Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of L-DOPA-induced dyskinesia

Key Points

  • Involuntary movements (dyskinesia) develop in the course of Parkinson's disease (PD) and can be treatment-limiting. Two processes seem to be important: the 'priming' of motor systems for the initiation of dyskinesia and the processes that are responsible for its expression.

  • Dyskinesia has been associated with an imbalance in the output of the basal ganglia, but the pathophysiology of the involuntary movements remains unclear.

  • Loss of dopaminergic neurons in the substantia nigra is essential for dyskinesia induction, and the extent of denervation determines the vulnerability to non-physiological replacement of dopamine that occurs in the drug treatment of PD.

  • Attempts to define dyskinesia at the biochemical or molecular level have proved difficult. However, alterations in glutamatergic transmission seem to be key.

  • The basal ganglia are structurally and functionally abnormal in PD as a result of the loss of striatal dopaminergic input. Connectivity with the motor cortex is diminished, and the consequence is the abnormal motor response to drug treatment that comprises dyskinesia.

  • Novel approaches to treatment that alter intracellular signalling cascades and so normalize the integration of sensory and motor inputs to the basal ganglia and result in the restoration of normal movement (without dyskinesia induction or expression) in response to dopamine-replacement therapy might now be possible.

Abstract

L-DOPA (L-3,4-dihydroxyphenylalanine) remains the most effective drug for the treatment of Parkinson's disease. However, chronic use causes dyskinesia, a complex motor phenomenon that consists of two components: the execution of involuntary movements in response to drug administration, and the 'priming' phenomenon that underlies these movements' establishment and persistence. A reinterpretation of recent data suggests that priming for dyskinesia results from nigral denervation and the loss of striatal dopamine input, which alters glutamatergic synaptic connectivity in the striatum. The subsequent response of the abnormal basal ganglia to dopaminergic drugs determines the manner and timing of dyskinesia expression. The combination of nigral denervation and drug treatment establishes inappropriate signalling between the motor cortex and the striatum, leading to persistent dyskinesia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time course of events in PD and L-DOPA-induced dyskinesia.
Figure 2: Classical model of the basal ganglia changes that underlie L-DOPA-induced dyskinesia.
Figure 3: Altered transmission in the striatum that leads to dyskinesia expression.

Similar content being viewed by others

References

  1. Tanner, C. M. & Ben-Shlomo, Y. Epidemiology of Parkinson's disease. Adv. Neurol. 80, 153–159 (1999).

    CAS  PubMed  Google Scholar 

  2. Van Den Eeden, S. K. et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 157, 1015–1022 (2003).

    Article  PubMed  Google Scholar 

  3. Dorsey, E. R. et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68, 384–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Fahn, S. & Jankovic, J. Principles and Practice of Movement Disorders (Churchill Livingstone, Philadelphia, 2007). This excellent and comprehensive treatise on the basic science behind, and clinical manifestations of, movement disorders contains background information that puts this Review into a clinical perspective.

    Google Scholar 

  5. Jankovic, J. An update on the treatment of Parkinson's disease. Mt. Sinai J. Med. 73, 682–689 (2006).

    PubMed  Google Scholar 

  6. Jankovic, J. & Stacy, M. Medical management of levodopa-associated motor complications in patients with Parkinson's disease. CNS Drugs 21, 677–692 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Ahlskog, J. E. & Muenter, M. D. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord. 16, 448–458 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Jankovic, J. Motor fluctuations and dyskinesias in Parkinson's disease: clinical manifestations. Mov. Disord. 20 (Suppl. 11), S11–S16 (2005).

    Article  PubMed  Google Scholar 

  9. Schrag, A., Ben-Shlomo, Y. & Quinn, N. How common are complications of Parkinson's disease? J. Neurol. 249, 419–423 (2002). This survey of the type and frequency of the motor complications that occur during the treatment of PD dealt with the incidence of dyskinesia and placed it in the overall picture of the chronic treatment of PD.

    Article  PubMed  Google Scholar 

  10. Holloway, R. G. et al. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch. Neurol. 61, 1044–1053 (2004).

    PubMed  Google Scholar 

  11. Oertel, W. H. et al. Pergolide versus levodopa monotherapy in early Parkinson's disease patients: the PELMOPET study. Mov. Disord. 21, 343–353 (2006).

    Article  PubMed  Google Scholar 

  12. Rascol, O. et al. A five-year study of the incidence of dyskinesia in patients with early Parkinson's disease who were treated with ropinirole or levodopa. 056 Study Group. N. Engl. J. Med. 342, 1484–1491 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. DeLong, M. R. & Wichmann, T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64, 20–24 (2007).

    Article  PubMed  Google Scholar 

  14. Obeso, J. A. et al. Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci. 23, S8–S19 (2000). This review of the organization of the basal ganglia and the alterations that occur in PD set the scene for the classical view of how these changes underlie motor symptoms and the onset of dyskinesia.

    Article  CAS  PubMed  Google Scholar 

  15. Wichmann, T. & DeLong, M. R. Functional neuroanatomy of the basal ganglia in Parkinson's disease. Adv. Neurol. 91, 9–18 (2003).

    PubMed  Google Scholar 

  16. Crossman, A. R. Neural mechanisms in disorders of movement. Comp. Biochem. Physiol. A 93, 141–149 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Crossman, A. R. A hypothesis on the pathophysiological mechanisms that underlie levodopa- or dopamine agonist-induced dyskinesia in Parkinson's disease: implications for future strategies in treatment. Mov. Disord. 5, 100–108 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Crossman, A. R. Functional anatomy of movement disorders. J. Anat. 196 (Pt 4), 519–525 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gerfen, C. R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Herrero, M. T. et al. Consequence of nigrostriatal denervation and L-dopa therapy on the expression of glutamic acid decarboxylase messenger RNA in the pallidum. Neurology 47, 219–224 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Vila, M. et al. Metabolic activity of the basal ganglia in parkinsonian syndromes in human and non-human primates: a cytochrome oxidase histochemistry study. Neuroscience 71, 903–912 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Vila, M. et al. Consequences of nigrostriatal denervation on the functioning of the basal ganglia in human and nonhuman primates: an in situ hybridization study of cytochrome oxidase subunit I mRNA. J. Neurosci. 17, 765–773 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Obeso, J. A. et al. The origin of motor fluctuations in Parkinson's disease: importance of dopaminergic innervation and basal ganglia circuits. Neurology 62, S17–S30 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Sato, F., Lavallee, P., Levesque, M. & Parent, A. Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J. Comp. Neurol. 417, 17–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Parkin, S. G. et al. Unilateral and bilateral pallidotomy for idiopathic Parkinson's disease: a case series of 115 patients. Mov. Disord. 17, 682–692 (2002).

    Article  PubMed  Google Scholar 

  26. Heimer, G. et al. Dopamine replacement therapy does not restore the full spectrum of normal pallidal activity in the 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine primate model of Parkinsonism. J. Neurosci. 26, 8101–8114 (2006). This paper subscribed to the emerging view that changes in the firing patterns of specific neurons in individual basal ganglia nuclei might be more important than overall changes in pathway activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuhn, A. A., Kupsch, A., Schneider, G. H. & Brown, P. Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease. Eur. J. Neurosci. 23, 1956–1960 (2006).

    Article  PubMed  Google Scholar 

  28. Leblois, A. et al. Late emergence of synchronized oscillatory activity in the pallidum during progressive Parkinsonism. Eur. J. Neurosci. 26, 1701–1713 (2007).

    Article  PubMed  Google Scholar 

  29. Leblois, A., Boraud, T., Meissner, W., Bergman, H. & Hansel, D. Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J. Neurosci. 26, 3567–3583 (2006). This paper posed a challenge to the classical view that the output from the basal ganglia is made up of the direct and indirect pathways. It suggested that alternative views now need to be considered when looking at the way in which the basal ganglia function in PD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boyce, S., Rupniak, N. M., Steventon, M. J. & Iversen, S. D. Nigrostriatal damage is required for induction of dyskinesias by L-DOPA in squirrel monkeys. Clin. Neuropharmacol. 13, 448–458 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Rajput, A. H., Fenton, M., Birdi, S. & Macaulay, R. Is levodopa toxic to human substantia nigra? Mov. Disord. 12, 634–638 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Ballard, P. A., Tetrud, J. W. & Langston, J. W. Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology 35, 949–956 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Bedard, P. J., Di, P. T., Falardeau, P. & Boucher, R. Chronic treatment with L-DOPA, but not bromocriptine induces dyskinesia in MPTP-parkinsonian monkeys. Correlation with [3H]spiperone binding. Brain Res. 379, 294–299 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Clarke, C. E., Sambrook, M. A., Mitchell, I. J. & Crossman, A. R. Levodopa-induced dyskinesia and response fluctuations in primates rendered parkinsonian with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). J. Neurol. Sci. 78, 273–280 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Pearce, R. K., Jackson, M., Smith, L., Jenner, P. & Marsden, C. D. Chronic L-DOPA administration induces dyskinesias in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix jacchus). Mov. Disord. 10, 731–740 (1995). This paper provided an example of the MPTP-treated primate model of Parkinson's disease and of the induction of dyskinesia by L-DOPA treatment.

    Article  CAS  PubMed  Google Scholar 

  36. Quinn, N., Critchley, P. & Marsden, C. D. Young onset Parkinson's disease. Mov. Disord. 2, 73–91 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Gibb, W. R. & Lees, A. J. A comparison of clinical and pathological features of young- and old-onset Parkinson's disease. Neurology 38, 1402–1406 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Di Monte, D. A. et al. Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov. Disord. 15, 459–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Guigoni, C. et al. Levodopa-induced dyskinesia in MPTP-treated macaques is not dependent on the extent and pattern of nigrostrial lesioning. Eur. J. Neurosci. 22, 283–287 (2005).

    Article  PubMed  Google Scholar 

  40. Schneider, J. S. Levodopa-induced dyskinesias in parkinsonian monkeys: relationship to extent of nigrostriatal damage. Pharmacol. Biochem. Behav. 34, 193–196 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Schneider, J. S., Gonczi, H. & Decamp, E. Development of levodopa-induced dyskinesias in parkinsonian monkeys may depend upon rate of symptom onset and/or duration of symptoms. Brain Res. 990, 38–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Linazasoro, G. New ideas on the origin of L-dopa-induced dyskinesias: age, genes and neural plasticity. Trends Pharmacol. Sci. 26, 391–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Togasaki, D. M. et al. Dyskinesias in normal squirrel monkeys induced by nomifensine and levodopa. Neuropharmacology 48, 398–405 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Togasaki, D. M. et al. Levodopa induces dyskinesias in normal squirrel monkeys. Ann. Neurol. 50, 254–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Pearce, R. K., Heikkila, M., Linden, I. B. & Jenner, P. L-dopa induces dyskinesia in normal monkeys: behavioural and pharmacokinetic observations. Psychopharmacology (Berl.) 156, 402–409 (2001).

    Article  CAS  Google Scholar 

  46. Olanow, C. W. et al. Levodopa in the treatment of Parkinson's disease: current controversies. Mov. Disord. 19, 997–1005 (2004).

    Article  PubMed  Google Scholar 

  47. Cedarbaum, J. M. Clinical pharmacokinetics of anti-parkinsonian drugs. Clin. Pharmacokinet. 13, 141–178 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Gancher, S. T., Nutt, J. G. & Woodward, W. R. Peripheral pharmacokinetics of levodopa in untreated, stable, and fluctuating parkinsonian patients. Neurology 37, 940–944 (1987).

    Article  CAS  PubMed  Google Scholar 

  49. Kempster, P. A. et al. Levodopa peripheral pharmacokinetics and duration of motor response in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 52, 718–723 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nutt, J. G. Pharmacodynamics of levodopa in Parkinson's disease. Clin. Exp. Pharmacol. Physiol. 22, 837–840 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Rainero, I. et al. Peripheral pharmacokinetic parameters of levodopa/carbidopa and the on-off phenomenon in parkinsonian patients. Ital. J. Neurol. Sci. 9, 255–259 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Goto, Y., Otani, S. & Grace, A. A. The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53, 583–587 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grace, A. A. The tonic/phasic model of dopamine system regulation: its relevance for understanding how stimulant abuse can alter basal ganglia function. Drug Alcohol Depend. 37, 111–129 (1995). This paper described the way in which the tonic and phasic effects of dopamine underlie the regulation of dopaminergic systems in the brain.

    Article  CAS  PubMed  Google Scholar 

  54. Obeso, J. A., Olanow, C. W. & Nutt, J. G. Levodopa motor complications in Parkinson's disease. Trends Neurosci. 23, S2–S7 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Olanow, C. W., Obeso, J. A. & Stocchi, F. Drug insight: continuous dopaminergic stimulation in the treatment of Parkinson's disease. Nature Clin. Pract. Neurol. 2, 382–392 (2006).

    Article  CAS  Google Scholar 

  56. Olanow, C. W., Obeso, J. A. & Stocchi, F. Continuous dopamine-receptor treatment of Parkinson's disease: scientific rationale and clinical implications. Lancet Neurol. 5, 677–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Nutt, J. G. Continuous dopaminergic stimulation: is it the answer to the motor complications of Levodopa? Mov. Disord. 22, 1–9 (2007).

    Article  PubMed  Google Scholar 

  58. Rascol, O. et al. Development of dyskinesias in a 5-year trial of ropinirole and L-dopa. Mov. Disord. 21, 1844–1850 (2006).

    Article  PubMed  Google Scholar 

  59. Bibbiani, F., Costantini, L. C., Patel, R. & Chase, T. N. Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp. Neurol. 192, 73–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Blanchet, P. J. et al. Continuous administration decreases and pulsatile administration increases behavioral sensitivity to a novel dopamine D2 agonist (U-91356A) in MPTP-exposed monkeys. J. Pharmacol. Exp. Ther. 272, 854–859 (1995). This study provided an example of how different delivery of the same drug by pulsatile or continuous administration results in differing degrees of dyskinesia in MPTP-treated primates.

    CAS  PubMed  Google Scholar 

  61. Smith, L. A. et al. Multiple small doses of levodopa plus entacapone produce continuous dopaminergic stimulation and reduce dyskinesia induction in MPTP-treated drug-naive primates. Mov. Disord. 20, 306–314 (2005).

    Article  PubMed  Google Scholar 

  62. Stocchi, F., Vacca, L., Ruggieri, S. & Olanow, C. W. Intermittent vs continuous levodopa administration in patients with advanced Parkinson disease: a clinical and pharmacokinetic study. Arch. Neurol. 62, 905–910 (2005).

    Article  PubMed  Google Scholar 

  63. Constantinescu, R., Romer, M., McDermott, M. P., Kamp, C. & Kieburtz, K. Impact of pramipexole on the onset of levodopa-related dyskinesias. Mov. Disord. 22, 1317–1319 (2007).

    Article  PubMed  Google Scholar 

  64. Hauser, R. A. et al. Ten-year follow-up of Parkinson's disease patients randomized to initial therapy with ropinirole or levodopa. Mov. Disord. 22, 2409–2417 (2007). This study investigated the long-term outcome of starting patients with PD on pulsatile L-DOPA therapy versus a longer-acting dopamine agonist.

    Article  PubMed  Google Scholar 

  65. Hadj, T. A., Gregoire, L., Bangassoro, E. & Bedard, P. J. Sustained cabergoline treatment reverses levodopa-induced dyskinesias in parkinsonian monkeys. Clin. Neuropharmacol. 23, 195–202 (2000).

    Article  Google Scholar 

  66. Jackson, M. J., Smith, L. A., Al-Barghouthy, G., Rose, S. & Jenner, P. Decreased expression of l-dopa-induced dyskinesia by switching to ropinirole in MPTP-treated common marmosets. Exp. Neurol. 204, 162–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Smith, L. A. et al. Switching from levodopa to the long-acting dopamine D2/D3 agonist piribedil reduces the expression of dyskinesia while maintaining effective motor activity in MPTP-treated primates. Clin. Neuropharmacol. 29, 112–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Blanchet, P. J., Konitsiotis, S. & Chase, T. N. Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov. Disord. 13, 798–802 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Blanchet, P. J., Metman, L. V. & Chase, T. N. Renaissance of amantadine in the treatment of Parkinson's disease. Adv. Neurol. 91, 251–257 (2003).

    CAS  PubMed  Google Scholar 

  70. Chase, T. N., Oh, J. D. & Konitsiotis, S. Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms. J. Neurol. 247 (Suppl. 2), II36–II42 (2000). This paper focused attention on the importance of glutamatergic transmission and blockade of glutamate receptors in the control of dyskinesia induced by L-DOPA in MPTP-treated primates and patients with PD.

    PubMed  Google Scholar 

  71. Del, D. P. et al. Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study. Mov. Disord. 16, 515–520 (2001).

    Article  Google Scholar 

  72. Verhagen, M. L. et al. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson's disease. Neurology 50, 1323–1326 (1998).

    Article  Google Scholar 

  73. Gubellini, P. et al. Chronic high-frequency stimulation of the subthalamic nucleus and L-DOPA treatment in experimental parkinsonism: effects on motor behaviour and striatal glutamate transmission. Eur. J. Neurosci. 24, 1802–1814 (2006).

    Article  PubMed  Google Scholar 

  74. Benabid, A. L., Chabardes, S. & Seigneuret, E. Deep-brain stimulation in Parkinson's disease: long-term efficacy and safety - What happened this year? Curr. Opin. Neurol. 18, 623–630 (2005).

    Article  PubMed  Google Scholar 

  75. Benabid, A. L. et al. Surgical therapy for Parkinson's disease. J. Neural Transm. Suppl. 383–392 (2006).

  76. Hurley, M. J. & Jenner, P. What has been learnt from study of dopamine receptors in Parkinson's disease? Pharmacol. Ther. 111, 715–728 (2006). This review of the reported changes in dopamine receptor expression illustrates the variability of reports on PD.

    Article  CAS  PubMed  Google Scholar 

  77. Aubert, I. et al. Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann. Neurol. 57, 17–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Guigoni, C. et al. Pathogenesis of levodopa-induced dyskinesia: focus on D1 and D3 dopamine receptors. Parkinsonism. Relat. Disord. 11 (Suppl. 1), S25–S29 (2005).

    Article  PubMed  Google Scholar 

  79. Guigoni, C., Doudnikoff, E., Li, Q., Bloch, B. & Bezard, E. Altered D1 dopamine receptor trafficking in parkinsonian and dyskinetic non-human primates. Neurobiol. Dis. 26, 452–463 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Lee, J., Gomez-Ramirez, J., Johnston, T. H., Visanji, N. & Brotchie, J. M. Receptor-activity modifying protein 1 expression is increased in the striatum following repeated L-DOPA administration in a 6-hydroxydopamine lesioned rat model of Parkinson's disease. Synapse 62, 310–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Bezard, E. et al. L-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiol. Dis. 18, 323–335 (2005). This is an excellent example of several recent papers on the changes in striatal intracellular signalling cascades that occur after loss of nigrostriatal input and/or L-DOPA treatment.

    Article  CAS  PubMed  Google Scholar 

  82. Corvol, J. C. et al. Persistent increase in olfactory type G-protein a subunit levels may underlie D1 receptor functional hypersensitivity in Parkinson disease. J. Neurosci. 24, 7007–7014 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Blanchet, P., Bedard, P. J., Britton, D. R. & Kebabian, J. W. Differential effect of selective D-1 and D-2 dopamine receptor agonists on levodopa-induced dyskinesia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- exposed monkeys. J. Pharmacol. Exp. Ther. 267, 275–279 (1993).

    CAS  PubMed  Google Scholar 

  84. Bordet, R. et al. Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc. Natl. Acad. Sci. USA 94, 3363–3367 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bezard, E. et al. Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nature Med. 9, 762–767 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Bordet, R., Ridray, S., Schwartz, J. C. & Sokoloff, P. Involvement of the direct striatonigral pathway in levodopa-induced sensitization in 6-hydroxydopamine-lesioned rats. Eur. J. Neurosci. 12, 2117–2123 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Hurley, M. J., Stubbs, C. M., Jenner, P. & Marsden, C. D. D3 receptor expression within the basal ganglia is not affected by Parkinson's disease. Neurosci. Lett. 214, 75–78 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Hurley, M. J., Jolkkonen, J., Stubbs, C. M., Jenner, P. & Marsden, C. D. Dopamine D3 receptors in the basal ganglia of the common marmoset and following MPTP and L-DOPA treatment. Brain Res. 709, 259–264 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Tel, B. C. et al. Alterations in striatal neuropeptide mRNA produced by repeated administration of L-DOPA, ropinirole or bromocriptine correlate with dyskinesia induction in MPTP-treated common marmosets. Neuroscience 115, 1047–1058 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Zeng, B. Y., Pearce, R. K., MacKenzie, G. M. & Jenner, P. Alterations in preproenkephalin and adenosine-2a receptor mRNA, but not preprotachykinin mRNA correlate with occurrence of dyskinesia in normal monkeys chronically treated with L-DOPA. Eur. J. Neurosci. 12, 1096–1104 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Henry, B., Duty, S., Fox, S. H., Crossman, A. R. & Brotchie, J. M. Increased striatal pre-proenkephalin B expression is associated with dyskinesia in Parkinson's disease. Exp. Neurol. 183, 458–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Herrero, M. T. et al. Glutamic acid decarboxylase mRNA expression in medial and lateral pallidal neurons in the MPTP-treated monkey and patients with Parkinson's disease. Adv. Neurol. 69, 209–216 (1996).

    CAS  PubMed  Google Scholar 

  93. Vila, M. et al. Consequences of nigrostriatal denervation on the gamma-aminobutyric acidic neurons of substantia nigra pars reticulata and superior colliculus in parkinsonian syndromes. Neurology 46, 802–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Andersson, M., Hilbertson, A. & Cenci, M. A. Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson's disease. Neurobiol. Dis. 6, 461–474 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Cenci, M. A. Transcription factors involved in the pathogenesis of L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Amino Acids 23, 105–109 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Pavon, N., Martin, A. B., Mendialdua, A. & Moratalla, R. ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol. Psychiatry 59, 64–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Valastro, B., Andersson, M., Lindgren, H. S. & Cenci, M. A. Expression pattern of JunD after acute or chronic L-DOPA treatment: comparison with ΔFosB. Neuroscience 144, 198–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Westin, J. E., Andersson, M., Lundblad, M. & Cenci, M. A. Persistent changes in striatal gene expression induced by long-term L-DOPA treatment in a rat model of Parkinson's disease. Eur. J. Neurosci. 14, 1171–1176 (2001). This study is an example of the pioneering work with the 6-OHDA-lesioned rat AIMs model of dyskinesia that is being undertaken to understand the gene changes that underlie the expression of involuntary movements.

    Article  CAS  PubMed  Google Scholar 

  99. Xu, Y., Sun, S. & Cao, X. Effect of levodopa chronic administration on behavioral changes and fos expression in basal ganglia in rat model of PD. J. Huazhong Univ. Sci. Technol. Med. Sci. 23, 258–262 (2003).

    Article  CAS  Google Scholar 

  100. Calon, F. et al. Molecular basis of levodopa-induced dyskinesias. Ann. Neurol. 47, S70–S78 (2000).

    CAS  PubMed  Google Scholar 

  101. Calon, F. et al. Levodopa or D2 agonist induced dyskinesia in MPTP monkeys: correlation with changes in dopamine and GABAA receptors in the striatopallidal complex. Brain Res. 680, 43–52 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Calon, F. et al. Chronic D1 and D2 dopaminomimetic treatment of MPTP-denervated monkeys: effects on basal ganglia GABAA/benzodiazepine receptor complex and GABA content. Neurochem. Int. 35, 81–91 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Calon, F. et al. 125I-CGP 64213 binding to GABAB receptors in the brain of monkeys: effect of MPTP and dopaminomimetic treatments. Exp. Neurol. 163, 191–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Calon, F. & Di, P. T. Levodopa response motor complications—GABA receptors and preproenkephalin expression in human brain. Parkinsonism Relat. Disord. 8, 449–454 (2002).

    Article  PubMed  Google Scholar 

  105. Calon, F. et al. Changes of GABA receptors and dopamine turnover in the postmortem brains of parkinsonians with levodopa-induced motor complications. Mov. Disord. 18, 241–253 (2003).

    Article  PubMed  Google Scholar 

  106. Samadi, P. et al. Normalization of GABAA receptor specific binding in the substantia nigra reticulata and the prevention of L-dopa-induced dyskinesias in MPTP parkinsonian monkeys. Synapse 62, 101–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Schroeder, J. A. & Schneider, J. S. GABAA and μ-opioid receptor binding in the globus pallidus and endopeduncular nucleus of animals symptomatic for and recovered from experimental Parkinsonism. Brain Res. 947, 284–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Aubert, I. et al. Enhanced preproenkephalin-B-derived opioid transmission in striatum and subthalamic nucleus converges upon globus pallidus internalis in L-3,4-dihydroxyphenylalanine-induced dyskinesia. Biol. Psychiatry 61, 836–844 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Brooks, D. J. PET studies and motor complications in Parkinson's disease. Trends Neurosci. 23, S101–S108 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Chen, L., Togasaki, D. M., Langston, J. W., Di Monte, D. A. & Quik, M. Enhanced striatal opioid receptor-mediated G-protein activation in L-DOPA-treated dyskinetic monkeys. Neuroscience 132, 409–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Piccini, P., Weeks, R. A. & Brooks, D. J. Alterations in opioid receptor binding in Parkinson's disease patients with levodopa-induced dyskinesias. Ann. Neurol. 42, 720–726 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Cohen, R. M., Carson, R. E., Aigner, T. G. & Doudet, D. J. Opiate receptor avidity is reduced in non-motor impaired MPTP-lesioned rhesus monkeys. Brain Res. 806, 292–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Cohen, R. M., Carson, R. E., Wyatt, R. J. & Doudet, D. J. Opiate receptor avidity is reduced bilaterally in rhesus monkeys unilaterally lesioned with MPTP. Synapse 33, 282–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Hallett, P. J. & Brotchie, J. M. Striatal delta opioid receptor binding in experimental models of Parkinson's disease and dyskinesia. Mov. Disord. 22, 28–40 (2007).

    Article  PubMed  Google Scholar 

  115. Porrino, L. J., Viola, J. J., Crane, A. M. & Pontieri, F. E. Alterations in opiate receptor binding in MPTP-induced hemiparkinsonian monkeys. Neurosci. Lett. 127, 155–159 (1991).

    Article  CAS  PubMed  Google Scholar 

  116. Calon, F. et al. Increased adenosine A2A receptors in the brain of Parkinson's disease patients with dyskinesias. Brain 127, 1075–1084 (2004).

    Article  PubMed  Google Scholar 

  117. Kase, H. et al. Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson's disease. Neurology 61, S97–S100 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Morelli, M. et al. Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog. Neurobiol. 83, 293–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Cao, X. et al. Blockade of cannabinoid CB1 receptors augments the antiparkinsonian action of levodopa without affecting dyskinesias in MPTP-treated rhesus monkeys. J. Pharmacol. Exp. Ther. 323, 318–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Fox, S. H., Henry, B., Hill, M., Crossman, A. & Brotchie, J. Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Mov. Disord. 17, 1180–1187 (2002).

    Article  PubMed  Google Scholar 

  121. Fox, S. H., Lang, A. E. & Brotchie, J. M. Translation of nondopaminergic treatments for levodopa-induced dyskinesia from MPTP-lesioned nonhuman primates to phase IIa clinical studies: keys to success and roads to failure. Mov. Disord. 21, 1578–1594 (2006).

    Article  PubMed  Google Scholar 

  122. Gomez-Ramirez, J., Johnston, T. H., Visanji, N. P., Fox, S. H. & Brotchie, J. M. Histamine H3 receptor agonists reduce L-dopa-induced chorea, but not dystonia, in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Mov. Disord. 21, 839–846 (2006).

    Article  PubMed  Google Scholar 

  123. Savola, J. M. et al. Fipamezole (JP-1730) is a potent a2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Mov. Disord. 18, 872–883 (2003).

    Article  PubMed  Google Scholar 

  124. Calabresi, P., Giacomini, P., Centonze, D. & Bernardi, G. Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity? Ann. Neurol. 47, S60–S68 (2000).

    CAS  PubMed  Google Scholar 

  125. Picconi, B. et al. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nature Neurosci. 6, 501–506 (2003). This paper contained important work on the alteration of information storage in the corticostriatal glutamatergic pathway after repeated L-DOPA treatment of 6-OHDA-lesioned rats and the induction of AIMs.

    Article  CAS  PubMed  Google Scholar 

  126. Picconi, B. et al. Pathological synaptic plasticity in the striatum: implications for Parkinson's disease. Neurotoxicology 26, 779–783 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Calabresi, P., Picconi, B., Tozzi, A. & Di, F. M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 30, 211–219 (2007). This is an excellent review of the fundamental part that dopamine plays in regulating the plasticity of corticostriatal input to the striatum and of how loss of dopamine can lead to dysregulation in PD.

    Article  CAS  PubMed  Google Scholar 

  128. Picconi, B. et al. l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiol. Dis. 29, 327–335 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Surmeier, D. J., Ding, J., Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235 (2007). This is an excellent review of the control of medium spiny neurons in the striatum by corticostriatal glutamatergic input and through dopaminergic regulation.

    Article  CAS  PubMed  Google Scholar 

  130. Blanchet, P. J. et al. Differing effects of N-methyl-D-aspartate receptor subtype selective antagonists on dyskinesias in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys. J. Pharmacol. Exp. Ther. 290, 1034–1040 (1999).

    CAS  PubMed  Google Scholar 

  131. Hadj, T. A. et al. Effect of a selective glutamate antagonist on L-dopa-induced dyskinesias in drug-naive parkinsonian monkeys. Neurobiol. Dis. 15, 171–176 (2004).

    Article  CAS  Google Scholar 

  132. Morissette, M. et al. Prevention of dyskinesia by an NMDA receptor antagonist in MPTP monkeys: effect on adenosine A2A receptors. Synapse 60, 239–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Morissette, M. et al. Prevention of levodopa-induced dyskinesias by a selective NR1A/2B N-methyl-D-aspartate receptor antagonist in parkinsonian monkeys: implication of preproenkephalin. Mov. Disord. 21, 9–17 (2006).

    Article  PubMed  Google Scholar 

  134. Nash, J. E. et al. Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson's disease. Exp. Neurol. 165, 136–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Nash, J. E. et al. The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson's disease. Exp. Neurol. 188, 471–479 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Papa, S. M. & Chase, T. N. Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys. Ann. Neurol. 39, 574–578 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Verhagen, M. L., Del, D. P., Natte, R., van den Munckhof, P. & Chase, T. N. Dextromethorphan improves levodopa-induced dyskinesias in Parkinson's disease. Neurology 51, 203–206 (1998).

    Article  Google Scholar 

  138. Bibbiani, F. et al. Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. Exp. Neurol. 196, 422–429 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Konitsiotis, S., Blanchet, P. J., Verhagen, L., Lamers, E. & Chase, T. N. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 54, 1589–1595 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Calon, F., Rajput, A. H., Hornykiewicz, O., Bedard, P. J. & Di, P. T. Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson's disease. Neurobiol. Dis. 14, 404–416 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Chase, T. N. Striatal plasticity and extrapyramidal motor dysfunction. Parkinsonism Relat. Disord. 10, 305–313 (2004).

    Article  PubMed  Google Scholar 

  142. Dunah, A. W. et al. Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson's disease. Mol. Pharmacol. 57, 342–352 (2000).

    CAS  PubMed  Google Scholar 

  143. Hurley, M. J., Jackson, M. J., Smith, L. A., Rose, S. & Jenner, P. Immunoautoradiographic analysis of NMDA receptor subunits and associated postsynaptic density proteins in the brain of dyskinetic MPTP-treated common marmosets. Eur. J. Neurosci. 21, 3240–3250 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Oh, J. D., Russell, D. S., Vaughan, C. L. & Chase, T. N. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration. Brain Res. 813, 150–159 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Oh, J. D., Vaughan, C. L. & Chase, T. N. Effect of dopamine denervation and dopamine agonist administration on serine phosphorylation of striatal NMDA receptor subunits. Brain Res. 821, 433–442 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Oh, J. D. & Chase, T. N. Glutamate-mediated striatal dysregulation and the pathogenesis of motor response complications in Parkinson's disease. Amino Acids 23, 133–139 (2002). This paper underlined the concept that alterations in the phosphorylation of glutamate receptors are a key event in the disruption of striatal function that occurs in PD and in the genesis of dyskinesia.

    Article  CAS  PubMed  Google Scholar 

  147. Chase, T. N. & Oh, J. D. Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism. Trends Neurosci. 23, S86–S91 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Chase, T. N. & Oh, J. D. Striatal mechanisms and pathogenesis of parkinsonian signs and motor complications. Ann. Neurol. 47, S122–S129 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Chase, T. N., Bibbiani, F. & Oh, J. D. Striatal glutamatergic mechanisms and extrapyramidal movement disorders. Neurotox. Res. 5, 139–146 (2003).

    Article  PubMed  Google Scholar 

  150. Hallett, P. J. et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Neuropharmacology 48, 503–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Oh, J. D., Chartisathian, K., Ahmed, S. M. & Chase, T. N. Cyclic AMP responsive element binding protein phosphorylation and persistent expression of levodopa-induced response alterations in unilateral nigrostriatal 6-OHDA lesioned rats. J. Neurosci. Res. 72, 768–780 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Nicholas, A. P. et al. Striatal histone modifications in models of levodopa-induced dyskinesia. J. Neurochem. 106, 486–494 (2008). This recent paper suggested that the disruption of chromatin structure that is essential for the maintenance of neuronal plasticity might occur in dyskinesia.

    Article  CAS  PubMed  Google Scholar 

  153. Calabresi, P. et al. A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression. J. Neurosci. 19, 2489–2499 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sammut, S. et al. Phasic dopaminergic transmission increases NO efflux in the rat dorsal striatum via a neuronal NOS and a dopamine D1/5 receptor-dependent mechanism. Neuropsychopharmacology 31, 493–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Bassilana, F. et al. Unraveling substantia nigra sequential gene expression in a progressive MPTP-lesioned macaque model of Parkinson's disease. Neurobiol. Dis. 20, 93–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Grunblatt, E. et al. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J. Neural Transm. 111, 1543–1573 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Konradi, C. et al. Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol. Dis. 17, 219–236 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mandel, S. et al. Gene expression profiling of sporadic Parkinson's disease substantia nigra pars compacta reveals impairment of ubiquitin-proteasome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann. NY Acad. Sci. 1053, 356–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Kultima, K. et al. Normalization and expression changes in predefined sets of proteins using 2D gel electrophoresis: a proteomic study of L-DOPA induced dyskinesia in an animal model of Parkinson's disease using DIGE. BMC Bioinformatics 7, 475 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Valastro, B. et al. Proteomic analysis of striatal proteins in the rat model of L-DOPA-induced dyskinesia. J. Neurochem. 102, 1395–1409 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Ingham, C. A., Hood, S. H., van Maldegem, B., Weenink, A. & Arbuthnott, G. W. Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway. Exp. Brain Res. 93, 17–27 (1993).

    Article  CAS  PubMed  Google Scholar 

  162. Ingham, C. A., Hood, S. H., Taggart, P. & Arbuthnott, G. W. Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. J. Neurosci. 18, 4732–4743 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. McNeill, T. H., Brown, S. A., Rafols, J. A. & Shoulson, I. Atrophy of medium spiny I striatal dendrites in advanced Parkinson's disease. Brain Res. 455, 148–152 (1988).

    Article  CAS  PubMed  Google Scholar 

  164. Stephens, B. et al. Evidence of a breakdown of corticostriatal connections in Parkinson's disease. Neuroscience 132, 741–754 (2005). This study provided evidence that there is loss of spines on medium spiny neurons in PD.

    Article  CAS  PubMed  Google Scholar 

  165. Deutch, A. Y. Striatal plasticity in parkinsonism: dystrophic changes in medium spiny neurons and progression in Parkinson's disease. J. Neural Transm. Suppl. 67–70 (2006). This key paper showed that the loss of spines on striatal medium spiny neurons following dopaminergic denervation only occurs on the indirect output pathway.

  166. Day, M. et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nature. Neurosci. 9, 251–259 (2006). This study is one of several that provided evidence that changes in the post-synaptic scaffolds that support glutamate receptors might occur in dyskinesia. Thus, glutamatergic transmission might also be altered at this level as well as following spine loss on medium spiny neurons.

    Article  CAS  PubMed  Google Scholar 

  167. Gardoni, F. et al. A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. J. Neurosci. 26, 2914–2922 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Misu, Y. & Goshima, Y. Is L-dopa an endogenous neurotransmitter? Trends Pharmacol. Sci. 14, 119–123 (1993).

    Article  CAS  PubMed  Google Scholar 

  169. Hamani, C., Neimat, J. & Lozano, A. M. Deep brain stimulation for the treatment of Parkinson's disease. J. Neural Transm. Suppl. 393–399 (2006).

  170. Vitek, J. L. et al. Randomized trial of pallidotomy versus medical therapy for Parkinson's disease. Ann. Neurol. 53, 558–569 (2003).

    Article  PubMed  Google Scholar 

  171. Manson, A. J. et al. Intravenous apomorphine therapy in Parkinson's disease: clinical and pharmacokinetic observations. Brain 124, 331–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. O'Sullivan, J. D. & Lees, A. J. Use of apomorphine in Parkinson's disease. Hosp. Med. 60, 816–820 (1999).

    Article  CAS  PubMed  Google Scholar 

  173. Stocchi, F., Vacca, L., Ruggieri, S. & Olanow, C. W. Intermittent vs continuous levodopa administration in patients with advanced Parkinson disease: a clinical and pharmacokinetic study. Arch. Neurol. 62, 905–910 (2005).

    Article  PubMed  Google Scholar 

  174. Schapira, A. H. & Obeso, J. Timing of treatment initiation in Parkinson's disease: a need for reappraisal? Ann. Neurol. 59, 559–562 (2006).

    Article  PubMed  Google Scholar 

  175. Siderowf, A. & Stern, M. Clinical trials with rasagiline: evidence for short-term and long-term effects. Neurology 66, S80–S88 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Iravani, M. M. et al. GDNF reverses priming for dyskinesia in MPTP-treated, L-DOPA-primed common marmosets. Eur. J. Neurosci. 13, 597–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Costa, S., Iravani, M. M., Pearce, R. K. & Jenner, P. Glial cell line-derived neurotrophic factor concentration dependently improves disability and motor activity in MPTP-treated common marmosets. Eur. J. Pharmacol. 412, 45–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Lindgren, H. S., Rylander, D., Ohlin, K. E., Lundblad, M. & Cenci, M. A. The “motor complication syndrome” in rats with 6-OHDA lesions treated chronically with L-DOPA: relation to dose and route of administration. Behav. Brain Res. 177, 150–159 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Cenci, M. A., Whishaw, I. Q. & Schallert, T. Animal models of neurological deficits: how relevant is the rat? Nature Rev. Neurosci. 3, 574–579 (2002). This Review describes evidence that the 6-OHDA-lesioned rat AIMs model of dyskinesia is a good model for studying the effects of drugs that are known to suppress dyskinesia in PD.

    Article  CAS  Google Scholar 

  180. Dekundy, A., Lundblad, M., Danysz, W. & Cenci, M. A. Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav. Brain Res. 179, 76–89 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Lundblad, M. et al. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson's disease. Eur. J. Neurosci. 15, 120–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  182. Carta, M., Carlsson, T., Kirik, D. & Bjorklund, A. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130, 1819–1833 (2007).

    Article  PubMed  Google Scholar 

  183. Fabbrini, G., Brotchie, J. M., Grandas, F., Nomoto, M. & Goetz, C. G. Levodopa-induced dyskinesias. Mov. Disord. 22, 1379–1389 (2007).

    Article  PubMed  Google Scholar 

  184. Fox, S. H., Lang, A. E. & Brotchie, J. M. Translation of nondopaminergic treatments for levodopa-induced dyskinesia from MPTP-lesioned nonhuman primates to phase IIa clinical studies: keys to success and roads to failure. Mov. Disord. 21, 1578–1594 (2006).

    Article  PubMed  Google Scholar 

  185. Brotchie, J. M. Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov. Disord. 20, 919–931 (2005).

    Article  PubMed  Google Scholar 

  186. Jenner, P. The MPTP-treated primate as a model of motor complications in PD: primate model of motor complications. Neurology 61, S4–S11 (2003). This paper illustrated how changes in intracellular signalling pathways, such as the ERK1 and ERK2 pathway, have been consistently detected in the AIMs model and might provide an accessible means of investigating the basis of dyskinesia.

    Article  CAS  PubMed  Google Scholar 

  187. Westin, J. E., Vercammen, L., Strome, E. M., Konradi, C. & Cenci, M. A. Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol. Psychiatry 62, 800–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Li, W. et al. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr. Biol. 15, 1961–1967 (2005). This recent paper illustrated the potential for interfering with specific signalling pathways to be used as a means of finding new therapeutic approaches to the treatment of dyskinesia in PD.

    Article  CAS  PubMed  Google Scholar 

  189. Schuster, S. et al. The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor lovastatin reduces severity of L-DOPA-induced abnormal involuntary movements in experimental Parkinson's disease. J. Neurosci. 28, 4311–4316 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Pirker, W. et al. Coadministration of (–)-OSU6162 with l-DOPA normalizes preproenkephalin mRNA expression in the sensorimotor striatum of primates with unilateral 6-OHDA lesions. Exp. Neurol. 169, 122–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  191. Morissette, M. et al. Preproenkephalin mRNA expression in the caudate-putamen of MPTP monkeys after chronic treatment with the D2 agonist U91356A in continuous or intermittent mode of administration: comparison with L-DOPA therapy. Brain Res. Mol. Brain Res. 49, 55–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  192. Baldessarini, R. J. & Tarsy, D. Pathophysiologic basis of tardive dyskinesia. Adv. Biochem. Psychopharmacol. 24, 451–455 (1980).

    CAS  PubMed  Google Scholar 

  193. Hong, J. S., Yoshikawa, K., Kanamatsu, T. & Sabol, S. L. Modulation of striatal enkephalinergic neurons by antipsychotic drugs. Fed. Proc. 44, 2535–2539 (1985).

    CAS  PubMed  Google Scholar 

  194. Gunne, L. M. & Haggstrom, J. E. Experimental tardive dyskinesia. J. Clin. Psychiatry 46, 48–50 (1985).

    CAS  PubMed  Google Scholar 

  195. Gunne, L. M., Haggstrom, J. E. & Sjoquist, B. Association with persistent neuroleptic-induced dyskinesia of regional changes in brain GABA synthesis. Nature 309, 347–349 (1984).

    Article  CAS  PubMed  Google Scholar 

  196. Harrison, P. J. The neuropathological effects of antipsychotic drugs. Schizophr. Res. 40, 87–99 (1999).

    Article  CAS  PubMed  Google Scholar 

  197. Meshul, C. K. & Casey, D. E. Regional, reversible ultrastructural changes in rat brain with chronic neuroleptic treatment. Brain Res. 489, 338–346 (1989).

    Article  CAS  PubMed  Google Scholar 

  198. Meshul, C. K., Janowsky, A., Casey, D. E., Stallbaumer, R. K. & Taylor, B. Coadministration of haloperidol and SCH-23390 prevents the increase in “perforated” synapses due to either drug alone. Neuropsychopharmacology 7, 285–293 (1992).

    CAS  PubMed  Google Scholar 

  199. Meshul, C. K., Janowsky, A., Casey, D. E., Stallbaumer, R. K. & Taylor, B. Effect of haloperidol and clozapine on the density of “perforated” synapses in caudate, nucleus accumbens, and medial prefrontal cortex. Psychopharmacology (Berl.) 106, 45–52 (1992). This paper illustrated the types of morphological changes that have been associated with chronic neuroleptic treatment in rats and the origins of tardive dyskinesia.

    Article  CAS  Google Scholar 

  200. Meshul, C. K., Andreassen, O. A., Allen, C. & Jorgensen, H. A. Correlation of vacuous chewing movements with morphological changes in rats following 1-year treatment with haloperidol. Psychopharmacology (Berl.) 125, 238–247 (1996).

    Article  CAS  Google Scholar 

  201. Herrero, M. T. et al. Effects of L-DOPA on preproenkephalin and preprotachykinin gene expression in the MPTP treated monkey striatum. Neuroscience 68, 1189–1198 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author has been supported by the Parkinson's Disease Society and by the National Parkinson Foundation for many aspects of this work.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Peter Jenner has a 9% stockholding in Proximogen Neuroscience Ltd, which is developing novel drug treatments for Parkinson's Disease.

Related links

Related links

DATABASES

OMIM

Parkinson's disease

Glossary

MPTP

(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). A neurotoxin that, on systemic administration to mice or non-human primates, induces motor disability that closely resembles PD. MPTP is commonly used to study cellular and molecular aspects of PD, as it specifically induces the degeneration of dopaminergic neurons in the substantia nigra.

Priming

The abnormality in the basal ganglia that leads to the expression of dyskinesia following administration of dopaminergic agents. An analogy might be when an active process such as electrical stimulation leads to an epileptic focus.

Plasma half-life

The length of time that it takes for the concentration of a drug in the plasma to decline by 50%.

6-OHDA

(6-hydroxydopamine). A neurotoxin that, when it is administered unilaterally to the substantia nigra of rodents, causes degeneration of the nigrostriatal dopaminergic pathway. Subsequent administration of dopaminergic drugs causes motor asymmetry in the form of rotational behaviour.

Long-term potentiation

(LTP). A persistent strengthening of synaptic transmission in response to strong, correlated input.

Long-term depression

(LTD). A long-lasting decrease in the response of neurons to stimulation of their afferents following a brief patterned stimulus (for example, a 1 Hz stimulus).

Striatal medium spiny neurons

Medium sized, spiny GABAergic neurons that are found in the striatum. The spines are the points of synaptic input from other transmitter systems, notably glutamatergic input from the cortex.

Synaptic depotentiation

A reversal of LTP by low-frequency synaptic stimulation.

Pallidotomy

A surgical procedure involving electrocoagulation of the GPi. It is carried out to relieve drug-resistant tremor or dyskinesia in PD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenner, P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci 9, 665–677 (2008). https://doi.org/10.1038/nrn2471

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2471

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing