Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroproteomics: understanding the molecular organization and complexity of the brain

Key Points

  • The context and role of individual proteins in complexes, pathways and networks can be experimentally examined using neuroproteomics, thus, providing a logical framework for physiological properties from these sets of proteins.

  • Expression neuroproteomics, a field initiated in the early 1980s, has profiled the nervous system at different levels, from synaptic protein complexes to the entire brain.

  • Quantitative methods for mass spectrometry have opened the door to comparative neuroproteomics in many fields of neurobiology: synaptic plasticity, sleep, development, ageing, stem cell research and in the molecular pathology of brain diseases.

  • Functional neuroproteomics has characterized the spatial organization of proteins in the nervous system, particularly inside the synapse, and how proteins interact together to form functional networks. Functional neuroproteomics has also profiled post-translational modifications, such phosphorylation events, to show the complexity of the signalling pathways associated with neural function.

  • Clinical neuroproteomics has focused on studying the molecular basis of neural diseases, characterizing the cerebrospinal fluid proteome to identify disease markers and the molecular events underlying addiction.

  • The analysis of protein information from different proteomic databases with the aid of bioinformatic and statistical tools is a very powerful approach to obtain new biological information partly contributing to the understanding of physiological events however also contributing to our understanding of disease and disorders and aiding in clinical diagnosis and drug discovery.

Abstract

Advances in technology have equipped the field of neuroproteomics with refined tools for the study of the expression, interaction and function of proteins in the nervous system. In combination with bioinformatics, neuroproteomics can address the organization of dynamic, functional protein networks and macromolecular structures that underlie physiological, anatomical and behavioural processes. Furthermore, neuroproteomics is contributing to the elucidation of disease mechanisms and is a powerful tool for the identification of biomarkers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow of a prototypical MS-based neuroproteomics experiment.
Figure 2: Bioinformatic approaches to neuroproteomics.

Similar content being viewed by others

References

  1. Wasinger, V. C. et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16, 1090–1094 (1995).

    CAS  PubMed  Google Scholar 

  2. de Hoog, C. L. & Mann, M. Proteomics. Annu. Rev. Genomics Hum. Genet. 5, 267–293 (2004).

    CAS  PubMed  Google Scholar 

  3. Gauss, C., Kalkum, M., Lowe, M., Lehrach, H. & Klose, J. Analysis of the mouse proteome. (I) Brain proteins: separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis 20, 575–600 (1999).

    CAS  PubMed  Google Scholar 

  4. Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19, 1720–1730 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. de Godoy, L. M. et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251–1254 (2008).

    CAS  PubMed  Google Scholar 

  6. Tannu, N. S. & Hemby, S. E. Methods for proteomics in neuroscience. Prog. Brain Res. 158, 41–82 (2006).

    CAS  PubMed  Google Scholar 

  7. Liao, L., McClatchy, D. B. & Yates, J. R. Shotgun proteomics in neuroscience. Neuron 63, 12–26 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ong, S. E. & Mann, M. Mass spectrometry-based proteomics turns quantitative. Nature Chem. Biol. 1, 252–262 (2005).

    CAS  Google Scholar 

  9. Focking, M. et al. 2-D DIGE as a quantitative tool for investigating the HUPO Brain Proteome Project mouse series. Proteomics 6, 4914–4931 (2006).

    CAS  PubMed  Google Scholar 

  10. Fossard, C., Dale, G. & Latner, A. L. Separation of the proteins of cerebrospinal fluid using gel electrofocusing followed by electrophoresis. J. Clin. Pathol. 23, 586–589 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Delmotte, P. Gel isoelectric focusing of cerebrospinal fluid proteins: a potential diagnostic tool. Z. Klin. Chem. Klin. Biochem. 9, 334–336 (1971).

    CAS  PubMed  Google Scholar 

  12. Kjellin, K. G. & Stibler, H. Protein patterns of cerebrospinal fluid in hereditary ataxias and hereditary spastic paraplegia. J. Neurol. Sci. 25, 65–74 (1975).

    CAS  PubMed  Google Scholar 

  13. Latner, A. L. Some clinical biochemical aspects of isoelectric focusing. Ann. NY Acad. Sci. 209, 281–298 (1973).

    CAS  PubMed  Google Scholar 

  14. O'Farrell, P. H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

  15. Klose, J. & von Wallenberg-Pachaly, H. Changes of soluble protein populations during organogenesis of mouse embryos as revealed by protein mapping. Dev. Biol. 51, 324–331 (1976).

    CAS  PubMed  Google Scholar 

  16. Goldman, D., Merril, C. R. & Ebert, M. H. Two-dimensional gel electrophoresis of cerebrospinal fluid proteins. Clin. Chem. 26, 1317–1322 (1980).

    CAS  PubMed  Google Scholar 

  17. Yun, M., Wu, W., Hood, L. & Harrington, M. Human cerebrospinal fluid protein database: edition 1992. Electrophoresis 13, 1002–1013 (1992).

    CAS  PubMed  Google Scholar 

  18. Yates, J. R. 3rd., et al. Future prospects for the analysis of complex biological systems using micro-column liquid chromatography-electrospray tandem mass spectrometry. Analyst 121, 65R–76R (1996). The development of LC/MS-MS allowed for a less biased and more straightforward system to analyse very complex protein samples.

    CAS  PubMed  Google Scholar 

  19. Pan, S. et al. A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry. Proteomics 7, 469–473 (2007). Study reporting the largest catalogue of the human CSF proteome, an important source of biomarkers.

    CAS  PubMed  Google Scholar 

  20. Klose, J. & Feller, M. Genetic variability of proteins from plasma membranes and cytosols of mouse organs. Biochem. Genet. 19, 859–870 (1981). This paper marks the beginning of the systematical classification of the brain proteome.

    CAS  PubMed  Google Scholar 

  21. Jungblut, P. & Klose, J. Genetic variability of proteins from mitochondria and mitochondrial fractions of mouse organs. Biochem. Genet. 23, 227–245 (1985).

    CAS  PubMed  Google Scholar 

  22. Wang, H. et al. Characterization of the mouse brain proteome using global proteomic analysis complemented with cysteinyl-peptide enrichment. J. Proteome Res. 5, 361–369 (2006). The largest profiling of a brain proteome to date retrieved 7,792 proteins, 34% of the total predicted mouse proteome.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Mayford, M., Barzilai, A., Keller, F., Schacher, S. & Kandel, E. R. Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. Science 256, 638–644 (1992).

    CAS  PubMed  Google Scholar 

  25. Schoofs, L., Holman, G. M., Hayes, T. K., Nachman, R. J. & De Loof, A. Locustatachykinin I and II, two novel insect neuropeptides with homology to peptides of the vertebrate tachykinin family. FEBS Lett. 261, 397–401 (1990).

    CAS  PubMed  Google Scholar 

  26. Svensson, M. et al. Neuropeptidomics: expanding proteomics downwards. Biochem. Soc. Trans. 35, 588–593 (2007).

    CAS  PubMed  Google Scholar 

  27. Brockmann, A. et al. Quantitative peptidomics reveal brain peptide signatures of behavior. Proc. Natl Acad. Sci. USA 106, 2383–2388 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng, D. et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol. Cell Proteomics 5, 1158–1170 (2006).

    CAS  PubMed  Google Scholar 

  29. McClatchy, D. B., Liao, L., Park, S. K., Venable, J. D. & Yates, J. R. Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development. Genome Res. 17, 1378–1388 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Olsen, J. V., Nielsen, P. A., Andersen, J. R., Mann, M. & Wisniewski, J. R. Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels. Brain Res. 1134, 95–106 (2007).

    CAS  PubMed  Google Scholar 

  31. Trinidad, J. C. et al. Quantitative analysis of synaptic phosphorylation and protein expression. Mol. Cell Proteomics 7, 684–696 (2008).

    CAS  PubMed  Google Scholar 

  32. Chin, M. H. et al. Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson's disease. J. Proteome Res. 7, 666–677 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lovell, M. A., Xiong, S., Markesbery, W. R. & Lynn, B. C. Quantitative proteomic analysis of mitochondria from primary neuron cultures treated with amyloid beta peptide. Neurochem. Res. 30, 113–122 (2005).

    CAS  PubMed  Google Scholar 

  34. Lovestone, S. et al. Proteomics of Alzheimer's disease: understanding mechanisms and seeking biomarkers. Expert Rev. Proteomics 4, 227–238 (2007).

    CAS  PubMed  Google Scholar 

  35. Martins-de-Souza, D. et al. Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. (2009).

  36. Ogata, Y. et al. Differential protein expression in male and female human lumbar cerebrospinal fluid using iTRAQ reagents after abundant protein depletion. Proteomics 7, 3726–3734 (2007).

    CAS  PubMed  Google Scholar 

  37. Prokai, L., Zharikova, A. D. & Stevens, S. M. Jr. Effect of chronic morphine exposure on the synaptic plasma-membrane subproteome of rats: a quantitative protein profiling study based on isotope-coded affinity tags and liquid chromatography/mass spectrometry. J. Mass Spectrom. 40, 169–175 (2005).

    CAS  PubMed  Google Scholar 

  38. Roth, C. L., McCormack, A. L., Lomniczi, A., Mungenast, A. E. & Ojeda, S. R. Quantitative proteomics identifies a change in glial glutamate metabolism at the time of female puberty. Mol. Cell Endocrinol. 254–255, 51–59 (2006).

    PubMed  Google Scholar 

  39. Salim, K. et al. Identification of proteomic changes during differentiation of adult mouse subventricular zone progenitor cells. Stem Cells Dev. 16, 143–165 (2007).

    CAS  PubMed  Google Scholar 

  40. Schrimpf, S. P. et al. Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5, 2531–2541 (2005).

    CAS  PubMed  Google Scholar 

  41. Gevaert, K. et al. Stable isotopic labeling in proteomics. Proteomics 8, 4873–4885 (2008).

    CAS  PubMed  Google Scholar 

  42. Becker, M., Nothwang, H. G. & Friauf, E. Different protein profiles in inferior colliculus and cerebellum: a comparative proteomic study. Neuroscience 154, 233–244 (2008).

    CAS  PubMed  Google Scholar 

  43. Alexander-Kaufman, K., Dedova, I., Harper, C. & Matsumoto, I. Proteome analysis of the dorsolateral prefrontal region from healthy individuals. Neurochem. Int. 51, 433–439 (2007).

    CAS  PubMed  Google Scholar 

  44. Petyuk, V. A. et al. Spatial mapping of protein abundances in the mouse brain by voxelation integrated with high-throughput liquid chromatography-mass spectrometry. Genome Res. 17, 328–336 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Crecelius, A. C. et al. Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 1093–1099 (2005).

    CAS  PubMed  Google Scholar 

  46. Le Bihan, T. et al. Differential analysis of membrane proteins in mouse fore- and hindbrain using a label-free approach. J. Proteome Res. 5, 2701–2710 (2006).

    CAS  PubMed  Google Scholar 

  47. Hamacher, M. et al. Inside SMP proteomics: six years German Human Brain Proteome Project (HBPP) — a summary. Proteomics 8, 1118–1128 (2008).

    CAS  PubMed  Google Scholar 

  48. Fountoulakis, M., Hardmaier, R., Schuller, E. & Lubec, G. Differences in protein level between neonatal and adult brain. Electrophoresis 21, 673–678 (2000).

    CAS  PubMed  Google Scholar 

  49. Fountoulakis, M., Juranville, J. F., Dierssen, M. & Lubec, G. Proteomic analysis of the fetal brain. Proteomics 2, 1547–1576 (2002).

    CAS  PubMed  Google Scholar 

  50. Maurer, M. H., Feldmann, R. E. Jr, Burgers, H. F. & Kuschinsky, W. Protein expression differs between neural progenitor cells from the adult rat brain subventricular zone and olfactory bulb. BMC Neurosci. 9, 7 (2008).

    PubMed  PubMed Central  Google Scholar 

  51. Skalnikova, H., Vodicka, P., Gadher, S. J. & Kovarova, H. Proteomics of neural stem cells. Expert Rev. Proteomics 5, 175–186 (2008).

    CAS  PubMed  Google Scholar 

  52. McNair, K., Davies, C. H. & Cobb, S. R. Plasticity-related regulation of the hippocampal proteome. Eur. J. Neurosci. 23, 575–580 (2006).

    PubMed  Google Scholar 

  53. Henninger, N. et al. Spatial learning induces predominant downregulation of cytosolic proteins in the rat hippocampus. Genes Brain Behav. 6, 128–140 (2007).

    CAS  PubMed  Google Scholar 

  54. Piccoli, G. et al. Proteomic analysis of activity-dependent synaptic plasticity in hippocampal neurons. J. Proteome Res. 6, 3203–3215 (2007).

    CAS  PubMed  Google Scholar 

  55. Pinaud, R., Osorio, C., Alzate, O. & Jarvis, E. D. Profiling of experience-regulated proteins in the songbird auditory forebrain using quantitative proteomics. Eur. J. Neurosci. 27, 1409–1422 (2008).

    PubMed  PubMed Central  Google Scholar 

  56. O'Hara, B. F., Ding, J., Bernat, R. L. & Franken, P. Genomic and proteomic approaches towards an understanding of sleep. CNS Neurol. Disord. Drug Targets. 6, 71–81 (2007).

    CAS  PubMed  Google Scholar 

  57. Nilsen, J., Irwin, R. W., Gallaher, T. K. & Brinton, R. D. Estradiol in vivo regulation of brain mitochondrial proteome. J. Neurosci. 27, 14069–14077 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Moller, M., Sparre, T., Bache, N., Roepstorff, P. & Vorum, H. Proteomic analysis of day-night variations in protein levels in the rat pineal gland. Proteomics 7, 2009–2018 (2007).

    PubMed  Google Scholar 

  59. Seo, H. S. et al. Effects of coffee bean aroma on the rat brain stressed by sleep deprivation: a selected transcript- and 2D gel-based proteome analysis. J. Agric. Food Chem. 56, 4665–4673 (2008).

    CAS  PubMed  Google Scholar 

  60. Tsugita, A. et al. Proteome analysis of mouse brain: two-dimensional electrophoresis profiles of tissue proteins during the course of aging. Electrophoresis 21, 1853–1871 (2000).

    CAS  PubMed  Google Scholar 

  61. Chen, W., Ji, J., Xu, X., He, S. & Ru, B. Proteomic comparison between human young and old brains by two-dimensional gel electrophoresis and identification of proteins. Int. J. Dev. Neurosci. 21, 209–216 (2003).

    CAS  PubMed  Google Scholar 

  62. Sato, Y., Yamanaka, H., Toda, T., Shinohara, Y. & Endo, T. Comparison of hippocampal synaptosome proteins in young-adult and aged rats. Neurosci. Lett. 382, 22–26 (2005).

    CAS  PubMed  Google Scholar 

  63. Poon, H. F., Vaishnav, R. A., Butterfield, D. A., Getchell, M. L. & Getchell, T. V. Proteomic identification of differentially expressed proteins in the aging murine olfactory system and transcriptional analysis of the associated genes. J. Neurochem. 94, 380–392 (2005).

    CAS  PubMed  Google Scholar 

  64. Yang, S. et al. Comparative proteomic analysis of brains of naturally aging mice. Neuroscience 154, 1107–1120 (2008).

    CAS  PubMed  Google Scholar 

  65. Dencher, N. A., Frenzel, M., Reifschneider, N. H., Sugawa, M. & Krause, F. Proteome alterations in rat mitochondria caused by aging. Ann. NY Acad. Sci. 1100, 291–298 (2007).

    CAS  PubMed  Google Scholar 

  66. Emes, R. D. et al. Evolutionary expansion and anatomical specialization of synapse proteome complexity. Nature Neurosci. 11, 799–806 (2008). Comparative neuroproteomics on synapse evolution identifies a similar, although simplified, version of postsynaptic proteome in invertebrates.

    CAS  PubMed  Google Scholar 

  67. Whittaker, V. P., Michaelson, I. A. & Kirkland, R. J. The separation of synaptic vesicles from nerve-ending particles ('synaptosomes'). Biochem. J. 90, 293–303 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nature Neurosci. 3, 661–669 (2000). First demonstration that large protein complexes are associated with neurotransmitter receptors.

    CAS  PubMed  Google Scholar 

  69. Fernandez, E. et al. Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. Mol. Syst. Biol. 5, 269 (2009). First example of genetically modified mice using gene targeting to isolate in vivo protein complexes using tandem affinity purification tags.

    PubMed  PubMed Central  Google Scholar 

  70. Grant, S. G., Marshall, M. C., Page, K. L., Cumiskey, M. A. & Armstrong, J. D. Synapse proteomics of multiprotein complexes: en route from genes to nervous system diseases. Hum. Mol. Genet. 14, R225–R234 (2005).

    Google Scholar 

  71. Farr, C. D. et al. Proteomic analysis of native metabotropic glutamate receptor 5 protein complexes reveals novel molecular constituents. J. Neurochem. 91, 438–450 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Becamel, C. et al. The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J. Biol. Chem. 279, 20257–20266 (2004).

    CAS  PubMed  Google Scholar 

  73. Kabbani, N., Woll, M. P., Levenson, R., Lindstrom, J. M. & Changeux, J. P. Intracellular complexes of the β2 subunit of the nicotinic acetylcholine receptor in brain identified by proteomics. Proc. Natl Acad. Sci. USA 104, 20570–20575 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Leonoudakis, D., Conti, L. R., Radeke, C. M., McGuire, L. M. & Vandenberg, C. A. A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. J. Biol. Chem. 279, 19051–19063 (2004).

    CAS  PubMed  Google Scholar 

  75. Klemmer, P., Smit, A. B. & Li, K. W. Proteomics analysis of immuno-precipitated synaptic protein complexes. J. Proteomics 72, 82–90 (2009).

    CAS  PubMed  Google Scholar 

  76. Collins, M. O. et al. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J. Neurochem. 97 (Suppl. 1), 16–23 (2006).

    CAS  PubMed  Google Scholar 

  77. Selimi, F., Cristea, I. M., Heller, E., Chait, B. T. & Heintz, N. Proteomic studies of a single CNS synapse type: the parallel fiber/purkinje cell synapse. PLoS Biol. 7, e83 (2009).

    PubMed  Google Scholar 

  78. Grant, S. G. Toward a molecular catalogue of synapses. Brain Res. Rev. 55, 445–449 (2007).

    CAS  PubMed  Google Scholar 

  79. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006). Use of proteomics with structural biology to propose a three-dimensional model of synaptic vesicles.

    CAS  PubMed  Google Scholar 

  80. Burre, J. & Volknandt, W. The synaptic vesicle proteome. J. Neurochem. 101, 1448–1462 (2007).

    CAS  PubMed  Google Scholar 

  81. Phillips, G. R. et al. The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32, 63–77 (2001).

    CAS  PubMed  Google Scholar 

  82. Phillips, G. R. et al. Proteomic comparison of two fractions derived from the transsynaptic scaffold. J. Neurosci. Res. 81, 762–775 (2005).

    CAS  PubMed  Google Scholar 

  83. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    CAS  PubMed  Google Scholar 

  84. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    CAS  PubMed  Google Scholar 

  85. Cusick, M. E., Klitgord, N., Vidal, M. & Hill, D. E. Interactome: gateway into systems biology. Hum. Mol. Genet. 14, R171–R181 (2005).

    Google Scholar 

  86. Goehler, H. et al. A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. Mol. Cell 15, 853–865 (2004).

    CAS  PubMed  Google Scholar 

  87. Lim, J. et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125, 801–814 (2006). References 86 and 87 report pioneering work using bioinformatics analysis of neuroproteomics data to gain insight into human disease.

    CAS  PubMed  Google Scholar 

  88. Munton, R. P. et al. Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol. Cell Proteomics 6, 283–293 (2007).

    CAS  PubMed  Google Scholar 

  89. Coba, M. P. et al. Neurotransmitters drive combinatorial multistate postsynaptic density networks. Sci. Signal 2, ra19 (2009). Synapse phosphoproteomics reveals a high degree of complexity and combination of methods to generate the first site-specific phosphorylation map of a proteome.

    PubMed  PubMed Central  Google Scholar 

  90. Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nature Biotechnol. 21, 255–261 (2003).

    CAS  Google Scholar 

  91. Witze, E. S., Old, W. M., Resing, K. A. & Ahn, N. G. Mapping protein post-translational modifications with mass spectrometry. Nature Methods 4, 798–806 (2007).

    CAS  PubMed  Google Scholar 

  92. Thompson, S. J., Loftus, L. T., Ashley, M. D. & Meller, R. Ubiquitin-proteasome system as a modulator of cell fate. Curr. Opin. Pharmacol. 8, 90–95 (2008).

    CAS  PubMed  Google Scholar 

  93. Khidekel, N. et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nature Chem. Biol. 3, 339–348 (2007).

    CAS  Google Scholar 

  94. Kang, R. et al. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 456, 904–909 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Schoneich, C. Protein modification in aging: an update. Exp. Gerontol 41, 807–812 (2006).

    PubMed  Google Scholar 

  96. Hekimi, S. & Guarente, L. Genetics and the specificity of the aging process. Science 299, 1351–1354 (2003).

    CAS  PubMed  Google Scholar 

  97. Sacksteder, C. A. et al. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry 45, 8009–8022 (2006).

    CAS  PubMed  Google Scholar 

  98. Gokulrangan, G., Zaidi, A., Michaelis, M. L. & Schoneich, C. Proteomic analysis of protein nitration in rat cerebellum: effect of biological aging. J. Neurochem. 100, 1494–1504 (2007).

    CAS  PubMed  Google Scholar 

  99. Poon, H. F., Vaishnav, R. A., Getchell, T. V., Getchell, M. L. & Butterfield, D. A. Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brains of old mice. Neurobiol. Aging 27, 1010–1019 (2006).

    CAS  PubMed  Google Scholar 

  100. Kaindl, A. M. et al. Acute and long-term proteome changes induced by oxidative stress in the developing brain. Cell Death Differ. 13, 1097–1109 (2006).

    CAS  PubMed  Google Scholar 

  101. Wulfkuhle, J. D., Liotta, L. A. & Petricoin, E. F. Proteomic applications for the early detection of cancer. Nature Rev. Cancer 3, 267–275 (2003).

    CAS  Google Scholar 

  102. Lv, L. L. & Liu, B. C. High-throughput antibody microarrays for quantitative proteomic analysis. Expert Rev. Proteomics 4, 505–513 (2007).

    CAS  PubMed  Google Scholar 

  103. Rohner, T. C., Staab, D. & Stoeckli, M. MALDI mass spectrometric imaging of biological tissue sections. Mech. Ageing Dev. 126, 177–185 (2005).

    CAS  PubMed  Google Scholar 

  104. Mustafa, D., Kros, J. M. & Luider, T. Combining laser capture microdissection and proteomics techniques. Methods Mol. Biol. 428, 159–178 (2008). A methods paper that shows the potential of laser capture microdissection coupled with proteomics to study the brain molecular complexity.

    CAS  PubMed  Google Scholar 

  105. Whittle, I. R. et al. Proteomic analysis of gliomas. Br. J. Neurosurg. 21, 576–582 (2007).

    CAS  PubMed  Google Scholar 

  106. Chumbalkar, V., Sawaya, R. & Bogler, O. Proteomics: the new frontier also for brain tumor research. Curr. Probl. Cancer 32, 143–154 (2008).

    PubMed  Google Scholar 

  107. Yang, J. W., Czech, T., Felizardo, M., Baumgartner, C. & Lubec, G. Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids 30, 477–493 (2006).

    CAS  PubMed  Google Scholar 

  108. Jiang, W. et al. Preliminary explorations of the role of mitochondrial proteins in refractory epilepsy: some findings from comparative proteomics. J. Neurosci. Res. 85, 3160–3170 (2007).

    CAS  PubMed  Google Scholar 

  109. Rubinsztein, D. C. Protein-protein interaction networks in the spinocerebellar ataxias. Genome Biol. 7, 229 (2006).

    PubMed  PubMed Central  Google Scholar 

  110. Fountoulakis, M., Gulesserian, T. & Lubec, G. Overexpression of C1-tetrahydrofolate synthase in fetal Down syndrome brain. J. Neural Transm. Suppl. 67 85–93 (2003).

    CAS  Google Scholar 

  111. Ottens, A. K. et al. Novel neuroproteomic approaches to studying traumatic brain injury. Prog. Brain Res. 161, 401–418 (2007).

    CAS  PubMed  Google Scholar 

  112. Steinman, L. New targets for treatment of multiple sclerosis. J. Neurol. Sci. 274, 1–4 (2008).

    CAS  PubMed  Google Scholar 

  113. Van Elzen, R., Moens, L. & Dewilde, S. Expression profiling of the cerebral ischemic and hypoxic response. Expert Rev. Proteomics 5, 263–282 (2008).

    CAS  PubMed  Google Scholar 

  114. Carboni, L. et al. Proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine or putative novel antidepressants: CRF1 and NK1 receptor antagonists. Eur. Neuropsychopharmacol. 16, 521–537 (2006).

    CAS  PubMed  Google Scholar 

  115. Khawaja, X., Xu, J., Liang, J. J. & Barrett, J. E. Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies. J. Neurosci. Res. 75, 451–460 (2004).

    CAS  PubMed  Google Scholar 

  116. Corena-McLeod, M. D. et al. Paliperidone as a mood stabilizer: a pre-frontal cortex synaptoneurosomal proteomics comparison with lithium and valproic acid after chronic treatment reveals similarities in protein expression. Brain Res. 1233, 8–19 (2008).

    CAS  Google Scholar 

  117. O'Brien, E. et al. Effects of chronic risperidone treatment on the striatal protein profiles in rats. Brain Res. 1113, 24–32 (2006).

    CAS  PubMed  Google Scholar 

  118. Matsumoto, I. Proteomics approach in the study of the pathophysiology of alcohol-related brain damage. Alcohol Alcohol. 44, 171–176 (2009).

    CAS  PubMed  Google Scholar 

  119. Freeman, W. M. et al. Distinct proteomic profiles of amphetamine self-administration transitional states. Pharmacogenomics J. 5, 203–214 (2005).

    CAS  PubMed  Google Scholar 

  120. Iwazaki, T., McGregor, I. S. & Matsumoto, I. Protein expression profile in the amygdala of rats with methamphetamine-induced behavioral sensitization. Neurosci. Lett. 435, 113–119 (2008).

    CAS  PubMed  Google Scholar 

  121. Tannu, N. S., Howell, L. L. & Hemby, S. E. Integrative proteomic analysis of the nucleus accumbens in rhesus monkeys following cocaine self-administration. Mol. Psychiatry 27 May 2008 (doi: 10.1038/mp.2008.53).

    PubMed  PubMed Central  Google Scholar 

  122. Bierczynska-Krzysik, A. et al. Rat brain proteome in morphine dependence. Neurochem. Int. 49, 401–406 (2006).

    CAS  PubMed  Google Scholar 

  123. Moron, J. A. et al. Morphine administration alters the profile of hippocampal postsynaptic density-associated proteins: a proteomics study focusing on endocytic proteins. Mol. Cell Proteomics 6, 29–42 (2007). A good example of how comparative proteomics can be used to study molecular changes caused by drug abuse.

    CAS  PubMed  Google Scholar 

  124. Zhang, J., Keene, C. D., Pan, C., Montine, K. S. & Montine, T. J. Proteomics of Human Neurodegenerative Diseases. J. Neuropathol. Exp. Neurol. (2008).

  125. Leverenz, J. B. et al. Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol. 17, 139–145 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Xia, Q. et al. Proteomic identification of novel proteins associated with Lewy bodies. Front. Biosci. 13, 3850–3856 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Fasano, M. & Lopiano, L. Alpha-synuclein and Parkinson's disease: a proteomic view. Expert Rev. Proteomics 5, 239–248 (2008). A neuroproteomics review proposing deregulation of cytoskeletal proteins as the origin for Parkinson's disease.

    CAS  PubMed  Google Scholar 

  128. Lim, K. L. Ubiquitin-proteasome system dysfunction in Parkinson's disease: current evidence and controversies. Expert Rev. Proteomics 4, 769–781 (2007).

    CAS  PubMed  Google Scholar 

  129. Butterfield, D. A. & Sultana, R. Redox proteomics: understanding oxidative stress in the progression of age-related neurodegenerative disorders. Expert Rev. Proteomics 5, 157–160 (2008).

    CAS  PubMed  Google Scholar 

  130. Boyd-Kimball, D. et al. Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide (1–42) into rat brain: Implications for Alzheimer's disease. Neuroscience 132, 313–324 (2005).

    CAS  PubMed  Google Scholar 

  131. Keller, J. N. et al. Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64, 1152–1156 (2005).

    CAS  PubMed  Google Scholar 

  132. Butterfield, D. A. et al. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: Insights into the development of Alzheimer's disease. Neurobiol. Dis. 22, 223–232 (2006).

    CAS  PubMed  Google Scholar 

  133. Edgar, P. F. et al. A comparative proteome analysis of hippocampal tissue from schizophrenic and Alzheimer's disease individuals. Mol. Psychiatry 4, 173–178 (1999).

    CAS  PubMed  Google Scholar 

  134. Edgar, P. F. et al. Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophrenia. Mol. Psychiatry 5, 85–90 (2000).

    CAS  PubMed  Google Scholar 

  135. Beasley, C. L. et al. Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 6, 3414–3425 (2006).

    CAS  PubMed  Google Scholar 

  136. Johnston-Wilson, N. L. et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol. Psychiatry 5, 142–149 (2000).

    CAS  PubMed  Google Scholar 

  137. Prabakaran, S. et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry 9, 684–697, 643 (2004).

    CAS  PubMed  Google Scholar 

  138. Mu, J. et al. Neurogenesis and major depression: implications from proteomic analyses of hippocampal proteins in a rat depression model. Neurosci. Lett. 416, 252–256 (2007).

    CAS  PubMed  Google Scholar 

  139. Pennington, K. et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol. Psychiatry 13, 1102–1117 (2008). Report showing how neuroproteomics can molecularly differentiate schizophrenia from bipolar disorder and identify new molecules involved in these diseases.

    CAS  PubMed  Google Scholar 

  140. Clark, D., Dedova, I., Cordwell, S. & Matsumoto, I. A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol. Psychiatry 11, 459–470, 423 (2006).

    CAS  PubMed  Google Scholar 

  141. Pennington, K., Dicker, P., Dunn, M. J. & Cotter, D. R. Proteomic analysis reveals protein changes within layer 2 of the insular cortex in schizophrenia. Proteomics 8, 5097–5107 (2008).

    CAS  PubMed  Google Scholar 

  142. Behan, A., Byrne, C., Dunn, M. J., Cagney, G. & Cotter, D. R. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol. Psychiatry 14, 601–613 (2008).

    PubMed  Google Scholar 

  143. Dalrymple, A. et al. Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates. J. Proteome Res. 6, 2833–2840 (2007).

    CAS  PubMed  Google Scholar 

  144. Hye, A. et al. Proteome-based plasma biomarkers for Alzheimer's disease. Brain 129, 3042–3050 (2006).

    CAS  PubMed  Google Scholar 

  145. Kumar, C. & Mann, M. Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Lett. 583, 1703–1712 (2009).

    CAS  PubMed  Google Scholar 

  146. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    PubMed  Google Scholar 

  147. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

  148. Pocklington, A. J., Cumiskey, M., Armstrong, J. D. & Grant, S. G. The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol. Syst. Biol. 2, 2006.0023 (2006).

  149. Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 37, D5–D15 (2009).

    CAS  PubMed  Google Scholar 

  150. Croning, M. D., Marshall, M. C., McLaren, P., Armstrong, J. D. & Grant, S. G. G2Cdb: the Genes to Cognition database. Nucleic Acids Res. 37, D846–D851 (2009).

    CAS  PubMed  Google Scholar 

  151. Zhang, W. et al. SynDB: a Synapse protein DataBase based on synapse ontology. Nucleic Acids Res. 35, D737–D741 (2007).

    CAS  PubMed  Google Scholar 

  152. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    CAS  PubMed  Google Scholar 

  153. Siuzdak, G. The expanding role of mass spectrometry in biotechnology, 2nd Edition. (MCC Press, San Diego 2006).

    Google Scholar 

  154. Wilson, K. E. et al. Functional genomics and proteomics: application in neurosciences. J. Neurol. Neurosurg. Psychiatry 75, 529–538 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Patterson, S. D. & Aebersold, R. H. Proteomics: the first decade and beyond. Nature Genet. 33 (Suppl), 311–323 (2003).

    CAS  PubMed  Google Scholar 

  156. Twyman, R. M. Principles of Proteomics. (Garland Science, Oxon, UK, 2004).

    Google Scholar 

  157. Collins, M. O. et al. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem. 280, 5972–5982 (2005).

    CAS  PubMed  Google Scholar 

  158. Schutkowski, M., Reineke, U. & Reimer, U. Peptide arrays for kinase profiling. Chembiochem. 6, 513–521 (2005).

    CAS  PubMed  Google Scholar 

  159. Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    CAS  PubMed  Google Scholar 

  160. Berth, M., Moser, F. M., Kolbe, M. & Bernhardt, J. The state of the art in the analysis of two-dimensional gel electrophoresis images. Appl. Microbiol Biotechnol. 76, 1223–1243 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10, 000 daltons. Anal. Chem. 60, 2299–2301 (1988).

    CAS  PubMed  Google Scholar 

  162. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

    CAS  PubMed  Google Scholar 

  163. Walsh, M. J. & Kuruc, N. The postsynaptic density: constituent and associated proteins characterized by electrophoresis, immunoblotting, and peptide sequencing. J. Neurochem. 59, 667–678 (1992).

    CAS  PubMed  Google Scholar 

  164. Cottrell, J. S. Protein identification by peptide mass fingerprinting. Pept. Res. 7, 115–124 (1994).

    CAS  PubMed  Google Scholar 

  165. Miller, D. L. et al. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease. Arch. Biochem. Biophys. 301, 41–52 (1993).

    CAS  PubMed  Google Scholar 

  166. Appella, E., Padlan, E. A. & Hunt, D. F. Analysis of the structure of naturally processed peptides bound by class I and class II major histocompatibility complex molecules. Exs 73, 105–119 (1995).

    CAS  PubMed  Google Scholar 

  167. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999).

    CAS  Google Scholar 

  168. MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  PubMed  Google Scholar 

  169. Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., Geddes, J. W. & Markesbery, W. R. Protein oxidation in the brain in Alzheimer's disease. Neuroscience 103, 373–383 (2001).

    CAS  PubMed  Google Scholar 

  170. Krapfenbauer, K., Berger, M., Lubec, G. & Fountoulakis, M. Changes in the brain protein levels following administration of kainic acid. Electrophoresis 22, 2086–2091 (2001).

    CAS  PubMed  Google Scholar 

  171. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    CAS  PubMed  Google Scholar 

  172. Ficarro, S. B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnol. 20, 301–305 (2002).

    CAS  Google Scholar 

  173. Hiratsuka, M. et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem. Biophys. Res. Commun. 309, 558–566 (2003).

    CAS  PubMed  Google Scholar 

  174. Sugiyama, Y., Kawabata, I., Sobue, K. & Okabe, S. Determination of absolute protein numbers in single synapses by a GFP-based calibration technique. Nature Methods 2, 677–684 (2005). Absolute quantification method determines the number of PSD95 molecules in a synapse to be around 300.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.B. acknowledges J.A. Vizcaino and L.N. van de Lagemaat for discussions; EMBO and the European Commission for funding. S.G.N.G. is supported by the Wellcome Trust Genes to Cognition Programme, European Union and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth G. N. Grant.

Supplementary information

Supplementary information S1 (table)

Biomarkers for neurological and psychiatric diseases found by proteomics in human cerebrospinal fluid. (PDF 281 kb)

Supplementary information S2 (table)

Examples of databases used in bioinformatic analyses of neuroproteomics data. (PDF 241 kb)

Related links

Related links

FURTHER INFORMATION

Seth G. N. Grant's homepage

G2Cdb

HBBP

OMIM

SynD

Glossary

Two-dimensional electrophoresis

(2DE). An electrophoresis method that separates complex protein mixtures first by charge and then by molecular weight in a two-dimensional gel.

2DE map

A reference map of the spot location in a 2DE (two-dimensional electrophoresis) gel for a certain biological sample; spots in the same location in different 2DE gels correspond to the same protein.

Liquid chromatography-tandem mass spectrometry

(LC-MS/MS). A gel-free technology that combines one or more chromatographic steps with two rounds of mass spectrometry to identify, with high confidence, proteins within a complex mixture.

Synaptosomes

Isolated synapses from neurons, which are obtained through a fractionation procedure of a brain homogenate, in which the synapses are sheared from their dendrites and axons and enriched into a subcellular fraction.

Yeast two hybrid

(Y2H). An approach to study protein-protein interactions by expressing hybrid 'bait' and 'prey' proteins fused with subunits of yeast transcription factors; if bait and prey interact the transcription factors will trigger the expression of a reporter gene.

Redox proteomics

A set of proteomic methodologies focused on identifying protein post-translational modifications caused by oxidative stress.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayés, A., Grant, S. Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 10, 635–646 (2009). https://doi.org/10.1038/nrn2701

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2701

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing