Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Serotonergic neurons as carbon dioxide sensors that maintain ph homeostasis

Key Points

  • One of the essential tasks for maintaining life is breathing, which not only ensures a normal supply of oxygen to tissues, but also maintains carbon dioxide levels within a narrow range. Central chemoreceptors in the brainstem monitor carbon dioxide levels and control lung ventilation. Recent data indicate that serotonergic neurons are chemoreceptors.

  • There is a high concentration of serotonin (5-hydroxytryptamine or 5-HT)-immunoreactive nerve terminals within the main respiratory nuclei, and these nuclei also contain nerve terminals that are immunoreactive for substance P and thyrotropin-releasing hormone (TRH). The nerve terminals arise from serotonergic neurons in the medullary raphé and ventrolateral medulla.

  • Serotonergic neurons seem primarily to have an excitatory effect on breathing, and they are thought to provide tonic drive to maintain respiratory output during wakefulness. However, there is evidence that 5-HT can have an inhibitory effect on some elements of the network that controls respiratory output, and a subset of 5-HT neurons might inhibit respiratory output.

  • Changes in arterial carbon dioxide probably influence breathing indirectly through changes in brain pH. Medullary serotonergic neurons are highly sensitive to pH, and their relationship with blood vessels is consistent with a specialized role as arterial carbon dioxide sensors. Lesions of these neurons lead to blunting of the ventilatory response to increased carbon dioxide.

  • 5-HT, TRH and substance P enhance excitability of the respiratory network through numerous mechanisms and at multiple sites within the respiratory network, including rhythm-generating neurons, respiratory premotor neurons and respiratory motor neurons.

  • Serotonergic neurons in the midbrain also sense carbon dioxide, and these neurons might have a role in inducing various non-respiratory effects in response to a rise in carbon dioxide, such as arousal from sleep, anxiety and changes in cerebrovascular tone.

  • A role for serotonergic neurons in pH control might help to explain how three seemingly unrelated human disorders — sudden infant death syndrome (SIDS), panic disorder and migraine — could all be linked to this single, relatively homogeneous, small group of neurons. Some cases of SIDS have been attributed to defects in the 5-HT system.

Abstract

Serotonergic neurons in the medulla have recently been shown to be sensors of carbon dioxide and pH. There is compelling evidence that the co-release of serotonin, substance P and thyrotropin-releasing hormone from these neurons stimulates the neural network that controls breathing at numerous sites using many different mechanisms. Serotonergic neurons in the midbrain are also chemosensitive, and might mediate non-respiratory responses to increased carbon dioxide, such as arousal. This role in control of pH homeostasis could provide a neurobiological explanation for the link between changes in the serotonin system and sudden infant death syndrome (SIDS).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Respiratory control and serotonin.
Figure 2: Medullary serotonergic neurons are carbon dioxide/pH sensors.
Figure 3: In vivo evidence for central chemoreception in the medullary raphé.
Figure 4: Mechanisms of respiratory stimulation by raphé neurotransmitters.
Figure 5: Midbrain raphé neurons are also carbon dioxide/pH sensors.
Figure 6: The blind men and the elephant.

Similar content being viewed by others

References

  1. Mitchell, R. A., Loeschcke, H. H., Massion, W. H. & Severinghaus, J. W. Respiratory responses mediated through superficial chemosensitive areas on the medulla. J. Appl. Physiol. 18, 523–533 (1963). The authors applied acidic solution to the ventrolateral surface of the cat medulla and observed an increase in ventilation. This early work, and other papers by these authors, led to the widespread acceptance that the ventrolateral medulla was the sole location of central respiratory chemoreceptors, and that these neurons are designed to sense the pH of cerebrospinal fluid.

    Article  CAS  Google Scholar 

  2. Loeschcke, H. H. Central chemosensitivity and the reaction theory. J. Physiol. (Lond.) 332, 1–24 (1982).

    Article  CAS  Google Scholar 

  3. Jacobs, B. L. & Azmitia, E. C. Structure and function of the brain serotonin system. Physiol. Rev. 72, 165–229 (1992). This classic review discusses the serotonin system in a comprehensive, balanced and scholarly way. An excellent reference.

    Article  CAS  PubMed  Google Scholar 

  4. Dahlström, A. & Fuxe, K. Evidence for the existence of monoamine containing neurons in the central nervous system: I. Demonstration of monoamines in cell bodies of brain stem neurons. Acta Physiol. Scand. 62, 1–55 (1964). This landmark paper used histofluorescence to map the location of neurons in the brainstem that produce monoamines and catecholamines. It is the basis for the widely used nomenclature for serotonergic neuron cell groups labelled from B1 to B9.

    Google Scholar 

  5. Steinbusch, H. W. M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6, 557–618 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Lauder, J. M., Wallace, J. A., Krebs, H., Petrusz, P. & McCarthy, K. In vivo and in vitro development of serotonergic neurons. Brain Res. Bull. 9, 605–625 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Lidov, H. G. W. & Molliver, M. E. Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res. Bull. 9, 559–604 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Lovick, T. A. The medullary raphe nuclei: a system for integration and gain control in autonomic and somatomotor responsiveness? Exp. Physiol. 82, 31–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Mason, P. Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions. Ann. Rev. Neurosci. 24, 737–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Jacobs, B. L. & Fornal, C. A. Serotonin and motor activity. Curr. Opin. Neurobiol. 7, 820–825 (1997). This was the first global hypothesis for the function of the serotonergic system. The authors proposed that serotonergic neurons facilitate motor output through a multitude of effects, including enhancement of autonomic control. This hypothesis helps to explain why a single small group of neurons projects to and influences so many different brain functions.

    Article  CAS  PubMed  Google Scholar 

  11. Saper, C. B., Chou, T. C. & Scammell, T. E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 24, 726–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Hendricks, T. J. et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37, 233–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Underwood, M. D., Bakalian, M. J., Arango, V. & Mann, J. J. Effect of chemical stimulation of the dorsal raphe nucleus on cerebral blood flow in rat. Neurosci. Lett. 199, 228–230 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Lincoln, J. Innervation of cerebral arteries by nerves containing 5-hydroxytryptamine and noradrenaline. Pharmacol. Ther. 68, 473–501 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Cohen, Z., Bonvento, G., Lacombe, P. & Hamel, E. Serotonin in the regulation of brain microcirculation. Prog. Neurobiol. 50, 335–362 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Zhan, W. Z., Ellenberger, H. H. & Feldman, J. L. Monoaminergic and GABAergic terminations in phrenic nucleus of rat identified by immunohistochemical labeling. Neuroscience 31, 105–113 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Fuxe, K. Evidence for the existence of monoamine neurons in the central nervous system: IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol. Scand. 64, 39–85 (1965).

    Article  Google Scholar 

  18. Voss, M. D., Decastro, D., Lipski, J., Pilowsky, P. M. & Jiang, C. Serotonin immunoreactive boutons form close appositions with respiratory neurons of the dorsal respiratory group in the cat. J. Comp. Neurol. 295, 208–218 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Pilowsky, P. M., Decastro, D., Llewellynsmith, I., Lipski, J. & Voss, M. D. Serotonin immunoreactive boutons make synapses with feline phrenic motoneurons. J. Neurosci. 10, 1091–1098 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Holtman, J. R., Vascik, D. S. & Maley, B. E. Ultrastructural evidence for serotonin-immunoreactive terminals contacting phrenic motoneurons in the cat. Exp. Neurol. 109, 269–272 (1990).

    Article  PubMed  Google Scholar 

  21. Holtman, J. R. Immunohistochemical localization of serotonin-containing and substance-P-containing fibers around respiratory muscle motoneurons in the nucleus ambiguus of the cat. Neuroscience 26, 169–178 (1988).

    Article  PubMed  Google Scholar 

  22. Holtman, J. R. Jr et al. Evidence for 5-hydroxytryptamine, substance P, and thyrotropin- releasing hormone in neurons innervating the phrenic motor nucleus. J. Neurosci. 4, 1064–1071 (1984). This paper is one of many excellent papers from a group that provided clear anatomical and electrophysiological evidence that serotonergic neurons of the medullary raphé project to, and influence output from, the main respiratory nuclei.

    Article  PubMed  Google Scholar 

  23. Ljungdahl, Å., Hokfelt, T. & Nilsson, G. E. Distribution of substance P-like immunoreactivity in the central nervous system of the rat — I. Cell bodies and nerve terminals. Neuroscience 3, 861–943 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. Dean, C., Marson, L. & Kampine, J. P. Distribution and co-localization of 5-hydroxytryptamine, thyrotropin-releasing hormone and substance-P in the cat medulla. Neuroscience 57, 811–822 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Hokfelt, T. et al. Multiple messengers in descending serotonin neurons: localization and functional implications. J. Chem. Neuroanat. 18, 75–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Holtman, J. R. Jr, Norman, W. P. & Gillis, R. A. Projections from the raphe nuclei to the phrenic motor nucleus in the cat. Neurosci. Lett. 44, 105–111 (1984).

    Article  PubMed  Google Scholar 

  27. Holtman, J. R. Jr, Marion, L. J. & Speck, D. F. Origin of serotonin-containing projections to the ventral respiratory group in the rat. Neuroscience 37, 541–552 (1990).

    Article  PubMed  Google Scholar 

  28. Connelly, C. A., Ellenberger, H. H. & Feldman, J. L. Are there serotonergic projections from raphe and retrotrapezoid nuclei to the ventral respiratory group in the rat? Neurosci. Lett. 105, 34–40 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Smith, J. C., Morrison, D. E., Ellenberger, H. H., Otto, M. R. & Feldman, J. L. Brainstem projections to the major respiratory neuron populations in the medulla of the cat. J. Comp. Neurol. 281, 69–96 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Henry, J. N. & Manaker, S. Colocalization of substance P or enkephalin in serotonergic neuronal afferents to the hypoglossal nucleus in the rat. J. Comp. Neurol. 391, 491–505 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Manaker, S. & Tischler, L. J. Origin of serotoninergic afferents to the hypoglossal nucleus in the rat. J. Comp. Neurol. 334, 466–476 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Thor, K. B. & Helke, C. J. Serotonin and substance P colocalization in medullary projections to the nucleus tractus solitarius: dual-color immunohistochemistry combined with retrograde tracing. J. Chem. Neuroanat. 2, 139–148 (1989).

    CAS  PubMed  Google Scholar 

  33. Brodin, E. et al. In vivo release of serotonin in cat dorsal vagal complex and cervical ventral horn induced by electrical-stimulation of the medullary raphe nuclei. Brain Res. 535, 227–236 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Manaker, S. & Verderame, H. M. Organization of serotonin-1A and serotonin-1B receptors in the nucleus of the solitary tract. J. Comp. Neurol. 301, 535–553 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Manzke, T. et al. 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science 301, 226–229 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Manaker, S. & Rizio, G. Autoradiographic localization of thyrotropin releasing hormone and substance P receptors in the rat dorsal vagal complex. J. Comp. Neurol. 290, 516–526 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Gray, P. A., Rekling, J. C., Bocchiaro, C. M. & Feldman, J. L. Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBotzinger Complex. Science 286, 1566–1568 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gray, P. A., Janczewski, W. A., Mellen, N., McCrimmon, D. R. & Feldman, J. L. Normal breathing requires preBotzinger complex neurokinin-1 receptor-expressing neurons. Nature Neurosci. 4, 927–930 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Teng, Y. D. et al. Serotonin 1A receptor agonists reverse respiratory abnormalities in spinal cord-injured rats. J. Neurosci. 23, 4182–4189 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Garner, S. J., Eldridge, F. L., Wagner, P. G. & Dowell, R. T. Buspirone, an anxiolytic drug that stimulates respiration. Am. Rev. Resp. Dis. 139, 946–950 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Mendelson, W. B., Martin, J. V. & Rapoport, D. M. Effects of buspirone on sleep and respiration. Am. Rev. Resp. Dis. 141, 1527–1530 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Cayetanot, F., Gros, F. & Larnicol, N. Postnatal changes in the respiratory response of the conscious rat to serotonin 2A/2C receptor activation are reflected in the developmental pattern of fos expression in the brainstem. Brain Res. 942, 51–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Gillis, R. A. et al. Effect of activation of central nervous system serotonin 1A receptors on cardiorespiratory function. J. Pharmacol. Exp. Ther. 248, 851–857 (1989).

    CAS  PubMed  Google Scholar 

  44. Rose, D., Khaterboidin, J., Toussaint, P. & Duron, B. Central effects of 5-HT on respiratory and hypoglossal activities in the adult cat. Resp. Physiol. 101, 59–69 (1995).

    Article  CAS  Google Scholar 

  45. Suzue, T. Respiratory rhythm generation in the in vitro brain stem-spinal cord preparation of the neonatal rat. J. Physiol. (Lond.) 354, 173–183 (1984).

    Article  CAS  Google Scholar 

  46. Morin, D., Hennequin, S., Monteau, R. & Hilaire, G. Serotonergic influences on central respiratory activity: an in vitro study in the newborn rat. Brain Res. 535, 281–287 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Ballanyi, K., Onimaru, H. & Homma, I. Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog. Neurobiol. 59, 583–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Lindsay, A. D. & Feldman, J. L. Modulation of respiratory activity of neonatal rat phrenic motoneurons by serotonin. J. Physiol. (Lond.) 461, 213–233 (1993).

    Article  CAS  Google Scholar 

  49. Hilaire, G. & Duron, B. Maturation of the mammalian respiratory system. Physiol. Rev. 79, 325–360 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Nink, M. et al. Thyrotropin-releasing hormone has stimulatory effects on ventilation in humans. Acta Physiol. Scand. 141, 309–318 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Hedner, J., Hedner, T., Wessberg, P., Lundberg, D. & Jonason, J. Effects of TRH and TRH analogues on the central regulation of breathing in the rat. Acta Physiol. Scand. 117, 427–437 (1983).

    Article  CAS  PubMed  Google Scholar 

  52. Holtman, J. R. Jr, Buller, A. L., Hamosh, P. & Gillis, R. A. Central respiratory stimulation produced by thyrotropin- releasing hormone in the cat. Peptides 7, 207–212 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Yamamoto, Y., Lagercrantz, H. & von Euler, C. Effects of substance P and TRH on ventilation and pattern of breathing in newborn rabbits. Acta Physiol. Scand. 113, 541–543 (1981).

    Article  CAS  PubMed  Google Scholar 

  54. Mueller, R. A., Towle, A. C. & Breese, G. R. Supersensitivity to the respiratory stimulatory effect of TRH in 5,7-dihydroxytryptamine-treated rats. Brain Res. 298, 370–373 (1984). In this paper and in reference 80, hypoventilation occurred in rats after 5-HT neurons were lesioned with 5,7-DHT. Although not specifically commented on, the figures show that these animals also had a blunted response to an increase in carbon dioxide. These results indicated that 5-HT neurons might be central respiratory chemoreceptors that provide tonic drive to respiratory neurons.

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto, Y. & Lagercrantz, H. Some effects of substance P on central respiratory control in rabbit pups. Acta Physiol. Scand. 124, 449–455 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, Z. B., Hedner, J. & Hedner, T. Local effects of substance P on respiratory regulation in the rat medulla oblongata. J. Appl. Physiol. 68, 693–699 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. von Euler, U. S. & Pernow, B. Neurotropic effects of substance P. Acta Physiol. Scand. 36, 265–275 (1956).

    Article  CAS  PubMed  Google Scholar 

  58. Murakoshi, T., Suzue, T. & Tamai, S. A pharmacological study on respiratory rhythm in the isolated brainstem-spinal cord preparation of the newborn rat. Br. J. Pharmacol. 86, 95–104 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Greer, J. J., al Zubaidy, Z. & Carter, J. E. Thyrotropin-releasing hormone stimulates perinatal rat respiration in vitro. Am. J. Physiol. 271, R1160–R1164 (1996).

    CAS  PubMed  Google Scholar 

  60. Funk, G. D., Smith, J. C. & Feldman, J. L. Development of thyrotropin-releasing-hormone and norepinephrine potentiation of inspiratory-related hypoglossal motoneuron discharge in neonatal and juvenile mice in vitro. J. Neurophysiol. 72, 2538–2541 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Yamamoto, Y., Onimaru, H. & Homma, I. Effect of substance P on respiratory rhythm and preinspiratory neurons in the ventrolateral structure of rostral medulla oblongata — an in vitro study. Brain Res. 599, 272–276 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Monteau, R., Ptak, K., Broquere, N. & Hilaire, G. Tachykinins and central respiratory activity: an in vitro study on the newborn rat. Eur. J. Pharmacol. 314, 41–50 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Cream, C. L., Li, A. & Nattie, E. E. RTN TRH causes prolonged respiratory stimulation. J. Appl. Physiol. 83, 792–799 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. McCown, T. J., Hedner, J. A., Towle, A. C., Breese, G. R. & Mueller, R. A. Brainstem localization of a thyrotropin releasing hormone induced change in respiratory function. Brain Res. 373, 189–196 (1986).

    Article  CAS  PubMed  Google Scholar 

  65. Sahibzada, N., Ferreira, M., Wasserman, A. M., Taveira-Dasilva, A. M. & Gillis, R. A. Reversal of morphine-induced apnea in the anesthetized rat by drugs that activate 5-hydroxytryptamine (1A) receptors. J. Pharmacol. Exp. Ther. 292, 704–713 (2000).

    CAS  PubMed  Google Scholar 

  66. Lalley, P. M., Bischoff, A. M. & Richter, D. W. Serotonin 1A-receptor activation suppresses respiratory apneusis in the cat. Neurosci. Lett. 172, 59–62 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Horita, A., Carino, M. A. & Chesnut, R. M. Influence of thyrotropin releasing hormone (TRH) on drug-induced narcosis and hypothermia in rabbits. Psychopharmacology 49, 57–62 (1976).

    CAS  PubMed  Google Scholar 

  68. Kraemer, G. W. et al. Thyrotropin releasing hormone: antagonism of pentobarbital narcosis in the monkey. Pharmacol. Biochem. Behav. 4, 709–712 (1977).

    Article  Google Scholar 

  69. Schaefer, C. F. et al. Respiratory and cardiovascular effects of thyrotropin-releasing hormone as modified by isoflurane, enflurane, pentobarbital and ketamine. Regulatory Peptides 24, 269–282 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Richerson, G. B. & Getting, P. A. Preservation of integrative function in a perfused guinea pig brain. Brain Res. 517, 7–18 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Holtman, J. R. Jr, Dick, T. E. & Berger, A. J. Serotonin-mediated excitation of recurrent laryngeal and phrenic motoneurons evoked by stimulation of the raphe obscurus. Brain Res. 417, 12–20 (1987).

    Article  CAS  PubMed  Google Scholar 

  72. Millhorn, D. E. Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat. J. Physiol. (Lond.) 381, 169–179 (1986).

    Article  CAS  Google Scholar 

  73. Lalley, P. M. Serotoninergic and non-serotoninergic responses of phrenic motoneurones to raphe stimulation in the cat. J. Physiol. (Lond.) 380, 373–385 (1986).

    Article  CAS  Google Scholar 

  74. Haxhiu, M. A., Erokwu, B., Bhardwaj, V. & Dreshaj, I. A. The role of the medullary raphe nuclei in regulation of cholinergic outflow to the airways. J. Autonom. Nerv. Sys. 69, 64–71 (1998).

    Article  CAS  Google Scholar 

  75. Morin, D., Monteau, R. & Hilaire, G. 5-Hydroxytryptamine modulates central respiratory activity in the newborn rat: an in vitro study. Eur. J. Pharmacol. 192, 89–95 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Millhorn, D. E., Eldridge, F. L. & Waldrop, T. G. Prolonged stimulation of respiration by endogenous central serotonin. Resp. Physiol. 42, 171–188 (1980).

    Article  CAS  Google Scholar 

  77. Feldman, J. L., Mitchell, G. S. & Nattie, E. E. Breathing: rhythmicity, plasticity, chemosensitivity. Ann. Rev. Neurosci. 26, 239–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Baker-Herman, T. L. et al. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nature Neurosci. 7, 48–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Morris, K. F., Baekey, D. M., Shannon, R. & Lindsey, B. G. Respiratory neural activity during long-term facilitation. Resp. Physiol. 121, 119–133 (2000).

    Article  CAS  Google Scholar 

  80. Mueller, R. A., Towle, A. C. & Breese, G. R. The role of vagal afferents and carbon dioxide in the respiratory response to thyrotropin-releasing hormone. Regulatory Peptides 10, 157–166 (1985).

    Article  CAS  PubMed  Google Scholar 

  81. Olson, E. B. J., Dempsey, J. A. & McCrimmon, D. R. Serotonin and the control of ventilation in awake rats. J. Clin. Inv. 64, 689–693 (1979).

    Article  CAS  Google Scholar 

  82. Millhorn, D. E., Eldridge, F. L., Waldrop, T. G. & Klingler, L. E. Centrally and peripherally administered 5-HTP have opposite effects on respiration. Brain Res. 264, 349–354 (1983).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, Z., Hedner, T. & Hedner, J. Hypoventilation and apnoea induced by the substance P antagonist [D-Pro2,D-Trp7,9]-SP in the ventrolateral rat medulla. Acta Physiol. Scand. 134, 153–154 (1988).

    Article  CAS  PubMed  Google Scholar 

  84. Jouvet, M. Sleep and serotonin: an unfinished story. Neuropsychopharmacol. 21, S24–S27 (1999).

    Google Scholar 

  85. Onimaru, H., Shamoto, A. & Homma, I. Modulation of respiratory rhythm by 5-HT in the brainstem-spinal cord preparation from newborn rat. Pflügers. Arch. 435, 485–494 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Lalley, P. M., Benacka, R., Bischoff, A. M. & Richter, D. W. Nucleus raphe obscurus evokes 5-HT-1A receptor-mediated modulation of respiratory neurons. Brain Res. 747, 156–159 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Lalley, P. M., Bischoff, A. M. & Richter, D. W. 5-HT-1A receptor mediated modulation of medullary expiratory neurons in the cat. J. Physiol. (Lond.) 476, 117–130 (1994).

    CAS  PubMed Central  Google Scholar 

  88. Lalley, P. M. The excitability and rhythm of medullary respiratory neurons in the cat are altered by the serotonin receptor agonist 5-methoxy-N,N,dimethyltryptamine. Brain Res. 648, 87–98 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Magarinos-Ascone, C., Pazo, J. H., Macadar, O. & Buno, W. High-frequency stimulation of the subthalamic nucleus silences subthalamic neurons: a possible cellular mechanism in Parkinson's disease. Neuroscience 115, 1109–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Richerson, G. B. The Respiratory Centers of The Guinea Pig: In Vivo and Perfused Brain Studies. Thesis, Univ. lowa (1987). This was the first publication to propose that serotonergic neurons are involved in central respiratory chemoreception.

    Google Scholar 

  91. Richerson, G. B. Response to CO2 of neurons in the rostral ventral medulla in vitro. J. Neurophysiol. 73, 933–944 (1995). Using patch-clamp recordings from in vitro brain slices, it was shown, for the first time, that there are neurons within the medullary raphé nuclei that are intrinsically sensitive to an increase in carbon dioxide. This was the foundation for further work on the mechanisms of central chemoreception by serotonergic neurons.

    Article  CAS  PubMed  Google Scholar 

  92. Richerson, G. B. CO2 modulates pacemaker neurons in the medullary raphé and parapyramidal region of the rat in vitro. Soc. Neurosci. Abstr. 19, (1993).

  93. Wang, W., Pizzonia, J. H. & Richerson, G. B. Chemosensitivity of rat medullary raphe neurones in primary tissue culture. J. Physiol. (Lond.) 511, 433–450 (1998).

    Article  CAS  Google Scholar 

  94. Wang, W., Zaykin, A. V., Tiwari, J. K., Bradley, S. R. & Richerson, G. B. Acidosis-stimulated neurons of the medullary raphe are serotonergic. J. Neurophysiol. 85, 2224–2235 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Richerson, G. B. In pH and Brain Function (eds Kaila, K. & Ransom, B. R.) 509–533 (John Wiley & Sons Inc., New York, New York, 1998).

    Google Scholar 

  96. Wang, W., Bradley, S. R. & Richerson, G. B. Quantification of the response of rat medullary raphe neurones to independent changes in pHo and PCO2 . J. Physiol. (Lond.) 540, 951–970 (2002).

    Article  CAS  Google Scholar 

  97. Kondo, T., Kumagai, M., Ohta, Y. & Bishop, B. Ventilatory responses to hypercapnia and hypoxia following chronic hypercapnia in the rat. Resp. Physiol. 122, 35–43 (2000).

    Article  CAS  Google Scholar 

  98. Wang, W. & Richerson, G. B. Development of chemosensitivity of rat medullary raphe neurons. Neuroscience 90, 1001–1011 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, W. & Richerson, G. B. Chemosensitivity of non-respiratory rat CNS neurons in tissue culture. Brain Res. 860, 119–129 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Washburn, C. P., Sirois, J. E., Talley, E. M., Guyenet, P. G. & Bayliss, D. A. Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J. Neurosci. 22, 1256–1265 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Tiwari, J. K., Zaykin, A. V., Ua Cruadhlaoich, M. I., Wang, W. & Richerson, G. B. A novel pH sensitive cation current is present in putative central chemoreceptors of the medullary raphe. Soc. Neurosci. Abstr. 26, 154.1 (2000).

    Google Scholar 

  102. Ua Cruadhlaoich, M. I., Wang, W., Tiwari, J. K. & Richerson, G. B. Mathematical modeling of serotonergic rat medullary raphe neurons exhibiting a novel pH-regulated Ca2+-activated cation current. Soc. Neurosci. Abstr. 27, 632.7 (2001).

    Google Scholar 

  103. Bradley, S. R. et al. Chemosensitive serotonergic neurons are intimately associated with large arteries of the ventral medulla. Nature Neurosci. 5, 401–402 (2002). This study used confocal imaging and electron microscopy to show that chemosensitive serotonergic neurons in the medulla of the rat are closely associated with the basilar artery and its largest branches. This striking structure/function relationship implied that these neurons are anatomically specialized for a role as sensors of arterial carbon dioxide.

    Article  CAS  PubMed  Google Scholar 

  104. Larnicol, N., Wallois, F., Berquin, P., Gros, F. & Rose, D. c-fos-like immunoreactivity in the cat's neuraxis following moderate hypoxia or hypercapnia. J. Physiol. (Paris) 88, 81–88 (1994).

    Article  CAS  Google Scholar 

  105. Haxhiu, M. A., Tolentino-Silva, F., Pete, G., Ke, P. & Mack, S. O. Monoaminergic neurons, chemosensation and arousal. Resp. Physiol. 129, 191–209 (2001).

    Article  CAS  Google Scholar 

  106. Johnson, P. L., Hollis, J. H., Moratalla, R., Lightman, S. L. & Lowry, C. A. A panicogenic stimulus (acute hypercapnia) increases c-fos immunoreactivity in subpopulations of midbrain serotonergic neurons. Soc. Neurosci. Abstr. 29, 712.5 (2003).

    Google Scholar 

  107. Pete, G., Mack, S. O., Haxhiu, M. A., Walbaum, S. & Gauda, E. B. CO2-induced c-Fos expression in brainstem preprotachykinin mRNA containing neurons. Resp. Physiol. Neurobiol. 130, 265–274 (2002).

    Article  CAS  Google Scholar 

  108. Veasey, S. C., Fornal, C. A., Metzler, C. W. & Jacobs, B. L. Response of serotonergic caudal raphé neurons in relation to specific motor activities in freely moving cats. J. Neurosci. 15, 5346–5359 (1995). Recordings were made from neurons in the medullary raphé of awake, behaving cats. It was found that serotonergic neurons increase their firing rate in response to inhalation of carbon dioxide, walking and/or feeding. This is important, in part because these neurons are remarkably insensitive to most other stimuli.

    Article  CAS  PubMed  Google Scholar 

  109. Bernard, D. G., Li, A. H. & Nattie, E. E. Evidence for central chemoreception in the midline raphé. J. Appl. Physiol. 80, 108–115 (1996). The authors showed that microinjection of acetazolamide into the medullary raphé leads to an increase in ventilation. This effect was thought to result from focal acidosis, and was taken as evidence for central respiratory chemoreceptors in this region.

    Article  CAS  PubMed  Google Scholar 

  110. Nattie, E. E. & Li, A. CO2 dialysis in the medullary raphé of the rat increases ventilation in sleep. J. Appl. Physiol. 90, 1247–1257 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Dreshaj, I. A., Haxhiu, M. A. & Martin, R. J. Role of the medullary raphé nuclei in the respiratory response to CO2 . Resp. Physiol. 111, 15–23 (1998).

    Article  CAS  Google Scholar 

  112. Messier, M. L., Li, A. H. & Nattie, E. E. Muscimol inhibition of medullary raphé neurons decreases the CO2 response and alters sleep in newborn piglets. Resp. Physiol. Neurobiol. 133, 197–214 (2002).

    Article  CAS  Google Scholar 

  113. Messier, M. L., Li, A. & Nattie, E. E. Inhibition of medullary raphé serotonergic neurons has age dependent effects on the CO2 response in newborn piglets. J. Appl. Physiol. 96, 1909–1919 (2004).

    Article  PubMed  Google Scholar 

  114. Nattie, E. E., Li, A., Richerson, G. B. & Lappi, D. A. Medullary serotonergic neurons and adjacent neurons that express neurokinin-1 receptors are both involved in chemoreception in vivo. J. Physiol. (Lond.) (in the press).

  115. Dekin, M. S., Richerson, G. B. & Getting, P. A. Thyrotropin-releasing hormone induces rhythmic bursting in neurons of the nucleus tractus solitarius. Science 229, 67–69 (1985). Application of thyrotropin-releasing hormone to guinea pig brain slices converted neurons in the ventrolateral nucleus tractus solitarius from random firing to bursting. The bursting was similar to that seen in this region in vivo in inspiratory neurons that project to the phrenic motor nucleus. The bursting was further shown to be intrinsic, so this was the first report of pacemaker activity in a respiratory nucleus.

    Article  CAS  PubMed  Google Scholar 

  116. Iverfeldt, K., Serfozo, P., Diaz, A. L. & Bartfai, T. Differential release of coexisting neurotransmitters: frequency dependence of the efflux of substance P, thyrotropin releasing hormone and [3H]serotonin from tissue slices of rat ventral spinal cord. Acta Physiol. Scand. 137, 63–71 (1989).

    Article  CAS  PubMed  Google Scholar 

  117. Jacobs, B. L. & Fornal, C. A. Activity of brain serotonergic neurons in the behaving animal. Pharmacol. Rev. 43, 563–578 (1991).

    CAS  PubMed  Google Scholar 

  118. Wagner, P. G. & Dekin, M. S. GABAb receptors are coupled to a barium-insensitive outward rectifying potassium conductance in premotor respiratory neurons. J. Neurophysiol. 69, 286–289 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Wagner, P. G. & Dekin, M. S. cAMP modulates an S-type K+ channel coupled to GABAB receptors in mammalian respiratory neurons. Neuroreport 8, 1667–1670 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Hawkins, R. D., Kandel, E. R. & Siegelbaum, S. A. Learning to modulate transmitter release — themes and variations in synaptic plasticity. Ann. Rev. Neurosci. 16, 625–665 (1993).

    Article  CAS  PubMed  Google Scholar 

  121. Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W. & Feldman, J. L. Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Al-Zubaidy, Z. A., Erickson, R. L. & Greer, J. J. Serotonergic and noradrenergic effects on respiratory neural discharge in the medullary slice preparation of neonatal rats. Pflügers. Arch. 431, 942–949 (1996). This paper used focal application of serotonin in rat brain slices. When it was applied to the pre-BötC, there was an increase in respiratory frequency, and when it was applied to the hypoglossal motor nucleus, there was an increase in output from the hypoglossal nerve. These effects could be reproduced by stimulation of serotonergic neurons in the slice.

    Article  CAS  PubMed  Google Scholar 

  123. Pena, F. & Ramirez, J. M. Endogenous activation of serotonin-2A receptors is required for respiratory rhythm generation in vitro. J. Neurosci. 22, 11055–11064 (2002). Recordings from mouse brain slices were used to show that respiratory bursts generated by the pre-BötC were inhibited by antagonists of 5-HT 2a receptors. This indicated that there is release of endogenous 5-HT within these slices that is required for maintenance of respiratory rhythm generation under these conditions.

    Article  CAS  PubMed  Google Scholar 

  124. Peever, J. H., Necakov, A. & Duffin, J. Nucleus raphe obscurus modulates hypoglossal output of neonatal rat in vitro transverse brain stem slices. J. Appl. Physiol. 90, 269–279 (2001). The authors used slices of the rat medulla and showed that the frequency of bursts generated by the pre-BötC was increased by application of acidic solution into the midline raphé. They further showed that rhythm generation was abolished by ablation of midline raphé neurons.

    Article  CAS  PubMed  Google Scholar 

  125. Schwarzacher, S. W., Pestean, A., Gunther, S. & Ballanyi, K. Serotonergic modulation of respiratory motoneurons and interneurons in brainstem slices of perinatal rats. Neuroscience 115, 1247–1259 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Kubin, L., Tojima, H., Reignier, C., Pack, A. I. & Davies, R. O. Interaction of serotonergic excitatory drive to hypoglossal motoneurons with carbachol-induced, REM sleep-like atonia. Sleep 19, 187–195 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Bayliss, D. A., Viana, F. & Berger, A. J. Mechanisms underlying excitatory effects of thyrotropin-releasing hormone on rat hypoglossal motoneurons in vitro. J. Neurophysiol. 68, 1733–1745 (1992).

    Article  CAS  PubMed  Google Scholar 

  128. Berger, A. J., Bayliss, D. A. & Viana, F. Modulation of neonatal rat hypoglossal motoneuron excitability by serotonin. Neurosci. Lett. 143, 164–168 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. Rekling, J. C., Funk, G. D., Bayliss, D. A., Dong, X. W. & Feldman, J. L. Synaptic control of motoneuronal excitability. Physiol. Rev. 80, 767–852 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Talley, E. M., Lei, Q., Sirois, J. E. & Bayliss, D. A. TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25, 399–410 (2000). In this elegant in vitro study, it was found that 5-HT, TRH and substance P all acted on hypoglossal neurons by inhibiting TASK channels. This convergence onto a common channel could explain how the three main neurotransmitters found in 5-HT neurons can each lead to increased firing of these accessory respiratory motor neurons.

    Article  CAS  PubMed  Google Scholar 

  131. Sood, S., Liu, X., Liu, H., Nolan, P. & Horner, R. L. 5-HT at hypoglossal motor nucleus and respiratory control of genioglossus muscle in anesthetized rats. Resp. Physiol. Neurobiol. 138, 205–221 (2003).

    Article  CAS  Google Scholar 

  132. Morin, D., Monteau, R. & Hilaire, G. Serotonin and cervical respiratory motoneurons: intracellular study in the newborn rat brainstem-spinal cord preparation. Exp. Brain Res. 84, 229–232 (1991).

    Article  CAS  PubMed  Google Scholar 

  133. Richerson, G. B. & Bekkers, J. M. Learning to take a deep breath with BDNF. Nature Med. 10, 25–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Severson, C. A., Wang, W. G., Pieribone, V. A., Dohle, C. I. & Richerson, G. B. Midbrain serotonergic neurons are central pH chemoreceptors. Nature Neurosci. 6, 1139–1140 (2003). Although serotonergic neurons in the midbrain are not involved in the control of breathing, this paper showed that they have the same degree of chemosensitivity as medullary raphé neurons, and are also associated with large arteries. This led to the hypothesis that these neurons induce arousal, anxiety and changes in cerebral blood flow in response to a rise in arterial carbon dioxide.

    Article  CAS  PubMed  Google Scholar 

  135. Veasey, S. C., Fornal, C. A., Metzler, C. W. & Jacobs, B. L. Single-unit responses of serotonergic dorsal raphé neurons to specific motor challenges in freely moving cats. Neuroscience 79, 161–169 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Johnson, P. & Lowry, C. c-fos activation by hypercapnia in serotonergic neurons of the dorsal raphé. J. Neurophysiol. (in the press).

  137. Scheibel, M. E., Tomiyasu, U. & Scheibel, A. B. Do raphé nuclei of the reticular formation have a neurosecretory or vascular sensor function? Exp. Neurol. 47, 316–329 (1975).

    Article  CAS  PubMed  Google Scholar 

  138. Berry, R. B. & Gleeson, K. Respiratory arousal from sleep: mechanisms and significance. Sleep 20, 654–675 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Klein, D. F. False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. Archiv. Gen. Psych. 50, 306–317 (1993).

    Article  CAS  Google Scholar 

  140. Madden, J. A. The effect of carbon dioxide on cerebral arteries. Pharmacol. Ther. 59, 229–250 (1993).

    Article  CAS  PubMed  Google Scholar 

  141. Argyropoulos, S. V. et al. Inhalation of 35% CO2 results in activation of the HPA axis in healthy volunteers. Psychoneuroendocrinology 27, 715–729 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Bowker, R. M. & Abbott, L. C. Quantitative re-evaluation of descending serotonergic and non-serotonergic projections from the medulla of the rodent — evidence for extensive co-existence of serotonin and peptides in the same spinally projecting neurons, but not from the nucleus raphé magnus. Brain Res. 512, 15–25 (1990).

    Article  CAS  PubMed  Google Scholar 

  143. Gao, K. & Mason, P. Physiological and anatomic evidence for functional subclasses of serotonergic raphé magnus cells. J. Comp. Neurol. 439, 426–439 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Azmitia, E. C. Serotonin neurons, neuroplasticity, and homeostasis of neural tissue. Neuropsychopharmacology 21, S33–S45 (1999).

    Article  Google Scholar 

  145. Azmitia, E. C. Serotonergic chemoreceptive neurons: a search for a shared function. Mol. Interv. 4, 18–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Eldridge, F. L. & Waldrop, T. G. In Exercise: Pulmonary Physiology and Pathophysiology (eds Whipp, B. J. & Wasserman, K.) 309–359 (Marcel Dekker, NewYork, 1991).

    Google Scholar 

  147. Fregosi, R. F. & Dempsey, J. A. Arterial blood acid-base regulation during exercise in rats. J. Appl. Physiol. 57, 396–402 (1984).

    Article  CAS  PubMed  Google Scholar 

  148. Hunt, C. E. & Brouillette, R. T. Sudden infant death syndrome: 1987 perspective. J. Pediatr. 110, 669–678 (1987).

    Article  CAS  PubMed  Google Scholar 

  149. Panigrahy, A. et al. Decreased serotonergic receptor binding in rhombic lip-derived regions of the medulla oblongata in the sudden infant death syndrome. J. Neuropathol. Exp. Neurol. 59, 377–384 (2000). This is the first report of a specific abnormality in the serotonergic system in the brains of infants who died from SIDS. This finding has led to a specific neurobiological hypothesis for the pathophysiology of SIDS that is consistent with the epidemiological data, which points to abnormalities in carbon dioxide chemoreception, breathing, autonomic dysfunction and arousal.

    Article  CAS  PubMed  Google Scholar 

  150. Kinney, H. C., Filiano, J. J. & White, W. F. Medullary serotonergic network deficiency in the sudden infant death syndrome: review of a 15-year study of a single dataset. J. Neuropathol. Exp. Neurol. 60, 228–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Kinney, H. C. et al. Decreased muscarinic receptor binding in the arcuate nucleus in sudden infant death syndrome. Science 269, 1446–1450 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Narita, N. et al. Serotonin transporter gene variation is a risk factor for sudden infant death syndrome in the Japanese population. Pediatrics 107, 690–692 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Gorman, J. M., Liebowitz, M. R., Fyer, A. J. & Stein, J. A neuroanatomical hypothesis for panic disorder. Am. J. Psych. 146, 148–161 (1989).

    Article  CAS  Google Scholar 

  154. Papp, L. A., Klein, D. F. & Gorman, J. M. Carbon dioxide hypersensitivity, hyperventilation, and panic disorder. Am. J. Psych. 150, 1149–1157 (1993).

    Article  CAS  Google Scholar 

  155. Grove, G., Coplan, J. D. & Hollander, E. The neuroanatomy of 5-HT dysregulation and panic disorder. J. Neuropsych. Clin. Neurosci. 9, 198–207 (1997).

    Article  CAS  Google Scholar 

  156. Weiller, C. et al. Brain stem activation in spontaneous human migraine attacks. Nature Med. 1, 658–660 (1995).

    Article  CAS  PubMed  Google Scholar 

  157. Totaro, R., Marini, C., De Matteis, G., Di Napoli, M. & Carolei, A. Cerebrovascular reactivity in migraine during headache-free intervals. Cephalalgia 17, 191–194 (1997).

    Article  CAS  PubMed  Google Scholar 

  158. Saxe, J. G. The Poetical Works of John Godfrey Saxe (Houghton, Mifflin and Co., Boston, 1882).

    Google Scholar 

  159. Filiano, J. J. & Kinney, H. C. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol. Neonate 65, 194–197 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This author is supported by grants from the National Heart, Lung and Blood Institute, the National Institute for Child Health and Human Development and the Veterans Administration Medical Center.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

5-HT1a

5-HT1b

5-HT2a

5-HT4a

NK1

PET1

substance P

TASK1

TRH

OMIM

SIDS

FURTHER INFORMATION

Richerson's homepage

Glossary

RAPHé NUCLEI

A series of neuronal groups located along the midline of the brainstem. They constitute the main supply of 5-hydroxytryptamine (5-HT) to the rest of the brain.

SUBSTANCE P

Substance P is an 11-amino-acid tachykinin peptide neurotransmitter that binds preferentially to the neurokinin (NK)1 receptor. A second tachykinin, NKA, also has high affinity for this receptor, suggesting that to refer to the NK1 receptor as 'the substance P receptor' could be misleading.

NEONATAL RAT IN VITRO BRAINSTEM SPINAL CORD

The medulla and spinal cord are removed en bloc and placed dorsal side down in a dish. This preparation has been very important for in vitro studies of the intact respiratory network.

TONIC

Physiological events that occur in a sustained manner, unlike phasic events, which occur only transiently with intervening periods of inactivity.

RESPIRATORY NEURONS

Neurons that fire in phase with output to respiratory muscles. They can be divided into inspiratory neurons and expiratory neurons on the basis of when the peak of activity occurs.

IONTOPHORESIS

The introduction of a substance by ion transfer by applying an electrical potential across an electrode.

AFTERHYPERPOLARIZATION

The membrane hyperpolarization that follows the occurrence of an action potential.

BASILAR ARTERY

The main blood supply to the brainstem, it is formed by the confluence of the vertebral arteries – which are two of the four arteries that supply the brain.

C-FOS

An immediate early gene that is activated by neuronal firing. it is often used to identify neurons responsive to a particular stimulus in vivo.

S-TYPE POTASSIUM CHANNEL

A barium-insensitive outwardly rectifying potassium channel.

HYPOGLOSSAL NERVE

Innervates the genioglossus muscle in the tongue. This is an accessory respiratory muscle that helps maintain airway patency during inspiration.

LONG-TERM POTENTIATION

(LTP). An enduring increase in the amplitude of excitatory postsynaptic potentials as a result of high-frequency (tetanic) stimulation of afferent pathways. It is measured both as the amplitude of excitatory postsynaptic potentials and as the magnitude of the postsynaptic-cell population spike. LTP is most often studied in the hippocampus and is often considered to be the cellular basis of learning and memory in vertebrates.

GOLGI STAINING

A histological staining technique that involves impregnating the tissue with silver nitrate. This labels a random subset of neurons, allowing the entire cell and its processes to be visualized.

DYSPNEA

The uncomfortable awareness of breathing or being 'short of breath'.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richerson, G. Serotonergic neurons as carbon dioxide sensors that maintain ph homeostasis. Nat Rev Neurosci 5, 449–461 (2004). https://doi.org/10.1038/nrn1409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1409

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing