Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Zinc in the physiology and pathology of the CNS

Key Points

  • The development of new imaging tools and transgenic animals has greatly improved our understanding of the physiological and pathophysiological role of Zn2+ in brain functioning.

  • Neurons have numerous homeostatic systems to maintain extracellular and intracellular Zn2+ concentrations at levels that are non-toxic. Major systems involved in Zn2+ homeostasis include Zn2+ transporters, Zn2+-importing proteins, metallothioneins, lysosomes and mitochondria.

  • Zn2+ has a major role in controlling synaptic excitability as it can greatly modulate both glutamatergic and GABA (γ-aminobutyric acid)-ergic neurotransmission.

  • Zn2+ is also potently neurotoxic and has an important role in triggering neuronal death in transient global ischaemia and brain trauma.

  • Zn2+ is also instrumental in the development of amyloid plaques in Alzheimer's disease. Pharmacological interventions aimed at restoring Zn2+ homeostasis in the brain are yielding promising results in the treatment of patients with Alzheimer's disease.

Abstract

The past few years have witnessed dramatic progress on all frontiers of zinc neurobiology. The recent development of powerful tools, including zinc-sensitive fluorescent probes, selective chelators and genetically modified animal models, has brought a deeper understanding of the roles of this cation as a crucial intra- and intercellular signalling ion of the CNS, and hence of the neurophysiological importance of zinc-dependent pathways and the injurious effects of zinc dyshomeostasis. The development of some innovative therapeutic strategies is aimed at controlling and preventing the damaging effects of this cation in neurological conditions such as stroke and Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways and systems regulating Zn2+ homeostasis in neurons.
Figure 2: The role of synaptic Zn2+ in the regulation of postsynaptic targets and synaptic plasticity.
Figure 3: Neuronal death pathways activated by Zn2+.
Figure 4: Acidosis and Zn2+ dyshomeostasis.
Figure 5: Zn2+-mediated amyloid-β oligomerization and disruption of synaptic physiology by amyloid-β–Zn2+ complexes.

Similar content being viewed by others

References

  1. Frederickson, C. J., Koh, J. Y. & Bush, A. I. The neurobiology of zinc in health and disease. Nature Rev. Neurosci. 6, 449–462 (2005).

    CAS  Google Scholar 

  2. Shen, H. et al. Zinc distribution and expression pattern of ZnT3 in mouse brain. Biol. Trace Elem. Res. 119, 166–174 (2007).

    CAS  PubMed  Google Scholar 

  3. Linkous, D. H. et al. Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles. J. Histochem. Cytochem. 56, 3–6 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sensi, S. L., Yin, H. Z. & Weiss, J. H. AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction. Eur. J. Neurosci. 12, 3813–3818 (2000). First study to show that Zn2+ can be sequestered in mitochondria and promote strong mitochondrial dysfunction.

    CAS  PubMed  Google Scholar 

  5. Colvin, R. A., Laskowski, M. & Fontaine, C. P. Zinquin identifies subcellular compartmentalization of zinc in cortical neurons. Relation to the trafficking of zinc and the mitochondrial compartment. Brain Res. 1085, 1–10 (2006).

    CAS  PubMed  Google Scholar 

  6. Hwang, J. J., Lee, S. J., Kim, T. Y., Cho, J. H. & Koh, J. Y. Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J. Neurosci. 28, 3114–3122 (2008). First study to show that Zn2+ can be sequestered in neuronal lysosomes and trigger autophagy.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dittmer, P. J., Miranda, J. G., Gorski, J. A. & Palmer, A. E. Genetically encoded sensors to elucidate spatial distribution of cellular zinc. J. Biol. Chem. 284, 16289–16297 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Smart, T. G., Hosie, A. M. & Miller, P. S. Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist 10, 432–442 (2004).

    CAS  PubMed  Google Scholar 

  9. Besser, L. et al. Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J. Neurosci. 29, 2890–2901 (2009). Study leading to the functional identification of a synaptic Zn2+-sensing receptor that can modulate intracellular Ca2+ signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tonder, N., Johansen, F. F., Frederickson, C. J., Zimmer, J. & Diemer, N. H. Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci. Lett. 109, 247–252 (1990).

    CAS  PubMed  Google Scholar 

  11. Koh, J. Y. et al. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272, 1013–1016 (1996). First study to show that Zn2+ has a key role in triggering neuronal death in transient global ischaemia.

    CAS  PubMed  Google Scholar 

  12. Lee, J. Y., Kim, J. H., Palmiter, R. D. & Koh, J. Y. Zinc released from metallothionein-III may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Exp. Neurol. 184, 337–347 (2003).

    CAS  PubMed  Google Scholar 

  13. Lee, J. Y., Cole, T. B., Palmiter, R. D. & Koh, J. Y. Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J. Neurosci. 20, RC79 (2000). First study showing injurious intraneuronal Zn2+ release.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Aizenman, E. et al. Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J. Neurochem. 75, 1878–1888 (2000). First study demonstrating that oxidative stress can promote [Zn2+]i rises of intracellular origin that are sufficient to elicit neuronal death.

    CAS  PubMed  Google Scholar 

  15. Ohana, E. et al. Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J. Biol. Chem. 284, 17677–17686 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chao, Y. & Fu, D. Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. J. Biol. Chem. 279, 12043–12050 (2004).

    CAS  PubMed  Google Scholar 

  17. MacDiarmid, C. W., Milanick, M. A. & Eide, D. J. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. J. Biol. Chem. 277, 39187–39194 (2002).

    CAS  PubMed  Google Scholar 

  18. Lu, M. & Fu, D. Structure of the zinc transporter YiiP. Science 317, 1746–1748 (2007).

    CAS  PubMed  Google Scholar 

  19. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).

    CAS  PubMed  Google Scholar 

  20. Palmiter, R. D., Cole, T. B., Quaife, C. J. & Findley, S. D. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl Acad. Sci. USA 93, 14934–14939 (1996). First demonstration of the role of ZnT3 at excitatory synapses.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruiz, A., Walker, M. C., Fabian-Fine, R. & Kullmann, D. M. Endogenous zinc inhibits GABAA receptors in a hippocampal pathway. J. Neurophysiol. 91, 1091–1096 (2004).

    CAS  PubMed  Google Scholar 

  22. Wang, Z., Danscher, G., Kim, Y. K., Dahlstrom, A. & Mook, J. S. Inhibitory zinc-enriched terminals in the mouse cerebellum: double-immunohistochemistry for zinc transporter 3 and glutamate decarboxylase. Neurosci. Lett. 321, 37–40 (2002).

    CAS  PubMed  Google Scholar 

  23. Lopantsev, V., Wenzel, H. J., Cole, T. B., Palmiter, R. D. & Schwartzkroin, P. A. Lack of vesicular zinc in mossy fibers does not affect synaptic excitability of CA3 pyramidal cells in zinc transporter 3 knockout mice. Neuroscience 116, 237–248 (2003).

    CAS  PubMed  Google Scholar 

  24. Ismail, T., Mauerhofer, E. & Slomianka, L. The hippocampal region of rats and mice after a single i.p. dose of clioquinol: loss of synaptic zinc, cell death and c-Fos induction. Neuroscience 157, 697–707 (2008).

    CAS  PubMed  Google Scholar 

  25. Blasco-Ibanez, J. M. et al. Chelation of synaptic zinc induces overexcitation in the hilar mossy cells of the rat hippocampus. Neurosci. Lett. 355, 101–104 (2004).

    CAS  PubMed  Google Scholar 

  26. Takeda, A., Hirate, M., Tamano, H., Nisibaba, D. & Oku, N. Susceptibility to kainate-induced seizures under dietary zinc deficiency. J. Neurochem. 85, 1575–1580 (2003).

    CAS  PubMed  Google Scholar 

  27. Doering, P. et al. Changes in the vesicular zinc pattern following traumatic brain injury. Neuroscience 150, 93–103 (2007).

    CAS  PubMed  Google Scholar 

  28. Palmiter, R. D. & Findley, S. D. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 14, 639–649 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nolte, C. et al. ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia 48, 145–155 (2004).

    PubMed  Google Scholar 

  30. Tsuda, M. et al. Expression of zinc transporter gene, ZnT-1, is induced after transient forebrain ischemia in the gerbil. J. Neurosci. 17, 6678–6684 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Aguilar-Alonso, P. et al. The increase in zinc levels and upregulation of zinc transporters are mediated by nitric oxide in the cerebral cortex after transient ischemia in the rat. Brain Res. 1200, 89–98 (2008).

    CAS  PubMed  Google Scholar 

  32. Ohana, E. et al. Silencing of ZnT-1 expression enhances heavy metal influx and toxicity. J. Mol. Med. 84, 753–763 (2006).

    CAS  PubMed  Google Scholar 

  33. Qin, Y., Thomas, D., Fontaine, C. P. & Colvin, R. A. Silencing of ZnT1 reduces Zn2+ efflux in cultured cortical neurons. Neurosci. Lett. 450, 206–210 (2009).

    CAS  PubMed  Google Scholar 

  34. Segal, D. et al. A role for ZnT-1 in regulating cellular cation influx. Biochem. Biophys. Res. Commun. 323, 1145–1150 (2004).

    CAS  PubMed  Google Scholar 

  35. Sensi, S. L. et al. Measurement of intracellular free zinc in living cortical neurons: routes of entry. J. Neurosci. 17, 9554–9564 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ohana, E. et al. A sodium zinc exchange mechanism is mediating extrusion of zinc in mammalian cells. J. Biol. Chem. 279, 4278–4284 (2004).

    CAS  PubMed  Google Scholar 

  37. Qin, Y., Thomas, D., Fontaine, C. P. & Colvin, R. A. Mechanisms of Zn2+ efflux in cultured cortical neurons. J. Neurochem. 107, 1304–1313 (2008).

    CAS  PubMed  Google Scholar 

  38. Gaither, L. A. & Eide, D. J. Functional expression of the human hZIP2 zinc transporter. J. Biol. Chem. 275, 5560–5564 (2000).

    CAS  PubMed  Google Scholar 

  39. Wang, F. et al. Zinc-stimulated endocytosis controls activity of the mouse ZIP1 and ZIP3 zinc uptake transporters. J. Biol. Chem. 279, 24631–24639 (2004).

    CAS  PubMed  Google Scholar 

  40. Dufner-Beattie, J., Kuo, Y. M., Gitschier, J. & Andrews, G. K. The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J. Biol. Chem. 279, 49082–49090 (2004).

    CAS  PubMed  Google Scholar 

  41. Kambe, T. & Andrews, G. K. Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc deficiency is inhibited by acrodermatitis enteropathica mutations. Mol. Cell. Biol. 29, 129–139 (2009).

    CAS  PubMed  Google Scholar 

  42. Dufner-Beattie, J., Huang, Z. L., Geiser, J., Xu, W. & Andrews, G. K. Generation and characterization of mice lacking the zinc uptake transporter ZIP3. Mol. Cell. Biol. 25, 5607–5615 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Paoletti, P., Vergnano, A. M., Barbour, B. & Casado, M. Zinc at glutamatergic synapses. Neuroscience 158, 126–136 (2009).

    CAS  PubMed  Google Scholar 

  44. Paoletti, P., Ascher, P. & Neyton, J. High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci. 17, 5711–5725 (1997). First characterization of a high-affinity site for Zn2+ that controls NMDA receptor inhibition.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rachline, J., Perin-Dureau, F., Le Goff, A., Neyton, J. & Paoletti, P. The micromolar zinc-binding domain on the NMDA receptor subunit NR2B. J. Neurosci. 25, 308–317 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hirzel, K. et al. Hyperekplexia phenotype of glycine receptor α1 subunit mutant mice identifies Zn2+ as an essential endogenous modulator of glycinergic neurotransmission. Neuron 52, 679–690 (2006).

    CAS  PubMed  Google Scholar 

  47. Qian, J. & Noebels, J. L. Visualization of transmitter release with zinc fluorescence detection at the mouse hippocampal mossy fibre synapse. J. Physiol. 566, 747–758 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Qian, J. & Noebels, J. L. Exocytosis of vesicular zinc reveals persistent depression of neurotransmitter release during metabotropic glutamate receptor long-term depression at the hippocampal CA3-CA1 synapse. J. Neurosci. 26, 6089–6095 (2006). Study implicating Zn2+ in the modulation of long-term depression.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kodirov, S. A. et al. Synaptically released zinc gates long-term potentiation in fear conditioning pathways. Proc. Natl Acad. Sci. USA 103, 15218–15223 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, Y. Z., Pan, E., Xiong, Z. Q. & McNamara, J. O. Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 57, 546–558 (2008). First study demonstrating that Zn2+ can transactivate the TrkB receptor.

    CAS  PubMed  Google Scholar 

  51. Kay, A. R., Neyton, J. & Paoletti, P. A startling role for synaptic zinc. Neuron 52, 572–574 (2006).

    CAS  PubMed  Google Scholar 

  52. Attwell, D., Barbour, B. & Szatkowski, M. Nonvesicular release of neurotransmitter. Neuron 11, 401–407 (1993).

    CAS  PubMed  Google Scholar 

  53. Vogt, K., Mellor, J., Tong, G. & Nicoll, R. The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26, 187–196 (2000).

    CAS  PubMed  Google Scholar 

  54. Molnar, P. & Nadler, J. V. Synaptically-released zinc inhibits N-methyl-D-aspartate receptor activation at recurrent mossy fiber synapses. Brain Res. 910, 205–207 (2001).

    CAS  PubMed  Google Scholar 

  55. Mott, D. D., Benveniste, M. & Dingledine, R. J. pH-dependent inhibition of kainate receptors by zinc. J. Neurosci. 28, 1659–1671 (2008). First study demonstrating that Zn2+ can inhibit kainate receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sindreu, C. B., Varoqui, H., Erickson, J. D. & Perez-Clausell, J. Boutons containing vesicular zinc define a subpopulation of synapses with low AMPAR content in rat hippocampus. Cereb. Cortex 13, 823–829 (2003).

    PubMed  Google Scholar 

  57. Nakashima, A. S. & Dyck, R. H. Zinc and cortical plasticity. Brain Res. Rev. 59, 347–373 (2009).

    CAS  PubMed  Google Scholar 

  58. Hwang, J. J., Park, M. H., Choi, S. Y. & Koh, J. Y. Activation of the Trk signaling pathway by extracellular zinc: role of metalloproteinases. J. Biol. Chem. 280, 11995–12001 (2005). First study demonstrating that Zn2+ can promote the maturation of pro-BDNF to BDNF and therefore indirectly activate TrkB-dependent signalling.

    CAS  PubMed  Google Scholar 

  59. Smith, R. M. NIST critically selected stability constants of metal complexes: version 8. NIST Scientific and Technical Databases [online], (2009).

    Google Scholar 

  60. Stork, C. J. & Li, Y. V. Intracellular zinc elevation measured with a “calcium-specific” indicator during ischemia and reperfusion in rat hippocampus: a question on calcium overload. J. Neurosci. 26, 10430–10437 (2006). Study showing that most of the OGD-driven changes of Ca2+-sensitive probes depends on Zn2+.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hofer, A. M., Fasolato, C. & Pozzan, T. Capacitative Ca2+ entry is closely linked to the filling state of internal Ca2+ stores: a study using simultaneous measurements of ICRAC and intraluminal [Ca2+]. J. Cell Biol. 140, 325–334 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Arslan, P., Di Virgilio, F., Beltrame, M., Tsien, R. Y. & Pozzan, T. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J. Biol. Chem. 260, 2719–2727 (1985).

    CAS  PubMed  Google Scholar 

  63. Medvedeva, Y. V., Lin, B., Shuttleworth, C. W. & Weiss, J. H. Intracellular Zn2+ accumulation contributes to synaptic failure, mitochondrial depolarization, and cell death in an acute slice oxygen–glucose deprivation model of ischemia. J. Neurosci. 29, 1105–1114 (2009). Study showing the synergy between Ca2+ and Zn2+ in mediating ischaemic neuronal death.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hyrc, K., Handran, S. D., Rothman, S. M. & Goldberg, M. P. Ionized intracellular calcium concentration predicts excitotoxic neuronal death: observations with low-affinity fluorescent calcium indicators. J. Neurosci. 17, 6669–6677 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiang, D., Sullivan, P. G., Sensi, S. L., Steward, O. & Weiss, J. H. Zn2+ induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J. Biol. Chem. 276, 47524–47529 (2001).

    CAS  PubMed  Google Scholar 

  66. Bossy-Wetzel, E. et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41, 351–365 (2004).

    CAS  PubMed  Google Scholar 

  67. Galluzzi, L., Blomgren, K. & Kroemer, G. Mitochondrial membrane permeabilization in neuronal injury. Nature Rev. Neurosci. 10, 481–494 (2009).

    CAS  Google Scholar 

  68. Lee, J. M. et al. Zinc translocation accelerates infarction after mild transient focal ischemia. Neuroscience 115, 871–878 (2002).

    CAS  PubMed  Google Scholar 

  69. Yin, H. Z., Sensi, S. L., Ogoshi, F. & Weiss, J. H. Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons. J. Neurosci. 22, 1273–1279 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Noh, K. M. et al. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc. Natl. Acad. Sci. USA 102, 12230–12235 (2005). Study indicating the importance of AMPAR Ca–Zn pharmacological blockade in the context of TGI.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Malaiyandi, L. M., Dineley, K. E. & Reynolds, I. J. Metallothionein overexpression enhances oxidant-induced zinc release in astrocytes. Soc. Neurosci. Abstr. 27, 868.16 (2001).

    Google Scholar 

  72. Malaiyandi, L. M., Vergun, O., Dineley, K. E. & Reynolds, I. J. Direct visualization of mitochondrial zinc accumulation reveals uniporter-dependent and -independent transport mechanisms. J. Neurochem. 93, 1242–1250 (2005).

    CAS  PubMed  Google Scholar 

  73. Sensi, S. L. et al. Modulation of mitochondrial function by endogenous Zn2+ pools. Proc. Natl Acad. Sci. USA 100, 6157–6162 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pal, S., Hartnett, K. A., Nerbonne, J. M., Levitan, E. S. & Aizenman, E. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J. Neurosci. 23, 4798–4802 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hershfinkel, M. et al. Intracellular zinc inhibits KCC2 transporter activity. Nature Neurosci. 12, 725–727 (2009).

    CAS  PubMed  Google Scholar 

  76. Gazaryan, I. G., Krasinskaya, I. P., Kristal, B. S. & Brown, A. M. Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition. J. Biol. Chem. 282, 24373–24380 (2007).

    CAS  PubMed  Google Scholar 

  77. Dineley, K. E., Richards, L. L., Votyakova, T. V. & Reynolds, I. J. Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5, 55–65 (2005).

    CAS  PubMed  Google Scholar 

  78. Sensi, S. L., Yin, H. Z., Carriedo, S. G., Rao, S. S. & Weiss, J. H. Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc. Natl Acad. Sci. USA 96, 2414–2419 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Dineley, K. E., Votyakova, T. V. & Reynolds, I. J. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J. Neurochem. 85, 563–570 (2003).

    CAS  PubMed  Google Scholar 

  80. Bonanni, L. et al. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain. J. Neurosci. 26, 6851–6862 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Malaiyandi, L. M., Honick, A. S., Rintoul, G. L., Wang, Q. J. & Reynolds, I. J. Zn2+ inhibits mitochondrial movement in neurons by phosphatidylinositol 3-kinase activation. J. Neurosci. 25, 9507–9514 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Noh, K. M., Kim, Y. H. & Koh, J. Y. Mediation by membrane protein kinase C of zinc-induced oxidative neuronal injury in mouse cortical cultures. J. Neurochem. 72, 1609–1616 (1999).

    CAS  PubMed  Google Scholar 

  83. Kim, Y. H. & Koh, J. Y. The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp. Neurol. 177, 407–418 (2002).

    CAS  PubMed  Google Scholar 

  84. Sheline, C. T., Behrens, M. M. & Choi, D. W. Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. J. Neurosci. 20, 3139–3146 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee, J. Y., Kim, Y. H. & Koh, J. Y. Protection by pyruvate against transient forebrain ischemia in rats. J. Neurosci. 21, RC171 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    CAS  PubMed  Google Scholar 

  87. Cai, A. L., Zipfel, G. J. & Sheline, C. T. Zinc neurotoxicity is dependent on intracellular NAD levels and the sirtuin pathway. Eur. J. Neurosci. 24, 2169–2176 (2006).

    PubMed  Google Scholar 

  88. Suh, S. W. et al. Sequential release of nitric oxide, zinc, and superoxide in hypoglycemic neuronal death. J. Cereb. Blood Flow Metab. 28, 1697–1706 (2008).

    CAS  PubMed  Google Scholar 

  89. Lee, S. J., Cho, K. S. & Koh, J. Y. Oxidative injury triggers autophagy in astrocytes: the role of endogenous zinc. Glia 57, 1351–1361 (2009).

    PubMed  Google Scholar 

  90. Hoyer-Hansen, M. & Jaattela, M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ. 14, 1576–1582 (2007).

    CAS  PubMed  Google Scholar 

  91. Kerchner, G. A., Canzoniero, L. M., Yu, S. P., Ling, C. & Choi, D. W. Zn2+ current is mediated by voltage-gated Ca2+ channels and enhanced by extracellular acidity in mouse cortical neurones. J. Physiol. 528, 39–52 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jeng, J.-M., Jia, Y., Bonanni, L. & Weiss, J. H. Divergent effects of pH on Zn2+ and Ca2+ flux through Ca2+-permeable AMPA/kainate channels (CAKR). Soc. Neurosci. Abstr. 539.9. (2002).

  93. Traynelis, S. & Cull-Candy, S. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345, 347–350 (1990).

    CAS  PubMed  Google Scholar 

  94. Frazzini, V. et al. Mild acidosis enhances AMPA receptor-mediated intracellular zinc mobilization in cortical neurons. Mol. Med. 13, 356–361 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Xiong, Z. G. et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687–698 (2004).

    CAS  PubMed  Google Scholar 

  96. Wang, W. Z. et al. Modulation of acid-sensing ion channel currents, acid-induced increase of intracellular Ca2+, and acidosis-mediated neuronal injury by intracellular pH. J. Biol. Chem. 281, 29369–29378 (2006).

    CAS  PubMed  Google Scholar 

  97. Hey, J. G., Chu, X. P., Seeds, J., Simon, R. P. & Xiong, Z. G. Extracellular zinc protects against acidosis-induced injury of cells expressing Ca2+-permeable acid-sensing ion channels. Stroke 38, 670–673 (2007).

    CAS  PubMed  Google Scholar 

  98. Dineley, K. E., Brocard, J. B. & Reynolds, I. J. Elevated intracellular zinc and altered proton homeostasis in forebrain neurons. Neuroscience 114, 439–449 (2002).

    CAS  PubMed  Google Scholar 

  99. Park, J. A., Lee, J. Y., Sato, T. A. & Koh, J. Y. Co-induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat. J. Neurosci. 20, 9096–9103 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Park, J. A. & Koh, J. Y. Induction of an immediate early gene egr-1 by zinc through extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death. J. Neurochem. 73, 450–456 (1999).

    CAS  PubMed  Google Scholar 

  101. Lee, J. Y., Kim, Y. J., Kim, T. Y., Koh, J. Y. & Kim, Y. H. Essential role for zinc-triggered p75NTR activation in preconditioning neuroprotection. J. Neurosci. 28, 10919–10927 (2008).

    PubMed  PubMed Central  Google Scholar 

  102. Nowak, G. et al. Zinc treatment induces cortical brain-derived neurotrophic factor gene expression. Eur. J. Pharmacol. 492, 57–59 (2004).

    CAS  PubMed  Google Scholar 

  103. Bush, A. I. et al. Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science 265, 1464–1467 (1994). First study to identify the pro-aggregant activity of Zn2+.

    CAS  PubMed  Google Scholar 

  104. Bush, A. I., Pettingell, W. H. Jr, Paradis, M. D. & Tanzi, R. E. Modulation of Aβ adhesiveness and secretase site cleavage by zinc. J. Biol. Chem. 269, 12152–12158 (1994).

    CAS  PubMed  Google Scholar 

  105. Ha, C., Ryu, J. & Park, C. B. Metal ions differentially influence the aggregation and deposition of Alzheimer's β-amyloid on a solid template. Biochemistry 46, 6118–6125 (2007).

    CAS  PubMed  Google Scholar 

  106. Noy, D. et al. Zinc-amyloid β interactions on a millisecond time-scale stabilize non-fibrillar Alzheimer-related species. J. Am. Chem. Soc. 130, 1376–1383 (2008).

    CAS  PubMed  Google Scholar 

  107. Huang, X. et al. The Aβ peptide of Alzheimer's Disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 7609–7616 (1999).

    CAS  PubMed  Google Scholar 

  108. Rottkamp, C. et al. Redox-active iron mediates amyloid-β toxicity. Free Radic. Biol. Med. 30, 447–450 (2001).

    CAS  PubMed  Google Scholar 

  109. Opazo, C. et al. Metalloenzyme-like activity of Alzheimer's disease β-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2 . J. Biol. Chem. 277, 40302–40308 (2002).

    CAS  PubMed  Google Scholar 

  110. Dukes, K. D., Rodenberg, C. F. & Lammi, R. K. Monitoring the earliest amyloid-β oligomers via quantized photobleaching of dye-labeled peptides. Anal. Biochem. 382, 29–34 (2008).

    CAS  PubMed  Google Scholar 

  111. Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    CAS  PubMed  Google Scholar 

  112. Garai, K., Sengupta, P., Sahoo, B. & Maiti, S. Selective destabilization of soluble amyloid β oligomers by divalent metal ions. Biochem. Biophys. Res. Commun. 345, 210–215 (2006).

    CAS  PubMed  Google Scholar 

  113. Lee, J. Y., Cole, T. B., Palmiter, R. D., Suh, S. W. & Koh, J. Y. Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc. Natl Acad. Sci. USA 99, 7705–7710 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, J.-Y. et al. Estrogen decreases zinc transporter 3 expression and synaptic vesicle zinc levels in mouse brain. J. Biol. Chem. 279, 8602–8607 (2004).

    CAS  PubMed  Google Scholar 

  115. Friedlich, A. L. et al. Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer's disease. J. Neurosci. 24, 3453–3459 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Smith, J. L., Xiong, S., Markesbery, W. R. & Lovell, M. A. Altered expression of zinc transporters-4 and -6 in mild cognitive impairment, early and late Alzheimer's disease brain. Neuroscience 140, 879–888 (2006).

    CAS  PubMed  Google Scholar 

  117. Zhang, L. H. et al. Altered expression and distribution of zinc transporters in APP/PS1 transgenic mouse brain. Neurobiol. Aging 28 Mar 2008 (doi:10.1016/j.neurobiolaging.2008.02.018).

    PubMed  Google Scholar 

  118. Deshpande, A., Kawai, H., Metherate, R., Glabe, C. G. & Busciglio, J. A role for synaptic zinc in activity-dependent Aβ oligomer formation and accumulation at excitatory synapses. J. Neurosci. 29, 4004–4015 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Stanika, R. I. et al. Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. Proc. Natl Acad. Sci. USA 106, 9854–9859 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Uchida, Y., Gomi, F., Masumizu, T. & Miura, Y. Growth inhibitory factor prevents neurite extension and the death of cortical neurons caused by high oxygen exposure through hydroxyl radical scavenging. J. Biol. Chem. 277, 32353–32359 (2002).

    CAS  PubMed  Google Scholar 

  121. Meloni, G. et al. Metal swap between Zn7-metallothionein-3 and amyloid-β-Cu protects against amyloid-β toxicity. Nature Chem. Biol. 4, 366–372 (2008).

    CAS  Google Scholar 

  122. Sensi, S. L., Rapposelli, I. G., Frazzini, V. & Mascetra, N. Altered oxidant-mediated intraneuronal zinc mobilization in a triple transgenic mouse model of Alzheimer's disease. Exp. Gerontol. 43, 488–492 (2008).

    CAS  PubMed  Google Scholar 

  123. Opazo, C. et al. Metalloenzyme-like activity of Alzheimer's disease β-amyloid: Cu-dependent catalytic conversion of dopamine, cholesterol and biological reducing agents to neurotoxic H2O2 . J. Biol. Chem. 277, 40302–40308 (2002).

    CAS  PubMed  Google Scholar 

  124. Howell, G. A., Welch, M. G. & Frederickson, C. J. Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308, 736–738 (1984).

    CAS  PubMed  Google Scholar 

  125. Bush, A. I. Drug development based on the metals hypothesis of Alzheimer's disease. J. Alzheimers Dis. 15, 223–240 (2008).

    CAS  PubMed  Google Scholar 

  126. Strozyk, D. et al. Zinc and copper modulate Alzheimer Aβ levels in human cerebrospinal fluid. Neurobiol. Aging 30, 1069–1077 (2009).

    CAS  PubMed  Google Scholar 

  127. Danscher, G. et al. Increased amount of zinc in the hippocampus and amygdala of Alzheimer's diseased brains: a proton-induced X-ray emission spectroscopic analysis of cryostat sections from autopsy material. J. Neurosci. Methods 76, 53–59 (1997).

    CAS  PubMed  Google Scholar 

  128. Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L. & Markesbery, W. R. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 158, 47–52 (1998).

    CAS  PubMed  Google Scholar 

  129. Opazo, C. et al. Radioiodinated clioquinol as a biomarker for β-amyloid: Zn2+ complexes in Alzheimer's disease. Aging Cell 5, 69–79 (2006).

    CAS  PubMed  Google Scholar 

  130. Religa, D. et al. Elevated cortical zinc in Alzheimer disease. Neurology 67, 69–75 (2006).

    CAS  PubMed  Google Scholar 

  131. Smith, J. L., Xiong, S. & Lovell, M. A. 4-Hydroxynonenal disrupts zinc export in primary rat cortical cells. Neurotoxicology 27, 1–5 (2006).

    CAS  PubMed  Google Scholar 

  132. Stoltenberg, M. et al. Amyloid plaques arise from zinc-enriched cortical layers in APP/PS1 transgenic mice and are paradoxically enlarged with dietary zinc deficiency. Neuroscience 150, 357–369 (2007).

    CAS  PubMed  Google Scholar 

  133. Takeda, A., Minami, A., Takefuta, S., Tochigi, M. & Oku, N. Zinc homeostasis in the brain of adult rats fed zinc-deficient diet. J. Neurosci. Res. 63, 447–452 (2001).

    CAS  PubMed  Google Scholar 

  134. Chowanadisai, W., Kelleher, S. L. & Lonnerdal, B. Zinc deficiency is associated with increased brain zinc import and LIV-1 expression and decreased ZnT-1 expression in neonatal rats. J. Nutr. 135, 1002–1007 (2005).

    CAS  PubMed  Google Scholar 

  135. Lovell, M. A. A potential role for alterations of zinc and zinc transport proteins in the progression of Alzheimer's disease. J. Alzheimers Dis. 16, 471–483 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bjorkdahl, C., Sjogren, M. J., Winblad, B. & Pei, J. J. Zinc induces neurofilament phosphorylation independent of p70 S6 kinase in N2a cells. Neuroreport 16, 591–595 (2005).

    PubMed  Google Scholar 

  137. Suh, S. W. et al. Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer's diseased brains. Brain Res. 852, 274–278 (2000).

    CAS  PubMed  Google Scholar 

  138. Cherny, R. A. et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 30, 665–676 (2001). Study indicating that restoring Cu2+ and Zn2+ homeostasis in the brain can dramatically reduce the amyloid load.

    CAS  PubMed  Google Scholar 

  139. Maynard, C. J. et al. Overexpression of Alzheimer's disease β-amyloid opposes the age-dependent elevations of brain copper and iron levels. J. Biol. Chem. 277, 44670–44676 (2002).

    CAS  PubMed  Google Scholar 

  140. Maynard, C. J. et al. Gender and genetic background effects on brain metal levels in APP transgenic and normal mice: implications for Alzheimer β-amyloid pathology. J. Inorg. Biochem. 100, 952–962 (2006).

    CAS  PubMed  Google Scholar 

  141. Adlard, P. A. et al. Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ. Neuron 59, 43–55 (2008).

    CAS  PubMed  Google Scholar 

  142. Ritchie, C. W. et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer's disease: a pilot phase 2 clinical trial. Arch. Neurol. 60, 1685–1691 (2003).

    PubMed  Google Scholar 

  143. Colvin, R. A. et al. Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am. J. Physiol. Cell Physiol. 294, 726–742 (2008).

    Google Scholar 

  144. Lannfelt, L. et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 7, 779–786 (2008).

    CAS  PubMed  Google Scholar 

  145. Lee, J. Y., Friedman, J. E., Angel, I., Kozak, A. & Koh, J. Y. The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human beta-amyloid precursor protein transgenic mice. Neurobiol. Aging 25, 1315–1321 (2004).

    CAS  PubMed  Google Scholar 

  146. Turrigiano, G. G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Assaf, S. Y. & Chung, S. H. Release of endogenous Zn2+ from brain tissue during activity. Nature 308, 734–736 (1984).

    CAS  PubMed  Google Scholar 

  148. Kay, A. R. Imaging synaptic zinc: promises and perils. Trends Neurosci. 29, 200–206 (2006).

    CAS  PubMed  Google Scholar 

  149. Atar, D., Backx, P. H., Appel, M. M., Gao, W. D. & Marban, E. Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J. Biol. Chem. 270, 2473–2477 (1995).

    CAS  PubMed  Google Scholar 

  150. Caporale, T. et al. Ratiometric-pericam-mt, a novel tool to evaluate intramitochondrial zinc. Exp. Neurol. 218, 228–234 (2009).

    CAS  PubMed  Google Scholar 

  151. Feng, W. & Zhang, M. Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nature Rev. Neurosci. 10, 87–99 (2009).

    CAS  Google Scholar 

  152. Baron, M. K. et al. An architectural framework that may lie at the core of the postsynaptic density. Science 311, 531–535 (2006).

    CAS  PubMed  Google Scholar 

  153. Gundelfinger, E. D., Boeckers, T. M., Baron, M. K. & Bowie, J. U. A role for zinc in postsynaptic density asSAMbly and plasticity? Trends Biochem. Sci. 31, 366–373 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are in debt to M. Hershfinkel, A. Vergnano, V. Frazzini, and M.E. Oberschlake for help with the preparation of the manuscript. S.L.S. is supported by funds from the Italian Department of Education (FIRB 2003; PRIN 2006). P.P. is supported by Institut National de la Santé et de la Recherche Médicale (INSERM), France, Agence Nationale de la Recherche (ANR), France, and Fondation pour la Recherche Médicale (FRM; Equipe FRM grant). A.I.B. is supported with funds from the National Health and Medical Research Council of Australia, and The Australian Research Council. Work described in this review was partially supported by ISF grant # 985/05 and GIF grant # 917-119.1/2006 to I.S.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

A.I.B. is a paid consultant for and shareholder in Prana Biotechnology Ltd. S.L.S. is a shareholder in Prana Biotechnology Ltd.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

FURTHER INFORMATION

Stefano L. Sensi's homepage

Glossary

Hyperekplexia

A pathological condition observed in newborns that is associated with startle responses (forced eye closure with limb and arm extension, followed by a period of generalized hypertonia) to tactile or acoustic stimuli, truncal hypertonia and episodic apnea. Hyperekplexia can be familial or sporadic. The familial form has been linked to mutations in the α-subunit of the glycine receptor.

Transient global ischaemia

A particular form of cerebral ischaemia that follows conditions such as cardiac arrest or the near-drowning syndrome. It is characterized by a delayed (7–10 days after the insult) selective form of neuronal death that preferentially targets the hippocampus (in particular its CA1 subregion). TGI seems to be largely modulated by the activation of a subtype of ionotropic glutamate receptor, the AMPARCa–Zn, that lacks the GluR2 subunit and therefore is highly permeable to Ca2+ and Zn2+.

Unfolded protein response

(UPR). A cellular stress response modulated by the endoplasmic reticulum (ER). Unfolded or misfolded proteins, when accumulated in the ER, activate many chaperones that facilitate proper protein folding in an attempt to restore ER function. When protein folding cannot be restored the UPR has a crucial role in initiating apoptotic pathways that lead to cell death.

Congophilic angiopathy

The pathological accumulation of β-amyloid in the walls of CNS blood vessels (also known as cerebral amyloid angiopathy). Congophilic derives from the fact that such amyloid deposition can be revealed by Congo red staining.

Amyloid-β42

The form of amyloid-β that is most enriched in amyloid pathology and is most prone to aggregation in vitro. It is also overproduced in some forms of familial AD caused by mutations of APP or presenilins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sensi, S., Paoletti, P., Bush, A. et al. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10, 780–791 (2009). https://doi.org/10.1038/nrn2734

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing