Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Astroglial networks: a step further in neuroglial and gliovascular interactions

Key Points

  • Over the past two decades, our understanding of the role of brain glial cells, in particular astrocytes, has fundamentally changed. Indeed, dynamic interactions between astrocytes, neurons and the vasculature have been in the spotlight of neuroscience.

  • It has emerged that not only neurons but also astrocytes are organized into networks and communicate through specialized intercellular channels made by connexins, the so-called gap junction channels. Therefore, neuroglial and gliovascular interactions should also be considered at a multicellular and more integrated level — that is, beyond a dialogue between single cells.

  • The widespread expression of connexins and the extensive intercellular communication between astrocytes initially led to the notion that astrocytes were organized as a syncytium. However, accumulating evidence shows that astrocytes form networks of communicating cells that, like neurons, are governed by rules.

  • In specific brain regions that are characterized by a compartmentalized organization of functional neuronal units, the communication between astrocytes is favoured within these compartments.

  • Gap junction communication is controlled by endogenous compounds, including neurotransmitters, and is therefore dependent on neuronal activity defining a certain degree of plasticity.

  • The existence of astroglial networks may extend neuroglial dialogue by allowing information processing and integration by a large number of neurons. Also, astroglial networks might have a role in providing energetic metabolites to remote sites during high neuronal demand.

  • Changes in the expression of astroglial connexins have been reported in diverse pathological situations that may also affect the extent and shape of astroglial networks. However, it remains unknown whether these changes are the cause or the consequence of neuronal dysfunction and death.

  • In the future, new pharmacological and genetic approaches will be required to understand how and why the expression and function of astroglial connexin channels are controlled. Identification of the molecules that can permeate through gap junction channels is another important challenge that must be overcome to fully understand the physiology of astrocyte networks. Indeed, the level of connexin expression is unique and certainly has a crucial role in the contribution of astrocytes to brain metabolism and processing.

Abstract

Dynamic aspects of interactions between astrocytes, neurons and the vasculature have recently been in the neuroscience spotlight. It has emerged that not only neurons but also astrocytes are organized into networks. Whereas neuronal networks exchange information through electrical and chemical synapses, astrocytes are interconnected through gap junction channels that are regulated by extra- and intracellular signals and allow exchange of information. This intercellular communication between glia has implications for neuroglial and gliovascular interactions and hence has added another level of complexity to our understanding of brain function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Astroglial connexins and communicating networks.
Figure 2: Tripartite synapses and neuroglial networks: possible consequences for synaptic transmission.
Figure 3: Astroglial metabolic networks sustain neuronal activity.

Similar content being viewed by others

References

  1. Kuffler, D. & Nicholls, J. G. in From Neuron to Brain (eds Kuffler, D. & Nicholls, J. G.) 273 (Sinauer, Sunderland, 1977).

    Google Scholar 

  2. Mugnaini, E. in Astrocytes (eds Fedoroff, S. & Vernadakis, A.) 329–371 (Academic Press, New York, 1986).

    Google Scholar 

  3. Theis, M., Sohl, G., Eiberger, J. & Willecke, K. Emerging complexities in identity and function of glial connexins. Trends Neurosci. 28, 188–195 (2005).

    CAS  PubMed  Google Scholar 

  4. Furshpan, E. J. & Potter, D. D. Transmission at the giant motor synapses of the crayfish. J. Physiol. 145, 289–325 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuffler, S. W., Nicholls, J. G. & Orkand, R. K. Physiological properties of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 768–787 (1966).

    CAS  PubMed  Google Scholar 

  6. Dermietzel, R. et al. Differential expression of three gap junction proteins in developing and mature brain tissues. Proc. Natl Acad. Sci. USA 86, 10148–10152 (1989). The first immunological and developmental study of the distribution of three connexins in the various cell populations of the rodent brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bennett, M. V. et al. Gap junctions: new tools, new answers, new questions. Neuron 6, 305–320 (1991).

    CAS  PubMed  Google Scholar 

  8. Rash, J. E., Yasumura, T., Dudek, F. E. & Nagy, J. I. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J. Neurosci. 21, 1983–2000 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hofer, A. & Dermietzel, R. Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24, 141–154 (1998).

    CAS  PubMed  Google Scholar 

  10. Contreras, J. E. et al. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc. Natl Acad. Sci. USA 99, 495–500 (2002).

    CAS  PubMed  Google Scholar 

  11. Bennett, M. V., Contreras, J. E., Bukauskas, F. F. & Saez, J. C. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 26, 610–617 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Orellana, J. A. et al. Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid. Redox Signal. 11, 369–399 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Scemes, E., Suadicani, S. O., Dahl, G. & Spray, D. C. Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol. 3, 199–208 (2007).

    PubMed  PubMed Central  Google Scholar 

  14. Bruzzone, R. & Giaume, C. Connexins and information transfer through glia. Adv. Exp. Med. Biol. 468, 321–337 (1999).

    CAS  PubMed  Google Scholar 

  15. Dermietzel, R., Hertberg, E. L., Kessler, J. A. & Spray, D. C. Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J. Neurosci. 11, 1421–1432 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Giaume, C. et al. Gap junctions in cultured astrocytes: single-channel currents and characterization of channel-forming protein. Neuron 6, 133–143 (1991).

    CAS  PubMed  Google Scholar 

  17. Kunzelmann, P. et al. Late onset and increasing expression of the gap junction protein connexin30 in adult murine brain and long-term cultured astrocytes. Glia 25, 111–119 (1999).

    CAS  PubMed  Google Scholar 

  18. Nagy, J. I., Patel, D., Ochalski, P. A. & Stelmack, G. L. Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88, 447–468 (1999).

    CAS  PubMed  Google Scholar 

  19. Nagy, J. I. & Rash, J. E. Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res. Brain Res. Rev. 32, 29–44 (2000).

    CAS  PubMed  Google Scholar 

  20. Blomstrand, F. et al. Endothelins regulate astrocyte gap junctions in rat hippocampal slices. Eur. J. Neurosci. 19, 1005–1015 (2004).

    CAS  PubMed  Google Scholar 

  21. Wallraff, A. et al. The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J. Neurosci. 26, 5438–5447 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rouach, N., Koulakoff, A., Abudara, V., Willecke, K. & Giaume, C. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322, 1551–1555 (2008). Demonstration of the role of gap junctions in metabolic supply of neurons by astrocytes.

    CAS  PubMed  Google Scholar 

  23. Elias, L. A., Wang, D. D. & Kriegstein, A. R. Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448, 901–907 (2007).

    CAS  PubMed  Google Scholar 

  24. Scemes, E. Modulation of astrocyte P2Y1 receptors by the carboxyl terminal domain of the gap junction protein Cx43. Glia 56, 145–53 (2008).

    PubMed  PubMed Central  Google Scholar 

  25. Rohlmann, A. & Wolff, J. R. in Gap Junctions in the Nervous System (eds Spray, D.C. & Dermietzel, R.) 175–192 (Landes Bioscience,1998). Report of two important properties of gap junctions in astrocytes. They are often located close to synapses and can occur between two processes of a single cell (reflexive gap junctions).

    Google Scholar 

  26. Bushong, E. A., Martone, M. E., Jones, Y. Z. & Ellisman, M. H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 (2002). Demonstration of the true morphology of protoplasmic astrocytes by three-dimensional analysis of dye injection in fixed tissue and definition of individual astrocytic domains.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Halassa, M. M., Fellin, T., Takano, H., Dong, J. H. & Haydon, P. G. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27, 6473–6477 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ogata, K. & Kosaka, T. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113, 221–233 (2002). Study indicating that individual astrocytes have their own domains with very limited overlap.

    CAS  PubMed  Google Scholar 

  29. Konietzko, U. & Muller, C. M. Astrocytic dye coupling in rat hippocampus: topography, developmental onset, and modulation by protein kinase C. Hippocampus 4, 297–306 (1994).

    CAS  PubMed  Google Scholar 

  30. D'Ambrosio, R., Wenzel, J., Schwartzkroin, P. A., McKhann, G. M. & Janigro, D. Functional specialization and topographic segregation of hippocampal astrocytes. J. Neurosci. 18, 4425–4438 (1998). Very nice and detailed analysis of the dye coupling properties of astrocytes in two regions of the hippocampus, with a focus on their electrical properties and current–voltage relationship.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Houades, V., Koulakoff, A., Ezan, P., Seif, I. & Giaume, C. Gap junction-mediated astrocytic networks in the mouse barrel cortex. J. Neurosci. 28, 5207–5217 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ball, K. K., Gandhi, G. K., Thrash, J., Cruz, N. F. & Dienel, G. A. Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: implications for [14C]glucose metabolite trafficking. J. Neurosci. Res. 85, 3267–3283 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Adermark, L. & Lovinger, D. M. Electrophysiological properties and gap junction coupling of striatal astrocytes. Neurochem. Int. 52, 1365–1372 (2008).

    CAS  PubMed  Google Scholar 

  34. Grosche, J. et al. Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nature Neurosci. 2, 139–143 (1999).

    CAS  PubMed  Google Scholar 

  35. Binmoller, F. J. & Muller, C. M. Postnatal development of dye-coupling among astrocytes in rat visual cortex. Glia 6, 127–137 (1992).

    CAS  PubMed  Google Scholar 

  36. Schools, G. P., Zhou, M. & Kimelberg, H. K. Development of gap junctions in hippocampal astrocytes: evidence that whole cell electrophysiological phenotype is an intrinsic property of the individual cell. J. Neurophysiol. 96, 1383–1392 (2006).

    PubMed  Google Scholar 

  37. Bittman, K., Becker, D. L., Cicirata, F. & Parnavelas, J. G. Connexin expression in homotypic and heterotypic cell coupling in the developing cerebral cortex. J. Comp. Neurol. 443, 201–212 (2002).

    CAS  PubMed  Google Scholar 

  38. Alvarez-Maubecin, V., Garcia-Hernandez, F., Williams, J. T. & Van Bockstaele, E. J. Functional coupling between neurons and glia. J. Neurosci. 20, 4091–4098 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pakhotin, P. & Verkhratsky, A. Electrical synapses between Bergmann glia cells and Purkinje neurones in rat cerebellar slices. Mol. Cell. Neurosci. 28, 79–84 (2005). This works provides a clear-cut demonstration that electrical and dye coupling can occur between glia and neurons.

    PubMed  Google Scholar 

  40. Venance, L. et al. Homotypic and heterotypic coupling mediated by gap junctions during glial cell differentiation in vitro. Eur. J. Neurosci. 7, 451–461 (1995).

    CAS  PubMed  Google Scholar 

  41. Maglione, T. et al. Gap junction coupling among oligodendrocytes in mouse corpus callsoum is largely promoted by connexin47. Glia 57 (Suppl. 13), 178 (2009).

    Google Scholar 

  42. Lutz, S. E. et al. Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J. Neurosci. 29, 7743–7752 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Houades, V. et al. Shapes of astrocyte networks in the juvenile brain. Neuron Glia Biol. 2, 3–14 (2006).

    PubMed  Google Scholar 

  44. Roux, L. & Giaume, C. Two astroglial networks are differentially regulated by neuronal activity in the olfactory glomerular layer. Glia 57 (Suppl. 13), 57 (2009).

    Google Scholar 

  45. Matyash, V. & Kettenmann, H. Heterogeneity in astrocyte morphology and physiology. Brain Res. Rev. 11 Dec 2009 (doi:10.1016/j.brainresrev.2009.12.001).

    CAS  PubMed  Google Scholar 

  46. Cotrina, M. L., Gao, Q., Lin, J. H. & Nedergaard, M. Expression and function of astrocytic gap junctions in aging. Brain Res. 901, 55–61 (2001).

    CAS  PubMed  Google Scholar 

  47. Peters, O. et al. Astrocyte function is modified by alzheimer's disease-like pathology in aged mice. J. Alzheimers Dis. 18, 177–189 (2009).

    CAS  PubMed  Google Scholar 

  48. Yamamoto, T., Vukelic, J., Hertzberg, E. L. & Nagy, J. I. Differential anatomical and cellular patterns of connexin43 expression during postnatal development of rat brain. Brain Res. Dev. Brain Res. 66, 165–180 (1992).

    CAS  PubMed  Google Scholar 

  49. Cavaglia, M. et al. Regional variation in brain capillary density and vascular response to ischemia. Brain Res. 910, 81–93 (2001).

    CAS  PubMed  Google Scholar 

  50. Lawrence, T. S., Beers, W. H. & Gilula, N. B. Transmission of hormonal stimulation by cell-to-cell communication. Nature 272, 501–506 (1978).

    CAS  PubMed  Google Scholar 

  51. Tabernero, A., Medina, J. M. & Giaume, C. Glucose metabolism and proliferation in glia: role of astrocytic gap junctions. J. Neurochem. 99, 1049–1061 (2006).

    CAS  PubMed  Google Scholar 

  52. Harris, A. L. Connexin channel permeability to cytoplasmic molecules. Prog. Biophys. Mol. Biol. 94, 120–143 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yum, S. W. et al. Human connexin26 and connexin30 form functional heteromeric and heterotypic channels. Am. J. Physiol. Cell Physiol. 293, C1032–C1048 (2007).

    CAS  PubMed  Google Scholar 

  54. Manthey, D. et al. Intracellular domains of mouse connexin26 and -30 affect diffusional and electrical properties of gap junction channels. J. Membr. Biol. 181, 137–148 (2001).

    CAS  PubMed  Google Scholar 

  55. Orthmann-Murphy, J. L., Freidin, M., Fischer, E., Scherer, S. S. & Abrams, C. K. Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J. Neurosci. 27, 13949–13957 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gonzalez, D., Gomez-Hernandez, J. M. & Barrio, L. C. Molecular basis of voltage dependence of connexin channels: an integrative appraisal. Prog. Biophys. Mol. Biol. 94, 66–106 (2007).

    CAS  PubMed  Google Scholar 

  57. Cotrina, M. L. et al. Astrocytic gap junctions remain open during ischemic conditions. J. Neurosci. 18, 2520–2537 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Serrano, A., Haddjeri, N., Lacaille, J. C. & Robitaille, R. GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J. Neurosci. 26, 5370–5382 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kang, N., Xu, J., Xu, Q., Nedergaard, M. & Kang, J. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 94, 4121–4130 (2005).

    CAS  PubMed  Google Scholar 

  60. Valiunas, V. et al. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J. Physiol. 568, 459–468 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rouach, N., Glowinski, J. & Giaume, C. Activity-dependent neuronal control of gap-junctional communication in astrocytes. J. Cell Biol. 149, 1513–1526 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fischer, G. & Kettenmann, H. Cultured astrocytes form a syncytium after maturation. Exp. Cell Res. 159, 273–279 (1985).

    CAS  PubMed  Google Scholar 

  63. Marrero, H. & Orkand, R. K. Nerve impulses increase glial intercellular permeability. Glia 16, 285–289 (1996). First report of an activity-dependent regulation of glial gap junctions by neurons.

    CAS  PubMed  Google Scholar 

  64. Enkvist, M. O. & McCarthy, K. D. Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration. J. Neurochem. 62, 489–495 (1994).

    CAS  PubMed  Google Scholar 

  65. De Pina-Benabou, M. H., Srinivas, M., Spray, D. C. & Scemes, E. Calmodulin kinase pathway mediates the K+-induced increase in Gap junctional communication between mouse spinal cord astrocytes. J. Neurosci. 21, 6635–6643 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rouach, N., Tence, M., Glowinski, J. & Giaume, C. Costimulation of N-methyl-D-aspartate and muscarinic neuronal receptors modulates gap junctional communication in striatal astrocytes. Proc. Natl Acad. Sci. USA 99, 1023–1028 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Serrano, A., Robitaille, R. & Lacaille, J. C. Differential NMDA-dependent activation of glial cells in mouse hippocampus. Glia 56, 1648–1663 (2008).

    PubMed  Google Scholar 

  68. Muller, T., Moller, T., Neuhaus, J. & Kettenmann, H. Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation. Glia 17, 274–284 (1996).

    CAS  PubMed  Google Scholar 

  69. Wallraff, A., Odermatt, B., Willecke, K. & Steinhauser, C. Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia 48, 36–43 (2004).

    PubMed  Google Scholar 

  70. Matthias, K. et al. Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J. Neurosci. 23, 1750–1758 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Haydon, P. G. & Carmignoto, G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev. 86, 1009–1031 (2006).

    CAS  PubMed  Google Scholar 

  72. Perea, G., Navarrete, M. & Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32, 421–431 (2009).

    CAS  PubMed  Google Scholar 

  73. Bezzi, P. et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nature Neurosci. 7, 613–620 (2004).

    CAS  PubMed  Google Scholar 

  74. Zhang, Q. et al. Fusion-related release of glutamate from astrocytes. J. Biol. Chem. 279, 12724–12733 (2004).

    CAS  PubMed  Google Scholar 

  75. Montana, V., Ni, Y., Sunjara, V., Hua, X. & Parpura, V. Vesicular glutamate transporter-dependent glutamate release from astrocytes. J. Neurosci. 24, 2633–2642 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Mothet, J. P. et al. Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc. Natl Acad. Sci. USA 102, 5606–5611 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jourdain, P. et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nature Neurosci. 10, 331–339 (2007).

    CAS  PubMed  Google Scholar 

  78. Fiacco, T. A. et al. Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 54, 611–626 (2007).

    CAS  PubMed  Google Scholar 

  79. Fiacco, T. A., Agulhon, C. & McCarthy, K. D. Sorting out astrocyte physiology from pharmacology. Annu. Rev. Pharmacol. Toxicol. 49, 151–174 (2009).

    CAS  PubMed  Google Scholar 

  80. Petravicz, J., Fiacco, T. A. & McCarthy, K. D. Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J. Neurosci. 28, 4967–4973 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Barres, B. A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    CAS  PubMed  Google Scholar 

  82. Giaume, C., Tabernero, A. & Medina, J. M. Metabolic trafficking through astrocytic gap junctions. Glia 21, 114–123 (1997).

    CAS  PubMed  Google Scholar 

  83. Magistretti, P. J., Pellerin, L., Rothman, D. L. & Shulman, R. G. Energy on demand. Science 283, 496–497 (1999).

    CAS  PubMed  Google Scholar 

  84. Magistretti, P. J. Neuron-glia metabolic coupling and plasticity. J. Exp. Biol. 209, 2304–2311 (2006).

    CAS  PubMed  Google Scholar 

  85. Golgi, C. On the structure of nerve cells. 1898. J. Microsc. 155, 3–7 (1989).

    CAS  PubMed  Google Scholar 

  86. Magistretti, P. J. et al. Regulation of astrocyte energy metabolism by neurotransmitters. Ren Physiol. Biochem. 17, 168–171 (1994).

    CAS  PubMed  Google Scholar 

  87. Bernardinelli, Y., Magistretti, P. J. & Chatton, J. Y. Astrocytes generate Na+-mediated metabolic waves. Proc. Natl Acad. Sci. USA 101, 14937–14942 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Scemes, E. & Giaume, C. Astrocyte calcium waves: what they are and what they do. Glia 54, 716–725 (2006).

    PubMed  PubMed Central  Google Scholar 

  89. Fiacco, T. A. & McCarthy, K. D. Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54, 676–690 (2006).

    PubMed  Google Scholar 

  90. Kuchibhotla, K. V., Lattarulo, C. R., Hyman, B. T. & Bacskai, B. J. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323, 1211–1215 (2009). In vivo demonstration of the propagation of intercellular Ca2+ waves in astrocytes studied in a mouse model of Alzheimer's disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tabernero, A., Giaume, C. & Medina, J. M. Endothelin-1 regulates glucose utilization in cultured astrocytes by controlling intercellular communication through gap junctions. Glia 16, 187–195 (1996). This work, performed in culture, reports for the first time the permeability of glial gap junctions for energy signalling compounds.

    CAS  PubMed  Google Scholar 

  92. Cruz, N. F., Ball, K. K. & Dienel, G. A. Functional imaging of focal brain activation in conscious rats: impact of [14C]glucose metabolite spreading and release. J. Neurosci. Res. 85, 3254–3266 (2007).

    CAS  PubMed  Google Scholar 

  93. Viswanathan, A. & Freeman, R. D. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nature Neurosci. 10, 1308–1312 (2007).

    CAS  PubMed  Google Scholar 

  94. Lecoq, J. et al. Odor-evoked oxygen consumption by action potential and synaptic transmission in the olfactory bulb. J. Neurosci. 29, 1424–1433 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chatton, J. Y., Pellerin, L. & Magistretti, P. J. GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission. Proc. Natl Acad. Sci. USA 100, 12456–12461 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gordon, G. R., Mulligan, S. J. & MacVicar, B. A. Astrocyte control of the cerebrovasculature. Glia 55, 1214–1221 (2007).

    PubMed  Google Scholar 

  97. Koehler, R. C., Roman, R. J. & Harder, D. R. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci. 32, 160–169 (2009).

    CAS  PubMed  Google Scholar 

  98. Mulligan, S. J. & MacVicar, B. A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199 (2004).

    CAS  PubMed  Google Scholar 

  99. Hoogland, T. M. et al. Radially expanding transglial calcium waves in the intact cerebellum. Proc. Natl Acad. Sci. USA 106, 3496–3501 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kuo, I. Y., Chan-Ling, T., Wojcikiewicz, R. J. & Hill, C. E. Limited intravascular coupling in the rodent brainstem and retina supports a role for glia in regional blood flow. J. Comp. Neurol. 511, 773–787 (2008).

    CAS  PubMed  Google Scholar 

  101. Ridet, J. L., Malhotra, S. K., Privat, A. & Gage, F. H. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20, 570–577 (1997).

    CAS  PubMed  Google Scholar 

  102. Oberheim, N. A. et al. Loss of astrocytic domain organization in the epileptic brain. J. Neurosci. 28, 3264–3276 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, W. E., Ochalski, P. A., Hertzberg, E. L. & Nagy, J. I. Immunorecognition, ultrastructure and phosphorylation status of astrocytic gap junctions and connexin43 in rat brain after cerebral focal ischaemia. Eur. J. Neurosci. 10, 2444–2463 (1998).

    CAS  PubMed  Google Scholar 

  104. Theriault, E., Frankenstein, U. N., Hertzberg, E. L. & Nagy, J. I. Connexin43 and astrocytic gap junctions in the rat spinal cord after acute compression injury. J. Comp. Neurol. 382, 199–214 (1997).

    CAS  PubMed  Google Scholar 

  105. Ochalski, P. A., Sawchuk, M. A., Hertzberg, E. L. & Nagy, J. I. Astrocytic gap junction removal, connexin43 redistribution, and epitope masking at excitatory amino acid lesion sites in rat brain. Glia 14, 279–294 (1995).

    CAS  PubMed  Google Scholar 

  106. Koulakoff, A., Ezan, P. & Giaume, C. Neurons control the expression of connexin 30 and connexin 43 in mouse cortical astrocytes. Glia 56, 1299–1311 (2008).

    PubMed  Google Scholar 

  107. Nagy, J. I., Li, W., Hertzberg, E. L. & Marotta, C. A. Elevated connexin43 immunoreactivity at sites of amyloid plaques in Alzheimer's disease. Brain Res. 717, 173–178 (1996).

    CAS  PubMed  Google Scholar 

  108. Samoilova, M. et al. Epileptiform activity in hippocampal slice cultures exposed chronically to bicuculline: increased gap junctional function and expression. J. Neurochem. 86, 687–699 (2003).

    CAS  PubMed  Google Scholar 

  109. Samoilova, M., Wentlandt, K., Adamchik, Y., Velumian, A. A. & Carlen, P. L. Connexin 43 mimetic peptides inhibit spontaneous epileptiform activity in organotypic hippocampal slice cultures. Exp. Neurol. 210, 762–775 (2008).

    CAS  PubMed  Google Scholar 

  110. Xu, L., Zeng, L. H. & Wong, M. Impaired astrocytic gap junction coupling and potassium buffering in a mouse model of tuberous sclerosis complex. Neurobiol. Dis. 34, 291–299 (2009).

    PubMed  PubMed Central  Google Scholar 

  111. Giaume, C. & Theis, M. Pharmacological and genetic approaches to study connexin-mediated channels in glial cells of the central nervous system. Brain Res. Rev. 4 Dec 2009 (doi:10.1016/j.brainresrev.2009.11.005).

    CAS  PubMed  Google Scholar 

  112. Lin, J. H. et al. A central role of connexin 43 in hypoxic preconditioning. J. Neurosci. 28, 681–695 (2008). Demonstration of the role of Cx43 hemichannels in the neuroprotection afforded by hypoxic preconditioning.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Siushansian, R., Bechberger, J. F., Cechetto, D. F., Hachinski, V. C. & Naus, C. C. Connexin43 null mutation increases infarct size after stroke. J. Comp. Neurol. 440, 387–394 (2001).

    CAS  PubMed  Google Scholar 

  114. Nakase, T. et al. Neuroprotective role of astrocytic gap junctions in ischemic stroke. Cell Commun. Adhes. 10, 413–417 (2003).

    CAS  PubMed  Google Scholar 

  115. Nakase, T., Fushiki, S. & Naus, C. C. Astrocytic gap junctions composed of connexin 43 reduce apoptotic neuronal damage in cerebral ischemia. Stroke 34, 1987–1993 (2003).

    PubMed  Google Scholar 

  116. Lin, J. H. et al. Gap-junction-mediated propagation and amplification of cell injury. Nature Neurosci. 1, 494–500 (1998).

    CAS  PubMed  Google Scholar 

  117. Frantseva, M. V. et al. Specific gap junctions enhance the neuronal vulnerability to brain traumatic injury. J. Neurosci. 22, 644–653 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Frantseva, M. V., Kokarovtseva, L. & Perez Velazquez, J. L. Ischemia-induced brain damage depends on specific gap-junctional coupling. J. Cereb. Blood Flow Metab. 22, 453–462 (2002).

    PubMed  Google Scholar 

  119. O'Carroll, S. J., Alkadhi, M., Nicholson, L. F. & Green, C. R. Connexin 43 mimetic peptides reduce swelling, astrogliosis, and neuronal cell death after spinal cord injury. Cell Commun. Adhes. 15, 27–42 (2008).

    CAS  PubMed  Google Scholar 

  120. Cronin, M., Anderson, P. N., Cook, J. E., Green, C. R. & Becker, D. L. Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury. Mol. Cell Neurosci. 39, 152–160 (2008).

    CAS  PubMed  Google Scholar 

  121. Perea, G. & Araque, A. Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317, 1083–1086 (2007).

    CAS  PubMed  Google Scholar 

  122. Santello, M. & Volterra, A. Synaptic modulation by astrocytes via Ca2+-dependent glutamate release. Neuroscience 158, 253–259 (2009).

    CAS  PubMed  Google Scholar 

  123. Rozental, R., Srinivas, M. & Spray, D. C. How to close a gap junction channel. Efficacies and potencies of uncoupling agents. Methods Mol. Biol. 154, 447–476 (2001).

    CAS  PubMed  Google Scholar 

  124. Spray, D. C., Rozental, R. & Srinivas, M. Prospects for rational development of pharmacological gap junction channel blockers. Curr. Drug Targets 3, 455–464 (2002).

    CAS  PubMed  Google Scholar 

  125. Iacobas, D. A., Iacobas, S., Urban-Maldonado, M. & Spray, D. C. Sensitivity of the brain transcriptome to connexin ablation. Biochim. Biophys. Acta 1711, 183–196 (2005).

    CAS  PubMed  Google Scholar 

  126. Colin, A. et al. Engineered lentiviral vector targeting astrocytes in vivo. Glia 57, 667–679 (2009).

    PubMed  Google Scholar 

  127. Spray, D. C., Ye, Z. C. & Ransom, B. R. Functional connexin “hemichannels”: a critical appraisal. Glia 54, 758–773 (2006).

    PubMed  Google Scholar 

  128. Cotrina, M. L., Lin, J. H., Lopez-Garcia, J. C., Naus, C. C. & Nedergaard, M. ATP-mediated glia signaling. J. Neurosci. 20, 2835–2844 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ye, Z. C., Wyeth, M. S., Baltan-Tekkok, S. & Ransom, B. R. Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci. 23, 3588–3596 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Retamal, M. A. et al. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J. Neurosci. 27, 13781–13792 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Rana, S. & Dringen, R. Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci. Lett. 415, 45–48 (2007).

    CAS  PubMed  Google Scholar 

  132. Stridh, M. H., Tranberg, M., Weber, S. G., Blomstrand, F. & Sandberg, M. Stimulated efflux of amino acids and glutathione from cultured hippocampal slices by omission of extracellular calcium: likely involvement of connexin hemichannels. J. Biol. Chem. 283, 10347–10356 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Nedergaard, M., Ransom, B. & Goldman, S. A. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523–530 (2003).

    CAS  PubMed  Google Scholar 

  134. Valiunas, V., Weingart, R. & Brink, P. R. Formation of heterotypic gap junction channels by connexins 40 and 43. Circ. Res. 86, E42–E49 (2000).

    CAS  PubMed  Google Scholar 

  135. Zappala, A. et al. Expression of pannexin1 in the CNS of adult mouse: cellular localization and effect of 4-aminopyridine-induced seizures. Neuroscience 141, 167–178 (2006).

    CAS  PubMed  Google Scholar 

  136. Panchin, Y. et al. A ubiquitous family of putative gap junction molecules. Curr. Biol. 10, R473–R474 (2000).

    CAS  PubMed  Google Scholar 

  137. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999).

    CAS  PubMed  Google Scholar 

  138. Li, Y. X. & Rinzel, J. Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J. Theor. Biol. 166, 461–473 (1994).

    CAS  PubMed  Google Scholar 

  139. Nadkarni, S. & Jung, P. Modeling synaptic transmission of the tripartite synapse. Phys. Biol. 4, 1–9 (2007).

    CAS  PubMed  Google Scholar 

  140. Nadkarni, S. & Jung, P. Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91, 268101 (2003).

    PubMed  Google Scholar 

  141. Fellin, T. et al. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43, 729–743 (2004).

    CAS  PubMed  Google Scholar 

  142. Chao, T. I., Kasa, P. & Wolff, J. R. Distribution of astroglia in glomeruli of the rat main olfactory bulb: exclusion from the sensory subcompartment of neuropil. J. Comp. Neurol. 388, 191–210 (1997).

    CAS  PubMed  Google Scholar 

  143. Bailey, M. S. & Shipley, M. T. Astrocyte subtypes in the rat olfactory bulb: morphological heterogeneity and differential laminar distribution. J. Comp. Neurol. 328, 501–526 (1993).

    CAS  PubMed  Google Scholar 

  144. Magistretti, P. J. & Pellerin, L. Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol. Sci. 14, 177–182 (1999).

    CAS  PubMed  Google Scholar 

  145. Meme, W., Vandecasteele, M., Giaume, C. & Venance, L. Electrical coupling between hippocampal astrocytes in rat brain slices. Neurosci. Res. 63, 236–243 (2009).

    PubMed  Google Scholar 

  146. Adermark, L. & Lovinger, D. M. Ethanol effects on electrophysiological properties of astrocytes in striatal brain slices. Neuropharmacology 51, 1099–1108 (2006).

    CAS  PubMed  Google Scholar 

  147. Rouach, N. et al. Gap junctions and connexin expression in the normal and pathological central nervous system. Biol. Cell 94, 457–475 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank C. Genoud and E. Welker (University of Lausanne) for providing EM illustrations and J. Glowinski (Collège de France, Paris) for his support and interest for our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Giaume.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Changes in Cx expression associated with pathological situations in the central nervous sytem (PDF 311 kb)

Supplementary information S2 (table)

Consequences of Cx molecular block on neuronal activity or survival in pathological situations (PDF 223 kb)

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

Glossary

Tripartite synapse

A concept in synaptic physiology based on the existence of communication between the pre- and postsynaptic terminal and a surrounding astrocyte.

Neurovascular coupling

The link between neuronal activity and energy supply from blood flow, in which astrocytes participate.

Astrocyte–neuron lactate shuttle

Activity-dependent fuelling of neuronal energy demand, consisting of glucose uptake at astrocyte endfeet, its glycolysis and the delivery of lactate to neurons by astrocytes.

Reactive astrocytes

Astroglia that, after brain injuries or during pathology, are characterized by functional and morphological changes that can be associated with cell migration and proliferation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giaume, C., Koulakoff, A., Roux, L. et al. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11, 87–99 (2010). https://doi.org/10.1038/nrn2757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2757

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing