Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial RNA thermometers: molecular zippers and switches

Key Points

  • Structured regions in bacterial mRNAs can act as thermosensors, known as RNA thermometers (RNATs), that control translation efficiency of the transcript.

  • Some RNATs act like zippers that open and close, in a reversible manner, according to the ambient temperature. These RNATs control heat shock and virulence genes.

  • Escherichia coli uses a cascade of hierarchically organized RNATs to monitor any harmful temperature upshifts and to induce the production of protective heat shock proteins when required.

  • Known heat shock RNATs have little if any sequence conservation.

  • Recent biophysical approaches revealed details of RNAT zippers at base pair resolution. Non-Watson–Crick base pairs, internal loops and bulges, Mg2+ and the hydration shell can be crucial for RNAT stability and melting.

  • RNATs that permit translation of cold-shock and phage genes at low temperatures switch between two mutually exclusive structures. The conformation at low temperature favours translation.

  • Synthetic thermosensors inspired by natural RNATs can induce gene expression in response to a temperature upshift and bear potential as tools for large-scale industrial applications without the need for chemical inducers.

Abstract

Bacteria use complex strategies to coordinate temperature-dependent gene expression. Many genes encoding heat shock proteins and virulence factors are regulated by temperature-sensing RNA sequences, known as RNA thermometers (RNATs), in their mRNAs. For these genes, the 5′ untranslated region of the mRNA folds into a structure that blocks ribosome access at low temperatures. Increasing the temperature gradually shifts the equilibrium between the closed and open conformations towards the open structure in a zipper-like manner, thereby increasing the efficiency of translation initiation. Here, we review the known molecular principles of RNAT action and the hierarchical RNAT cascade in Escherichia coli. We also discuss RNA-based thermosensors located upstream of cold shock and other genes, translation of which preferentially occurs at low temperatures and which thus operate through a different, more switch-like mechanism. Finally, we consider the potential biotechnological applications of natural and synthetic RNATs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA zippers and RNA switches.
Figure 2: Three types of zipper-like RNA thermometer.
Figure 3: RNA thermometers for heat shock control in Escherichia coli.
Figure 4: Interplay between a metabolite-sensing riboswitch and a temperature-sensing RNA thermometer.
Figure 5: RNA thermometer switches that permit translation at low temperature.

Similar content being viewed by others

References

  1. Konkel, M. E. & Tilly, K. Temperature-regulated expression of bacterial virulence genes. Microbes Infect. 2, 157–166 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Lim, B. & Gross, C. A. in Bacterial Stress Responses (eds Storz, G. & Hengge, R.) 93–114 (American Society of Microbiology Press, Washington DC, 2011).

    Google Scholar 

  3. Klinkert, B. & Narberhaus, F. Microbial thermosensors. Cell. Mol. Life Sci. 66, 2661–2676 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Guisbert, E., Yura, T., Rhodius, V. A. & Gross, C. A. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol. Mol. Biol. Rev. 72, 545–554 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Falconi, M., Colonna, B., Prosseda, G., Micheli, G. & Gualerzi, C. O. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J. 17, 7033–7043 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prosseda, G. et al. The virF promoter in Shigella: more than just a curved DNA stretch. Mol. Microbiol. 51, 523–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Servant, P., Rapoport, G. & Mazodier, P. RheA, the repressor of hsp18 in Streptomyces albus G. Microbiology 145, 2385–2391 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. de Smit, M. H. & van Duin, J. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc. Natl Acad. Sci. USA 87, 7668–7672 (1990). A seminal study on the relationship between mRNA secondary structure and translation efficiency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Smit, M. H. & van Duin, J. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J. Mol. Biol. 244, 144–150 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Narberhaus, F., Waldminghaus, T. & Chowdhury, S. RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Narberhaus, F. Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biol. 7, 84–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Rinnenthal, J., Klinkert, B., Narberhaus, F. & Schwalbe, H. Modulation of the stability of the Salmonella fourU-type RNA thermometer. Nucleic Acids Res. 39, 8258–8270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rinnenthal, J., Klinkert, B., Narberhaus, F. & Schwalbe, H. Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res. 38, 3834–3847 (2010). An NMR study revealing the molecular details of zipper-like melting for each individual base pair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Winkler, W. C. & Breaker, R. R. Regulation of bacterial gene expression by riboswitches. Annu. Rev. Microbiol. 59, 487–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Henkin, T. M. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev. 22, 3383–3390 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chowdhury, S., Maris, C., Allain, F. H. & Narberhaus, F. Molecular basis for temperature sensing by an RNA thermometer. EMBO J. 25, 2487–2497 (2006). The first three-dimensional structure of an RNAT to be obtained finds that several non-canonical base pairs are key to melting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jones, P. G. & Inouye, M. The cold-shock response — a hot topic. Mol. Microbiol. 11, 811–818 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Waldminghaus, T., Gaubig, L. C. & Narberhaus, F. Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. Mol. Genet. Genom. 278, 555–564 (2007).

    Article  CAS  Google Scholar 

  19. Shah, P. & Gilchrist, M. A. Is thermosensing property of RNA thermometers unique? PLoS ONE 5, e11308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neupert, J., Karcher, D. & Bock, R. Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli. Nucleic Acids Res. 36, e124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Waldminghaus, T., Kortmann, J., Gesing, S. & Narberhaus, F. Generation of synthetic RNA-based thermosensors. Biol. Chem. 389, 1319–1326 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Nocker, A. et al. A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res. 29, 4800–4807 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nocker, A., Krstulovic, N. P., Perret, X. & Narberhaus, F. ROSE elements occur in disparate rhizobia and are functionally interchangeable between species. Arch. Microbiol. 176, 44–51 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Waldminghaus, T., Fippinger, A., Alfsmann, J. & Narberhaus, F. RNA thermometers are common in α- and γ-proteobacteria. Biol. Chem. 386, 1279–1286 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Waldminghaus, T., Gaubig, L. C., Klinkert, B. & Narberhaus, F. The Escherichia coli ibpA thermometer is comprised of stable and unstable structural elements. RNA Biol. 6, 455–463 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Chowdhury, S., Ragaz, C., Kreuger, E. & Narberhaus, F. Temperature-controlled structural alterations of an RNA thermometer. J. Biol. Chem. 278, 47915–47921 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Waldminghaus, T., Heidrich, N., Brantl, S. & Narberhaus, F. FourU: a novel type of RNA thermometer in Salmonella. Mol. Microbiol. 65, 413–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Alatossava, T., Jutte, H., Kuhn, A. & Kellenberger, E. Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J. Bacteriol. 162, 413–419 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kortmann, J., Sczodrok, S., Rinnenthal, J., Schwalbe, H. & Narberhaus, F. Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res. 39, 2855–2868 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Torok, Z. et al. Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc. Natl Acad. Sci. USA 98, 3098–3103 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morita, M. T. et al. Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor. Genes Dev. 13, 655–665 (1999). A comprehensive study on the complex E. coli rpoH thermometer. This study sets experimental standards for analysis of RNATs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Storz, G. An RNA thermometer. Genes Dev. 13, 633–636 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Morita, M., Kanemori, M., Yanagi, H. & Yura, T. Heat-induced synthesis of σ32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J. Bacteriol. 181, 401–410 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng, B., Zhu, C. X., Ji, C., Ahumada, A. & Tse-Dinh, Y. C. Direct interaction between Escherichia coli RNA polymerase and the zinc ribbon domains of DNA topoisomerase I. J. Biol. Chem. 278, 30705–30710 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Mah, T. F., Kuznedelov, K., Mushegian, A., Severinov, K. & Greenblatt, J. The α subunit of E. coli RNA polymerase activates RNA binding by NusA. Genes Dev. 14, 2664–2675 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guisbert, E., Herman, C., Lu, C. Z. & Gross, C. A. A chaperone network controls the heat shock response in E. coli. Genes Dev. 18, 2812–2821 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomoyasu, T. et al. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32. EMBO J. 14, 2551–2560 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Allen, S. P., Polazzi, J. O., Gierse, J. K. & Easton, A. M. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174, 6938–6947 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Richmond, C. S., Glasner, J. D., Mau, R., Jin, H. & Blattner, F. R. Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res. 27, 3821–3835 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gaubig, L. C., Waldminghaus, T. & Narberhaus, F. Multiple layers of control govern expression of the Escherichia coli ibpAB heat-shock operon. Microbiology 157, 66–76 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Veinger, L., Diamant, S., Buchner, J. & Goloubinoff, P. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11032–11037 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Matuszewska, M., Kuczynska-Wisnik, D., Laskowska, E. & Liberek, K. The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J. Biol. Chem. 280, 12292–12298 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Bissonnette, S. A., Rivera-Rivera, I., Sauer, R. T. & Baker, T. A. The IbpA and IbpB small heat-shock proteins are substrates of the AAA+ Lon protease. Mol. Microbiol. 75, 1539–1549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lambris, J. D., Ricklin, D. & Geisbrecht, B. V. Complement evasion by human pathogens. Nature Rev. Microbiol. 6, 132–142 (2008).

    Article  CAS  Google Scholar 

  45. Childers, B. M. & Klose, K. E. Regulation of virulence in Vibrio cholerae: the ToxR regulon. Future Microbiol. 2, 335–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Johansson, J. RNA thermosensors in bacterial pathogens. Contrib. Microbiol. 16, 150–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Gripenland, J. et al. RNAs: regulators of bacterial virulence. Nature Rev. Microbiol. 8, 857–866 (2011).

    Article  CAS  Google Scholar 

  48. Papenfort, K. & Vogel, J. Regulatory RNA in bacterial pathogens. Cell Host Microbe 8, 116–127 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Skurnik, M. & Toivanen, P. LcrF is the temperature-regulated activator of the yadA gene of Yersinia enterocolitica and Yersinia pseudotuberculosis. J. Bacteriol. 174, 2047–2051 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hoe, N. P. & Goguen, J. D. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J. Bacteriol. 175, 7901–7909 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Böhme, K. et al. Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog. 8, e1002518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561 (2002). A report demonstrating that synthesis of the L. monocytogenes virulence master regulator PrfA is modulated by a temperature-sensing 5′ UTR.

    Article  PubMed  Google Scholar 

  53. Hamon, M., Bierne, H. & Cossart, P. Listeria monocytogenes: a multifaceted model. Nature Rev. Microbiol. 4, 423–434 (2006).

    Article  CAS  Google Scholar 

  54. Freitag, N. E., Port, G. C. & Miner, M. D. Listeria monocytogenes — from saprophyte to intracellular pathogen. Nature Rev. Microbiol. 7, 623–628 (2009).

    Article  CAS  Google Scholar 

  55. Toledo-Arana, A. et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459, 950–956 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Loh, E. et al. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139, 770–779 (2009). The first report on a trans -acting riboswitch that interacts with a cis -acting RNAT.

    Article  CAS  PubMed  Google Scholar 

  57. de Smit, M. H. & van Duin, J. Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J. Mol. Biol. 331, 737–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Phadtare, S. Unwinding activity of cold shock proteins and RNA metabolism. RNA Biol. 8, 394–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiang, W., Hou, Y. & Inouye, M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272, 196–202 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Phadtare, S. & Severinov, K. RNA remodeling and gene regulation by cold shock proteins. RNA Biol. 7, 788–795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bae, W., Xia, B., Inouye, M. & Severinov, K. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc. Natl Acad. Sci. USA 97, 7784–7789 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yamanaka, K., Mitta, M. & Inouye, M. Mutation analysis of the 5′ untranslated region of the cold shock cspA mRNA of Escherichia coli. J. Bacteriol. 181, 6284–6291 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Giuliodori, A. M. et al. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol. Cell 37, 21–33 (2010). A detailed structural and functional analysis of the cold-sensing cspA mRNA from E. coli.

    Article  CAS  PubMed  Google Scholar 

  64. Breaker, R. R. RNA switches out in the cold. Mol. Cell 37, 1–2 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fang, L., Hou, Y. & Inouye, M. Role of the cold-box region in the 5′ untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. J. Bacteriol. 180, 90–95 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamanaka, K. Cold shock response in Escherichia coli. J. Mol. Microbiol. Biotechnol. 1, 193–202 (1999).

    CAS  PubMed  Google Scholar 

  67. Jiang, W., Fang, L. & Inouye, M. The role of the 5′-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation. J. Bacteriol. 178, 4919–4925 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cruz, J. A. & Westhof, E. The dynamic landscapes of RNA architecture. Cell 136, 604–609 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Nechooshtan, G., Elgrably-Weiss, M., Sheaffer, A., Westhof, E. & Altuvia, S. A pH-responsive riboregulator. Genes Dev. 23, 2650–2662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bingham, R. J., Hall, K. S. & Slonczewski, J. L. Alkaline induction of a novel gene locus, alx, in Escherichia coli. J. Bacteriol. 172, 2184–2186 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Altuvia, S., Kornitzer, D., Teff, D. & Oppenheim, A. B. Alternative mRNA structures of the cIII gene of bacteriophage λ determine the rate of its translation initiation. J. Mol. Biol. 210, 265–280 (1989). The initial description of a temperature-sensing RNA that acts like a switch and controls the lysis–lysogeny decision of phage λ.

    Article  CAS  PubMed  Google Scholar 

  72. Blount, K. F. & Breaker, R. R. Riboswitches as antibacterial drug targets. Nature Biotech. 24, 1558–1564 (2006).

    Article  CAS  Google Scholar 

  73. Deigan, K. E. & Ferre-D'Amare, A. R. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc. Chem. Res. 33, 1329–1338 (2011).

    Article  CAS  Google Scholar 

  74. Horvath, I. et al. Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc. Natl Acad. Sci. USA 95, 3513–3518 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsvetkova, N. M. et al. Small heat-shock proteins regulate membrane lipid polymorphism. Proc. Natl Acad. Sci. USA 99, 13504–13509 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Balogi, Z. et al. “Heat shock lipid” in cyanobacteria during heat/light-acclimation. Arch. Biochem. Biophys. 436, 346–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Balogi, Z. et al. A mutant small heat shock protein with increased thylakoid association provides an elevated resistance against UV-B damage in Synechocystis 6803. J. Biol. Chem. 283, 22983–22991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Horvath, I. & Vigh, L. Cell biology: Stability in times of stress. Nature 463, 436–438 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, S., Prochaska, D. J., Fang, F. & Barnum, S. R. A 16.6-kilodalton protein in the cyanobacterium Synechocystis sp. PCC 6803 plays a role in the heat shock response. Curr. Microbiol. 37, 403–407 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Roth, A. & Breaker, R. R. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 78, 305–334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Smith, A. M., Fuchs, R. T., Grundy, F. J. & Henkin, T. M. The SAM-responsive SMK box is a reversible riboswitch. Mol. Microbiol. 78, 1393–1402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Montange, R. K. & Batey, R. T. Riboswitches: emerging themes in RNA structure and function. Annu. Rev. Biophys. 37, 117–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Fuchs, R. T., Grundy, F. J. & Henkin, T. M. The SMK box is a new SAM-binding RNA for translational regulation of SAM synthetase. Nature Struct. Mol. Biol. 13, 226–233 (2006).

    Article  CAS  Google Scholar 

  84. McCabe, K. M., Lacherndo, E. J., Albino-Flores, I., Sheehan, E. & Hernandez, M. LacI(Ts)-regulated expression as an in situ intracellular biomolecular thermometer. Appl. Environ. Microbiol. 77, 2863–2868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Win, M. N., Liang, J. C. & Smolke, C. D. Frameworks for programming biological function through RNA parts and devices. Chem. Biol. 16, 298–310 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Weigand, J. E. & Suess, B. Aptamers and riboswitches: perspectives in biotechnology. Appl. Microbiol. Biotechnol. 85, 229–236 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Blouin, S., Mulhbacher, J., Penedo, J. C. & Lafontaine, D. A. Riboswitches: ancient and promising genetic regulators. Chembiochem 10, 400–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Lee, J. & Kotov, N. Thermometer design at the nanoscale. Nano Today 2, 48–51 (2007).

    Article  Google Scholar 

  89. Neupert, J. & Bock, R. Designing and using synthetic RNA thermometers for temperature-controlled gene expression in bacteria. Nature Protoc. 4, 1262–1273 (2009).

    Article  CAS  Google Scholar 

  90. Wieland, M. & Hartig, J. S. RNA quadruplex-based modulation of gene expression. Chem. Biol. 14, 757–763 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Zuker, M. Mfold web server for nucleic acid folding and hybridizat3a cited beforeion prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RNA-related work in the Narberhaus laboratory is supported by grants from the German Research Foundation (DFG Priority Programme 1258, Sensory and Regulatory RNAs in Prokaryotes). J.K. received a fellowship from the Studienstiftung des Deutschen Volkes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Narberhaus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Overview of experimentally-characterized RNATs (PDF 190 kb)

Related links

Related links

FURTHER INFORMATION

Franz Narberhaus's homepage

Glossary

Feed-forward systems

Modules within control networks; feed-forward systems sense external perturbations (for example, a temperature up- or downshift) before the actual impact on the network occurs.

Ribosome-binding site

The part of an mRNA with which the 30S ribosome interacts to initiate translation. It contains the Shine–Dalgarno sequence and the AUG start codon.

Riboswitches

Regulatory elements within an mRNA that directly affect gene expression through specific binding of a ligand which induces structural alterations.

Aptamer

An oligonucleotide that specifically binds a target molecule. RNA-based aptamers form the ligand-binding domains of riboswitches.

Shine–Dalgarno sequence

The primary ribosome-binding site of bacterial mRNAs, located 6–10 nucleotides upstream of the AUG start codon, in the 5′ untranslated region. It is complementary to the 3′ end of the 16S ribosomal RNA of the 30S ribosome. The Escherichia coli consensus sequence is AGGAGG.

tRNAfMet

The initiating tRNA, charged with a methionine that has the amino terminus blocked by a formyl group, thus defining the start and synthesis direction of the nascent polypeptide chain.

synanti base pairing

Non-Watson–Crick base pairing, in which one base is rotated from the typical anti position (relative to the ribose ring) to a syn position.

Hydration shell

A layer of water molecules that is formed around intracellular macromolecules (for example, DNA, RNA and proteins), with a possible effect on their functionality.

Toeprinting

A primer extension method that uses inhibition of reverse transcription to probe the interaction between an mRNA and the 30S ribosome.

Pseudoknot

A knot-shaped tertiary RNA structure that, in its simplest form, is built by two helical structures. The loop of the first hairpin contributes to the stem of the second hairpin. Pseudoknots are a structurally diverse group with important effects in many biological processes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortmann, J., Narberhaus, F. Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol 10, 255–265 (2012). https://doi.org/10.1038/nrmicro2730

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2730

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology