Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Platelets: at the nexus of antimicrobial defence

Key Points

  • Platelets have multiple direct and indirect functions that integrate innate and adaptive antimicrobial host defences.

  • Platelets actively sense signals of tissue injury and microbial infection via an array of constitutive and inducible membrane receptors.

  • Activated platelets deliver antimicrobial effector molecules, such as kinocidins and platelet microbicidal proteins, to sites of tissue injury or infection and in the bloodstream.

  • Platelet products inhibit viral, bacterial, fungal and protozoan pathogens; for example, new studies demonstrate the importance of kinocidins in human defence against malaria and HIV-1.

  • Platelet interactions with T cells, B cells, neutrophils and other immune system components connect innate and adaptive immunity to promote optimal host defence against infection.

  • Thrombocytopenia and platelet antagonists that inhibit the antimicrobial roles of platelets may be risk factors for infection.

Abstract

Platelets have traditionally been viewed as fragmentary mediators of coagulation. However, recent molecular and cellular evidence suggests that they have multiple roles in host defence against infection. From first-responders that detect pathogens and rapidly deploy host-defence peptides, to beacons that recruit and enhance leukocyte functions in the context of infection, to liaisons that facilitate the T cell–B cell crosstalk that is required in adaptive immunity, platelets represent a nexus at the intersection of haemostasis and antimicrobial host defence. In this Review, I consider recent insights into the antimicrobial roles of platelets, which are mediated both directly and indirectly to integrate innate and adaptive immune responses to pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Platelets as granulocytes.
Figure 2: Activation and amplification of platelet antimicrobial mechanisms.
Figure 3: Platelet-mediated immune syntax against infection.
Figure 4: Platelets at the nexus of host defence.

Similar content being viewed by others

References

  1. Luo, D. et al. Protective roles for fibrin, tissue factor, plasminogen activator inhibitor-1, and thrombin activatable fibrinolysis inhibitor, but not factor XI, during defense against the Gram-negative bacterium Yersinia enterocolitica. J. Immunol. 187, 1866–1876 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Drake, T. A. & Pang, M. Staphylococcus aureus induces tissue factor expression in cultured human cardiac valve endothelium. J. Infect. Dis. 157, 749–756 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Al Dieri, R., de Laat, B. & Hemker, H. C. Thrombin generation: what have we learned? Blood Rev. 26, 197–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Colman, R. W. Receptors that activate platelets. Proc. Soc. Exp. Biol. Med. 197, 242–248 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Yeaman, M. R. The role of platelets in antimicrobial host defense. Clin. Infect. Dis. 25, 951–968 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Yeaman, M. R. Bacterial–platelet interactions: virulence meets host defense. Future Microbiol. 5, 471–506 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Yeaman, M. R. & Bayer, A. S. in Platelets 3rd edn (ed. Michelson, A.) 767–801 (Academic Press, 2013).

    Book  Google Scholar 

  8. Yeaman, M. R. Platelets in defense against bacterial pathogens. Cell. Mol. Life Sci. 67, 525–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Price, B. & Flaumenhaft, R. Platelet α-granules: basic biology and clinical correlates. Blood Rev. 23, 177–189 (2009).

    Article  CAS  Google Scholar 

  10. Fitzgerald, J. R., Foster, T. J. & Cox, D. The interaction of bacterial pathogens with platelets. Nature Rev. Microbiol. 4, 445–457 (2006). An excellent review of platelet interactions from the perspective of the bacterium.

    Article  CAS  Google Scholar 

  11. Elzey, B. D., Ratliff, T. L., Sowa, J. M. & Crist, S. A. Platelet CD40L at the interface of adaptive immunity. Thromb. Res. 127, 180–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nature Rev. Immunol. 13, 34–45 (2013).

    Article  CAS  Google Scholar 

  13. Levin, J. in Platelets 3rd edn (ed. Michelson, A.) 3–25 (Academic Press, 2013).

    Book  Google Scholar 

  14. Weyrich, A. S., Schwertz, H., Kraiss, L. W. & Zimmerman, G. A. Protein synthesis by platelets: historical and new perspectives. J. Thromb. Haemost. 7, 241–246 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Jenne, C. N., Urrutia, R. & Kubes, P. Platelets: bridging hemostasis, inflammation, and immunity. Int. J. Lab. Hematol. 35, 254–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Youssefian, T., Drouin, A., Masse, J. M., Guichard, J. & Cramer, E. M. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood 99, 4021–4029 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Zielinski, T., Wachowicz, B., Saluk-Juszczak, J. & Kaca, W. The generation of superoxide anion in blood platelets in response to different forms of Proteus mirabilis lipopolysaccharide: effects of staurosporin, wortmannin, and indomethacin. Thromb. Res. 103, 149–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Lopes-Pires, M. E. et al. Lipopolysaccharide treatment reduces rat platelet aggregation independent of intracellular reactive-oxygen species generation. Platelets 23, 195–201 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Zarbock, A., Polanowska-Grabowska, R. K. & Ley, K. Platelet–neutrophil-interactions: linking hemostasis and inflammation. Blood Rev. 21, 99–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Baldwin, W. M. 3rd, Kuo, H. H. & Morrell, C. N. Platelets: versatile modifiers of innate and adaptive immune responses to transplants. Curr. Opin. Organ Transplant. 16, 41–46 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bielecki, T., Dohan Ehrenfest, D. M., Everts, P. A. & Wiczkowski, A. The role of leukocytes from L-PRP/L-PRF in wound healing and immune defense: new perspectives. Curr. Pharm. Biotechnol. 13, 1153–1162 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Cerletti, C., Tamburrelli, C., Izzi, B., Gianfagna, F. & de Gaetano, G. Platelet–leukocyte interactions in thrombosis. Thromb. Res. 129, 263–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Li, C. et al. Crosstalk between platelets and the immune system: old systems with new discoveries. Adv. Hematol. 2012, 384685 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. Projahn, D. & Koenen, R. R. Platelets: key players in vascular inflammation. J. Leukoc. Biol. 92, 1167–1175 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Semple, J. W., Italiano, J. E. Jr, Freedman, J. Platelets and the immune continuum. Nature Rev. Immunol. 11, 264–274 (2011).

    Article  CAS  Google Scholar 

  26. Kaushansky, K. Historical review: megakaryopoiesis and thrombopoiesis. Blood 111, 981–986 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Italiano, J. E. & Shivdasani, R. A. Megakaryocytes and beyond: the birth of platelets. J. Thromb. Haemo. 1, 1174–1182 (2003).

    Article  CAS  Google Scholar 

  28. Yeaman, M. R. & Yount, N. Y. Unifying themes in host defence effector polypeptides. Nature Rev. Microbiol. 5, 727–740 (2007). This review provides a synthesis of structural, mechanistic and evolutionary insights regarding host-defence polypeptides.

    Article  CAS  Google Scholar 

  29. Yount, N. Y. & Yeaman, M. R. Peptide antimicrobials: cell wall as a bacterial target. Ann. NY Acad. Sci. 1277, 127–138 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Cox, D., Kerrigan, S. W. & Watson, S. P. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J. Thromb. Haemost. 9, 1097–1107 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Yount, N. Y. & Yeaman, M. R. Emerging themes and therapeutic prospects for anti-infective peptides. Annu. Rev. Pharmacol. Toxicol. 52, 337–360 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Metcalf-Pate, K. A. et al. Platelet activation and platelet–monocyte aggregate formation contribute to decreased platelet count during acute simian immunodeficiency virus infection in pig-tailed macaques. J. Infect. Dis. 208, 874–883 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gardiner, E. E. & Andrews, R. K. Platelets: envoys at the infection frontline. J. Infect. Dis. 208, 871–873 (2013).

    Article  PubMed  Google Scholar 

  34. Del Conde, I., Crúz, M. A., Zhang, H., López, J. A. & Afshar-Kharghan, V. Platelet activation leads to activation and propagation of the complement system. J. Exp. Med. 201, 871–879 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Czapiga, M., Gao, J. L., Kirk, A. & Lekstrom-Himes, J. Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp. Hematol. 33, 73–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Clemetson, K. et al. Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood 96, 4046–4054 (2000).

    CAS  PubMed  Google Scholar 

  37. Lowenhaupt, R. W. Human platelet chemotaxis: requirement for plasma factor(s) and the role of collagen. Am. J. Physiol. 235, H23–H28 (1978). This paper provides early evidence for vectorial chemotaxis by human platelets.

    CAS  PubMed  Google Scholar 

  38. Lowenhaupt, R. W., Silberstein, E. B., Sperling, M. I. & Mayfield, G. A quantitative method to measure human platelet chemotaxis using indium-111-oxine-labeled gel-filtered platelets. Blood 60, 1345–1352 (1982).

    CAS  PubMed  Google Scholar 

  39. López, J. A. The platelet Fc receptor: a new role for an old actor. Blood 121, 1674–1675 (2013).

    Article  PubMed  Google Scholar 

  40. Daga, S. et al. Platelet receptor polymorphisms do not influence Staphylococcus aureus–platelet interactions or infective endocarditis. Microbes Infect. 13, 216–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qian, K. et al. Functional expression of IgA receptor FcαRI on human platelets. J. Leukoc. Biol. 84, 1492–1500 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rogala, B., Gumprecht, J., Gawlik, R. & Strojek, K. Platelet aggregation in IgE-mediated allergy with elevated soluble Fc epsilon RII/CD23 level. J. Investig. Allergol. Clin. Immunol. 5, 161–165 (1995).

    CAS  PubMed  Google Scholar 

  43. Skoglund, C. et al. C-reactive protein and C1q regulate platelet adhesion and activation on adsorbed immunoglobulin G and albumin. Immunol. Cell Biol. 86, 466–474 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Arman, M., Adams, Y., Lindergard, G. & Rowe, J. A. A method for positive and negative selection of Plasmodium falciparum platelet-mediated clumping parasites and investigation of the role of CD36. PLoS ONE 8, e55453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lord, M. S. et al. The modulation of platelet and endothelial cell adhesion to vascular graft materials by perlecan. Biomaterials. 30, 4898–4906 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Li, H., Hamza, T., Tidwell, J. E., Clovis, N. & Li, B. Unique antimicrobial effects of platelet-rich plasma and its efficacy as a prophylaxis to prevent implant-associated spinal infection. Adv. Healthc. Mater. 2, 1277–1284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Serraino, G. F. et al. Platelet-rich plasma inside the sternotomy wound reduces the incidence of sternal wound infections. Int. Wound J. http://dx.doi.org/10.1111/iwj.12087 (2013).

  48. Martinez-Sapata, M. J. et al. Autologous platelet-rich plasma for treating chronic wounds. Cochrane Database Syst. Rev. 10, CD006899 (2012).

    Google Scholar 

  49. Zhang, G. et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J. Immunol. 182, 7997–8004 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scott, T. & Owens, M. D. Thrombocytes respond to lipopolysaccharide through Toll-like receptor-4, and MAP kinase and NF-κB pathways leading to expression of interleukin-6 and cyclooxygenase-2 with production of prostaglandin E2. Mol. Immunol. 45, 1001–1008 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Cognasse, F. et al. Evidence of Toll-like receptor molecules on human platelets. Immunol. Cell Biol. 83, 196–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Rex, S. et al. Immune versus thrombotic stimulation of platelets differentially regulates signalling pathways, intracellular protein–protein interactions, and α-granule release. Thromb. Haemost. 102, 97–110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Aslam, R. et al. Platelet toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-α production in vivo. Blood 107, 637–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Shiraki, R. et al. Expression of Toll-like receptors on human platelets. Thromb. Res. 113, 379–385 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Pancré, V., Monte, D., Delanoye, A., Capron, A. & Aurialt C. Interleukin-6, the main mediator of interaction between monocytes and platelets in killing of Schistosoma mansoni. Eur. Cytokine Net. 1, 15–19 (1990).

    Google Scholar 

  56. Blair, P. et al. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ. Res. 104, 346–354 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Assinger, A., Laky, M., Badrnya, S., Esfandeyari, A. & Volf, I. Periodontopathogens induce expression of CD40L on human platelets via TLR2 and TLR4. Thromb. Res. 130, e73–e78 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Med. 13, 463–469 (2007). This study offers new insights into platelet interactions with neutrophils in host defence.

    Article  CAS  PubMed  Google Scholar 

  59. Cognasse, F. et al. Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br. J. Haematol. 141, 84–91 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Berthet, J. et al. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin. Immunol. 145, 189–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Christiansen, D. et al. Differential effect of inhibiting ND-2 and CD14 on LPS- versus whole E. coli bacteria-induced cytokine responses in human blood. Adv. Exp. Med. Biol. 946, 237–251 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Panigrahi, S. et al. Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyper-reactivity and thrombosis. Circ. Res. 112, 103–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Lachance, C., Segura, M., Gerber, P. P., Xu, J. & Gottschalk, M. Toll-like receptor 2-independent host innate immune response against an epidemic strain of Streptococcus suis that causes a toxic shock-like syndrome in humans. PLoS ONE 8, e65031 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dorrington, M. G. et al. MARCO is required for TLR2- and NOD2-mediated responses to Streptococcus pneumoniae and clearance of pneumococcal colonization in the murine nasopharnyx. J. Immunol. 190, 250–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Aktan, I., Dunkel, B. & Cunningham, F. M. Equine platelets inhibit E. coli growth and can be activated by bacterial lipopolysaccharide and lipoteichoic acid although superoxide anion production does not occur and platelet activation is not associated with enhanced production by neutrophils. Vet. Immunol. Immunopath. 152, 209–217 (2013).

    Article  CAS  Google Scholar 

  66. Trier, D. et al. Platelet antistaphylococcal responses occur through P2X1 and P2Y12 receptor-induced amplification and kinocidin release. Infect. Immun. 76, 5706–5713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, X. et al. Inhibiting platelet aggregation could aggravate the acute infection caused by Staphylococcus aureus. Platelets 22, 228–236 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Tilley, D. O. et al. Glycoprotein Iba and FcγRIIa play key roles in platelet activation by the colonizing bacterium, Streptococcus oralis. J. Thromb. Haemost. 11, 941–950 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Thammavognsa, V., Schneewind, O. & Missiakas, D. M. Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA). BMC Biochem. 12, 56–61 (2011).

    Article  CAS  Google Scholar 

  70. Dürr, M. & Peschel, A. Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect. Immun. 70, 6515–6517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yeaman, M. R. & Yount, N. Y. Code among chaos: immunorelativity and the AEGIS model of antimicrobial peptides. Microbe 71, 21–27 (2005).

    Google Scholar 

  72. Yount, N. Y. & Yeaman, M. R. Structural congruence among membrane-active host defense polypeptides of diverse phylogeny. Biochim. Biophys. Acta 1758, 1373–1386 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Yount, N. Y. et al. Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Proc. Natl Acad. Sci. USA 106, 14972–1 4977.

    Article  Google Scholar 

  74. Yount, N. Y. & Yeaman, M. R. Multidimensional signatures in antimicrobial peptides. Proc. Natl Acad. Sci. USA 101, 7363–7368 (2004). This paper reports the discovery of the γ -core motif, which unifies all cysteine-stabilized host-defence peptides.

    Article  CAS  PubMed  Google Scholar 

  75. Yeaman, M. R. et al. Modular determinants of antimicrobial activity in platelet factor-4 family kinocidins. Biochem. Biophys. Acta 1768, 609–619 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Yount, N. Y. et al. Structural correlates of antimicrobial efficacy in IL-8 and related human kinocidins. Biochim. Biophys. Acta 1768, 598–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Yeaman, M. R., Puentes, S. M., Norman, D. C. & Bayer, A. S. Partial purification and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect. Immun. 60, 1202–1209 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tang, Y. Q., Yeaman, M. R. & Selsted, M. E. Purification, characterization, and antimicrobial properties of peptides released from thrombin-induced human platelets. Blood 86, 910a (1995).

    Google Scholar 

  79. Yeaman, M. R., Tang, Y.-Q., Shen, A. J., Bayer, A. S. & Selsted, M. E. Purification and in vitro activities of rabbit platelet microbicidal proteins. Infect. Immun. 63, 1023–1031 (1997).

    Google Scholar 

  80. Tang, Y. Q., Yeaman, M. R. & Selsted, M. E. Antimicrobial peptides from human platelets. Infect. Immun. 70, 6524–6533 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dankert, J., Krijgsveld, J., van Der Werff, J., Joldersma, W. & Zaat, S. A. Platelet microbicidal activity is an important defense factor against viridans streptococcal endocarditis. J. Infect. Dis. 184, 597–605 (2001). This paper makes the important observation that platelets have a role in antimicrobial defence.

    Article  CAS  PubMed  Google Scholar 

  82. Yount, N. Y. et al. Platelet microbicidal protein-1: structural themes of a multifunctional antimicrobial peptide. Antimicrob. Agents Chemother. 48, 4395–4404 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schaffner, A., Rhyn, P., Schoedon, G. & Schaer, D. Regulated expression of platelet factor 4 in human monocytes — role of PARs as a quantitatively important monocyte activation pathway. J. Leuk. Biol. 78, 202–209 (2005).

    Article  CAS  Google Scholar 

  84. Yount, N. Y., Andrés, M. T., Fierro, J. F. & Yeaman, M. R. The γ-core motif correlates with antimicrobial activity in Cys-containing kaliocin-1 originating from transferrins. Biochem. Biophys. Acta 1768, 2862–2872 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Krijgsveld, J. et al. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J. Biol. Chem. 275, 20374–20381 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Bourbigot, S. et al. Antimicrobial peptide RP-1 structure and interactions with anionic versus zwitterionic micelles. Biopolymers 91, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Bourbigot, S., Fardy, L., Waring, A., Yeaman, M. R. & Booth, V. Structure of chemokine-derived antimicrobial peptide IL-8α and interaction with detergent micelles and oriented lipid bilayers. Biochemistry 48, 10509–10521 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yount, N. Y. et al. Context mediates antimicrobial efficacy of kinocidin congener peptide RP-1. PLoS ONE 6, e26727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Solomon Tsegaye, T. et al. Platelet activation suppresses HIV-1 infection of T cells. Retrovirology 10, http://dx.doi.org/10.1186/1742-4690-10-48 (2013).

  90. Cocchi, F. et al. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Cocchi, F. et al. The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nature Med. 2, 1244–1247 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Burns, J. M., Gallo, R. C., DeVico, A. L. & Lewis, G. K. A new monoclonal antibody, mAb 4A12, identifies a role for the glycosaminoglycan (GAG) binding domain of RANTES in the antiviral effect against HIV-1 and intracellular calcium Ca2+ signaling. J. Ex. Med. 188, 1917–1927 (1998).

    Article  CAS  Google Scholar 

  93. Auerbach, D. J. et al. Identification of the platelet-derived chemokine CXCL4/PF4 as a broad-spectrum HIV-inhibitor. Proc. Natl Acad. Sci. USA 109, 9569–9574 (2012).

    Article  PubMed  Google Scholar 

  94. Mercier, R. C., Dietz, R. M., Mazzola, J. L., Bayer, A. S. & Yeaman, M. R. Beneficial influence of platelets on antibiotic efficacy in an in vitro model of Staphylococcus aureus induced endocarditis. Antimicrob. Agents Chemother. 48, 2551–2557 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sullam, P. M. et al. Effect of thrombocytopenia on the early course of streptococcal endocarditis. J. Infect. Dis. 168, 910–914 (1993). This paper is among the first studies to demonstrate the antimicrobial function of platelets in vivo.

    Article  CAS  PubMed  Google Scholar 

  96. Wong, C. H. Y., Jenne, C. N., Petri, B., Chrobok, N. & Kubes, P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nature Immunol. 14, 785–792 (2013).

    Article  CAS  Google Scholar 

  97. McMorran, B. J. et al. Platelet factor 4 and Duffy antigen required for platelet killing of Plasmodium falciparum. Science 338, 1348–1351 (2012). This paper represents a major advance in our understanding of host defence against malaria.

    Article  CAS  PubMed  Google Scholar 

  98. Love, M. S. et al. Platelet factor 4 activity against P. falciparum and its translation to nonpeptidic mimics as antimalarials. Cell Host Microbe 12, 815–823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wilson, N. O. et al. Pharmacologic inhibition of CXCL10 in combination with anti-malarial therapy eliminates mortality associated with murine model of cerebral malaria. PLoS ONE 8, e60898 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rieg,G. et al. Platelet count is associated with plasma HIV type 1 RNA and disease progression. AIDS Res. Hum. Retroviruses 23, 1257–1261 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Coelho, H. C. et al. Thrombocytopenia in Plasmodium vivax malaria is related to platelet phagocytosis. PLoS ONE 8, e63410 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yeaman, M. R. et al. Resistance to platelet microbicidal protein results in increased severity of experimental Candida albicans endocarditis. Infect. Immun. 64, 1379–1384 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Perkhofer, S. et al. Human platelets attenuate Aspergillus species via granule-dependent mechanisms. J. Infect. Dis. 198, 1243–1246 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Christin, L. et al. Human platelets damage Aspergillus fumigatus hyphae and may supplement killing by neutrophils. Infect. Immun. 66, 1181–1189 (1998). This paper provides mechanistic evidence for the anti-aspergillus functions of platelets ex vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Chumpitazi, B. F. et al. Human platelet inhibition of Toxoplasma gondii growth. Clin. Exp. Immunol. 111, 325–333 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Erfe, M. C. et al. Efficacy of synthetic peptides RP-1 and AA-RP-1 against Leishmania species in vitro and in vivo. Antimicrob. Agents Chemother. 56, 658–665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Stanley, R. G., Ngaiza, J. R., Wambayi, E., Lewis, J. & Doenhoff, M. J. Platelets as an innate defence mechanism against Schistosoma mansoni infections in mice. Parasite Immunol. 25, 467–473 (2003).

    Article  PubMed  Google Scholar 

  108. Dorit, M., Zander, W. & Klinger, M. H. F. The blood platelets contribution to innate host defense — what they have learned from their big brothers. Biotechnol. J. 4, 914–926 (2009).

    Article  CAS  Google Scholar 

  109. Joseph, M. et al. IgE-dependent platelet cytotoxicity against helminths. Adv. Exp. Med. Biol. 184, 23–33 (1985).

    Article  CAS  PubMed  Google Scholar 

  110. White, J. G. Platelets are covercytes, not phagocytes: uptake of bacteria involves channels of the open canalicular system. Platelets 16, 121–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Stephen, J., Emerson, B., Fox, K. A. & Dransfield, I. The uncoupling of monocyte–platelet interactions from the induction of proinflammatory signaling in monocytes. J. Immunol. 191, 5677–5683 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Johansson, D., Shannon, O. & Rasmussen, M. Platelet and neutrophil responses to Gram-positive pathogens in patients with bacteremic infection. PLoS ONE 6, e26928 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McDonald, B., Urrutia, R., Yipp, B. G., Jenne, C. N. & Kubes, P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12, 324–333 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Jenne, C. N. et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 13, 169–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Miedzobrodzki, J. et al. Platelets augment respiratory burst in neutrophils activated by selected species of gram-positive or Gram-negative bacteria. Folia Histochem. Cytobiol. 46, 383–388 (2008).

    Article  PubMed  Google Scholar 

  116. Yeaman, M. R. Host defense in the endovascular compartment. Emerging concepts in endovascular infection symposium (032B), Abstract 326 (American Society for Microbiology, 51st ICAAC, 2011).

    Google Scholar 

  117. Maier, M. et al. Platelet factor 4 is highly upregulated in dendritic cells after severe trauma. Mol. Med. 15, 384–391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Verschoor, A. et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nature Immunol. 12, 1194–1201 (2011). This paper offers key new insights into the role of platelets in antigen presentation and processing.

    Article  CAS  Google Scholar 

  119. Nguyen, X. D. et al. Differentiation of monocyte-derived dendritic cells under the influence of platelets. Cytotherapy 10, 720–729 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Antczak, A. J., Vieth, J. A., Singh, N. & Worth, R. G. Internalization of IgG-coated targets results in activation and secretion of soluble CD40 ligand and RANTES by human platelets. Clin. Vaccine Immunol. 18, 210–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Elzey, B. D. et al. Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood 111, 3684–3691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sowa, J. M., Crist, S. A., Ratliff, T. L. & Elzey, B. D. Platelet influence on T- and B-cell responses. Arch. Immunol. Ther. Exp. 57, 235–241 (2009).

    Article  CAS  Google Scholar 

  123. Iannacone, M. et al. Platelets prevent IFN-α/β-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc. Natl Acad. Sci. USA 105, 629–634 (2008).

    Article  PubMed  Google Scholar 

  124. Iannacone, M. et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nature Med. 11, 1161–1169 (2005).

    Article  CAS  Google Scholar 

  125. Gerdes, N. et al. Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thromb. Haemost. 106, 353–362 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Maione, F. et al. IL-17A increases ADP-induced platelet aggregation. Biochem. Biophys. Res. Commun. 408, 658–662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, S. et al. IL-17A facilitates platelet function through the ERK2 signaling pathway in patients with acute coronary syndrome. PLoS ONE 7, e40641 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, C. Y. et al. Platelet factor 4 differentially modulates CD4+CD25+ (regulatory) versus CD4+CD25 (non-regulatory) T cells. J. Immunol. 174, 2680–2686 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Elzey, B. D. et al. Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J. Leukoc. Biol. 78, 80–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Elzey, B. D., Sprague, D. L. & Ratliff, T. L. The emerging role of platelets in adaptive immunity. Cell. Immunol. 238, 1–9 (2005). This is an important review of the functions of platelets in adaptive immunity.

    Article  CAS  PubMed  Google Scholar 

  131. Martinson, J., Bae, J., Klingemann, H. G. & Tam, Y. Activated platelets rapidly up-regulate CD40L expression and can effectively mature and activate autologous ex vivo differentiated DC. Cytotherapy 6, 487–497 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Elzey, B. D. et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity 19, 9–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Sprague, D. L. et al. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 11, 5028–5036 (2008).

    Article  CAS  Google Scholar 

  134. Ngyuen, T., Ghebrehiwet, B. & Peerschke, E. Staphylococcus aureus protein A recognizes platelet gC1qR/p33: a novel mechanism for staphylococcal interactions with platelets. Infect. Immun. 68, 2061–2068 (2000).

    Article  Google Scholar 

  135. Kerrigan, S. W. et al. Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function. Infect. Immun. 75, 5740–5747 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mishra, N. N. et al. Emergence of daptomycin resistance in daptomycin-naive rabbits with methicillin-resistant Staphylococcus aureus prosthetic joint infection is associated with resistance to host defense cationic peptides and mprF polymorphisms. PLoS ONE 8, e71151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jones, T. et al. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob. Agents Chemother. 52, 269–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Witjen, P. et al. High precision platelet releasate definition by quantitative reversed protein profilining — brief report. Arterioscl. Throm. Vas. Biol. 33, 1635–1638 (2013).

    Article  CAS  Google Scholar 

  139. Ivanov, I. B., Gritsenko, V. A. & Kuzmin, M. D. Staphylococcal secretory inhibitor of platlelet microbicidal protein is associated with prostatitis source. J. Med. Microbiol. 55, 1645–1648 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Kahn, F., Hurley, S. & Shannon, O. Platelets promote bacterial dissemination in a mouse model of streptococcal sepsis. Microbes Infect. 15, 669–676 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Lo, E. & Deane, S. Diagnosis and classification of immune-mediated thrombocytopenia. Autoimmun. Rev. 13, 577–583 (2014). [Au:OK?]

    Article  CAS  PubMed  Google Scholar 

  142. Yoon, J. H. et al. Liver abscess due to Klebsiella pneumonia: risk factors for metastatic infection. Scand. J. Infect. Dis. 46, 21–26 (2014).

    Article  PubMed  Google Scholar 

  143. Wang, J. T., Wu, H. S., Weng, C. M., Hsu, L. Y. & Wang, F. D. Prognosis of patients with methicillin-resistant Staphylococcus aureus bloodstream infection treated with teichoplanin: a retrospective cohort study investigating effect of teichoplanin minimum inhibitory concentrations. BMC Infect. Dis. 13, 182–186 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chang, F. Y. et al. Thrombocytopenia in liver transplant recipients: predictors, impact on fungal infections, and role of endogenous thrombopoietin. Transplantation 69, 70–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Kupferwasser, L. I. et al. Salicylic acid attenuates virulence in endovascular infections by targeting global regulatory pathways in Staphylococcus aureus. J. Clin. Invest. 112, 222–133 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kupferwasser, L. I. et al. Acetylsalicylic acid reduces vegetation bacterial density, hematogenous bacterial dissemination, and frequency of embolic events in experimental Staphylococcus aureus endocarditis through antiplatelet and antibacterial effects. Circulation 99, 2791–2797 (1999). This paper provides novel insights into the antimicrobial mechanisms of platelets and salicylates.

    Article  CAS  PubMed  Google Scholar 

  147. Nicolau, D. P., Tessier, P. R. & Nightingale, C. H. Beneficial effect of combination antiplatelet therapy on the development of experimental Staphylococcus aureus endocarditis. Int. J. Antimicrob. Agents 11, 159–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Nicolau, D. P., Tessier, P. R., Nightingale, C. H. & Quintiliani, R. Influence of adjunctive ticlopidine on the treatment of experimental Staphylococcus aureus endocarditis. Int. J. Antimicrob. Agents 9, 227–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Nicolau, D. P., Marangos, M. N., Nightingale, C. H. & Quintiliani, R. Influence of aspirin on development and treatment of experimental Staphylococcus aureus endocarditis. Antimicrob. Agents Chemother. 39, 1748–1751 (1995). This paper makes important observations regarding the efficacy of aspirin in experimental infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Park, M. H. et al. Modulation of regulated virulence gene expression within MRSA using salicylate analogues. Am. Soc. Microb. Abstr. B-3569 (2008).

  151. Sedlacek, M., Gemery, J. M., Cheung, A. L., Bayer, A. S. & Remillard, B. D. Aspirin treatment is associated with a significantly decreased risk of Staphylococcus aureus bacteremia in hemodialysis patients with tunneled catheters. Am. J. Kidney Dis. 49, 401–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Eisen, D. P. et al. Reduced valve replacement surgery and complication rate in Staphylococcus endocarditis patients receiving acetylsalicylic acid. J. Infect. 58, 332–338 (2009).

    Article  PubMed  Google Scholar 

  153. Habib, A., Baddour, L. & Sohail-Rizwan, M. Impact of anti-platelet therapy on clinical manifestations and outcomes of cardiovascular infection. Curr. Infect. Dis. Rep. 15, 347–352 (2013).

    Article  PubMed  Google Scholar 

  154. Chan, K. L. et al. A randomized trial of aspirin on the risk of embolic events in patients with infective endocarditis. J. Am. Coll. Cardiol. 42, 775–780 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Review highlights recent advances in platelet immunology, focusing on antimicrobial host defence. This field of research has been the area of many important efforts on the part of numerous excellent investigators over many years of work. Although only a few studies could be illustrated in the scope of this Review, appreciation is extended to all those who work in this important area. M.R.Y. was supported, in part, by R01 grants AI39001 and AI48031 from the US National Institutes of Health and grant W81XWH-12-2-0101 from the US Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Yeaman.

Ethics declarations

Competing interests

M.R.Y. is a founder and shareholder of NovaDigm Therapeutics, Inc., and founder and shareholder of Metacin, Inc., neither of which provided support for the current manuscript. He is a cited inventor of anti-infective peptides and mimetics thereof, as well as of cross-kingdom vaccines.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeaman, M. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 12, 426–437 (2014). https://doi.org/10.1038/nrmicro3269

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing