopus laevis

FURTHER INFORMATION

David A. Fidock's homepage

Affordable Medicines Facility – malaria

Bill and Melinda Gates Foundation

The Global Fund to Fight AIDS, Tuberculosis and Malaria

Medicines for Malaria Venture

President's Malaria Initiative

Roll Back Malaria Partnership

World Bank

WWARN

Glossary

Artemisinin-based combination therapy

A combination of artemisinin or one of its derivatives with one or more antimalarials of a different chemical class.

Pharmacokinetic properties

Characteristics of a drug, including its mechanisms of absorption and distribution, the rate at which a drug action begins and the duration of the effect, the chemical changes of the agent in the body, and the effects and routes of excretion of drug metabolites.

Antimalarial resistance

The ability of a parasite strain to survive and multiply despite the administration and adsorption of a drug given in doses equal to or higher than those usually recommended but within tolerance of the subject. The form of the drug that is active against the parasite must be able to gain access to the parasite or to the infected red blood cell for the duration that is necessary for its normal action.

Recrudescence

The reappearance of asexual parasitaemia, after initial parasite clearance, that results from the same infection that caused the original illness.

Pharmacodynamic properties

These include: the physiological effects of a drug on the body, on microorganisms or on parasites in or on the body; the mechanisms of drug action; and the relationship between drug concentration and effect. Pharmacodynamics is often summarized as the study of what a drug does to the body, whereas pharmacokinetics is the study of what the body does to a drug.

Gametocyte

A sexual form of the intra-erythrocytic Plasmodium parasite that matures over a 2-week period, after which it can transmit to Anopheles mosquito vectors. Following ingestion during the insect blood meal, a gametocyte transforms rapidly into a female or male gamete that can undergo sexual recombination in the mosquito midgut.

Asexual blood-stage trophozoite

An asexual form of the intra-erythrocytic Plasmodium parasite that is undergoing cell growth and nuclear division, in preparation for parasite differentiation into a mature schizont that produces individual progeny (known as merozoites). These merozoites burst from the infected cell, ready to initiate new rounds of intracellular development.

Selection pressure

Evolutionary pressure that allows certain genotypes to outcompete others. In the case of malaria, resistance to antimalarials disseminates owing to the selective survival advantage that resistant parasites have in the presence of the drug. In a given population, the greater the proportion of parasites that are exposed to antimalarials at concentrations that allow proliferation only of resistant parasites, the greater the selection pressure.

Pharmacovigilance

The pharmacological science relating to the detection, assessment, understanding and prevention of adverse effects resulting from the short- or long-term use of medicines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eastman, R., Fidock, D. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 7, 864–874 (2009). https://doi.org/10.1038/nrmicro2239

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing