Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Growth and folding of the mammalian cerebral cortex: from molecules to malformations

Key Points

  • An important feature of cerebral cortex development is the increase in the thickness and folding of surface areas in many species.

  • Abnormal cortical development that affects growth and folding causes brain malformations such as microcephaly and lissencephaly.

  • Cortical neural progenitors can be characterized into four subtypes according to their apical and basal positions in the ventricular zone and subventricular zone: apical radial glial cells, apical intermediate progenitors, basal radial glial cells and basal intermediate progenitors.

  • Cell cycle progression, apoptosis, cilia and microRNAs control distinct aspects of cortical neural progenitor expansion and cortical size.

  • Many microcephaly-associated genes are involved in centrosome function and in turn control symmetrical versus asymmetrical divisions of cortical neural progenitors and cortical size.

  • Gyrencephaly — that is, anatomical folding of the neocortex to form gyri and sulci — seems to be a trait that arose in the ancestor of all mammals.

  • Cortical neural progenitors at basal positions in the ventricular zone and subventricular zone play a substantial part in expanding cortical surface areas and folding.

  • Many factors, such as afferent fibres and axonal interactions, ventricular surface expansion, pial invagination and meningeal signalling, contribute to development of gyri in the cortex.

Abstract

The size and extent of folding of the mammalian cerebral cortex are important factors that influence a species' cognitive abilities and sensorimotor skills. Studies in various animal models and in humans have provided insight into the mechanisms that regulate cortical growth and folding. Both protein-coding genes and microRNAs control cortical size, and recent progress in characterizing basal progenitor cells and the genes that regulate their proliferation has contributed to our understanding of cortical folding. Neurological disorders linked to disruptions in cortical growth and folding have been associated with novel neurogenetic mechanisms and aberrant signalling pathways, and these findings have changed concepts of brain evolution and may lead to new medical treatments for certain disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiple progenitors in the mouse and human developing cerebral cortex.
Figure 2: Molecular mechanisms of cortical growth.
Figure 3: Symmetrical–asymmetrical cell division, centrosome associated proteins and neural progenitors.
Figure 4: Brain mass, cortical thickness and gyrification.
Figure 5: Cortical afferent axons and the meninges in gyrogenesis.

Similar content being viewed by others

References

  1. Kaas, J. H. The evolution of brains from early mammals to humans. Wiley Interdiscip. Rev. Cogn. Sci. 4, 33–45 (2013).

    Article  PubMed  Google Scholar 

  2. Geschwind, D. H. & Rakic, P. Cortical evolution: judge the brain by its cover. Neuron 80, 633–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Striedter, G. Principles of Brain Evolution (Sinauer, 2005).

    Google Scholar 

  4. Zilles, K., Palomero-Gallagher, N. & Amunts, K. Development of cortical folding during evolution and ontogeny. Trends Neurosci. 36, 275–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Kelava, I., Lewitus, E. & Huttner, W. B. The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal. Front. Neuroanat. 7, 16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Welker, W. in Cerebral Cortex Vol 8B (eds Jones, E. G. & Peters, A.) (Springer, 1990).

    Google Scholar 

  7. Rubenstein, J. L., Shimamura, K., Martinez, S. & Puelles, L. Regionalization of the prosencephalic neural plate. Annu. Rev. Neurosci. 21, 445–477 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Alvarez-Buylla, A. & Temple, S. Stem cells in the developing and adult nervous system. J. Neurobiol. 36, 105–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Campbell, K. & Gotz, M. Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci. 25, 235–238 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Rakic, P. The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res. Rev. 55, 204–219 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nature Rev. Neurosci. 10, 724–735 (2009).

    Article  CAS  Google Scholar 

  12. Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Pontious, A., Kowalczyk, T., Englund, C. & Hevner, R. F. Role of intermediate progenitor cells in cerebral cortex development. Dev. Neurosci. 30, 24–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Kowalczyk, T. et al. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb. Cortex 19, 2439–2450 (2009). The authors demonstrate the morphology and molecular features of IPs that are positioned in the apical regions in the VZ using live-imaging approaches.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hevner, R. F. & Haydar, T. F. The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis. Cereb. Cortex 22, 465–468 (2012).

    Article  PubMed  Google Scholar 

  17. Arnold, S. J. et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 22, 2479–2484 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sessa, A. et al. Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling amplification of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. Genes Dev. 24, 1816–1826 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sessa, A., Mao, C. A., Hadjantonakis, A. K., Klein, W. H. & Broccoli, V. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60, 56–69 (2008). References 17–19 demonstrate that transcription factor TBR2 has a crucial role in specifying and expanding cortical IPs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smart, I. H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    Article  PubMed  Google Scholar 

  21. Reillo, I. & Borrell, V. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors. Cereb. Cortex 22, 2039–2054 (2012).

    Article  PubMed  Google Scholar 

  22. Fietz, S. A. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nature Neurosci. 13, 690–699 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Hansen, D. V., Lui, J. H., Parker, P. R. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010). References 22 and 23 demonstrate the existence of mitotically active bRGCs in human and ferret fetal cortices. Using time-lapse microscopy of living slices, the authors show that the bRGCs produce IPs and neurons, similarly to aRGCs.

    Article  CAS  PubMed  Google Scholar 

  24. Shitamukai, A., Konno, D. & Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31, 3683–3695 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, X., Tsai, J. W., LaMonica, B. & Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nature Neurosci. 14, 555–561 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Molnar, Z. & Clowry, G. Cerebral cortical development in rodents and primates. Prog. Brain Res. 195, 45–70 (2012). The authors of references 26 and 27 scholarly and systematically summarize the evolution of the rodent, primate and human cerebral cortices. They review morphological and molecular features of distinct progenitors in the neocortex.

    Article  PubMed  Google Scholar 

  28. Garcia-Moreno, F., Vasistha, N. A., Trevia, N., Bourne, J. A. & Molnar, Z. Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent. Cereb. Cortex 22, 482–492 (2012).

    Article  PubMed  Google Scholar 

  29. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002). These authors demonstrate that expression of continuously activated β-catenin causes expansion of cortical NPs and folding of the cortex using mouse genetic tools. This paper suggests that cell cycle regulation of NPs is crucial for cortical growth and folding.

    Article  CAS  PubMed  Google Scholar 

  30. Iwata, T. & Hevner, R. F. Fibroblast growth factor signaling in development of the cerebral cortex. Dev. Growth Differ. 51, 299–323 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Lehtinen, M. K. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893–905 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harrison-Uy, S. J. & Pleasure, S. J. Wnt signaling and forebrain development. Cold Spring Harb. Perspect. Biol. 4, a008094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ross, M. E. & Walsh, C. A. Human brain malformations and their lessons for neuronal migration. Annu. Rev. Neurosci. 24, 1041–1070 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Walsh, C. A. Genetic malformations of the human cerebral cortex. Neuron 23, 19–29 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Rakic, P. & Sidman, R. L. Supravital DNA synthesis in the developing human and mouse brain. J. Neuropathol. Exp. Neurol. 27, 246–276 (1968).

    Article  CAS  PubMed  Google Scholar 

  36. Taverna, E. & Huttner, W. B. Neural progenitor nuclei IN motion. Neuron 67, 906–914 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Reiner, O., Sapir, T. & Gerlitz, G. Interkinetic nuclear movement in the ventricular zone of the cortex. J. Mol. Neurosci. 46, 516–526 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, X., Hashimoto-Torii, K., Torii, M., Ding, C. & Rakic, P. Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J. Neurosci. 30, 4197–4209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tamai, H. et al. Pax6 transcription factor is required for the interkinetic nuclear movement of neuroepithelial cells. Genes Cells 12, 983–996 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Xie, Z. et al. Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron 56, 79–93 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ge, X., Frank, C. L., Calderon de Anda, F. & Tsai, L. H. Hook3 interacts with PCM1 to regulate pericentriolar material assembly and the timing of neurogenesis. Neuron 65, 191–203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, Y. T., Wang, C. L. & Van Aelst, L. DOCK7 interacts with TACC3 to regulate interkinetic nuclear migration and cortical neurogenesis. Nature Neurosci. 15, 1201–1210 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, X. et al. SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64, 173–187 (2009). References 40–43 demonstrate that centrosomal proteins and microtubule-binding proteins control NP proliferation by affecting INM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Estivill-Torrus, G., Pearson, H., van Heyningen, V., Price, D. J. & Rashbass, P. Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129, 455–466 (2002).

    CAS  PubMed  Google Scholar 

  45. Mi, D. et al. Pax6 exerts regional control of cortical progenitor proliferation via direct repression of Cdk6 and hypophosphorylation of pRb. Neuron 78, 269–284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lian, G. et al. Filamin A regulates neural progenitor proliferation and cortical size through Wee1-dependent Cdk1 phosphorylation. J. Neurosci. 32, 7672–7684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Petersen, P. H., Zou, K., Hwang, J. K., Jan, Y. N. & Zhong, W. Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 419, 929–934 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Li, H. S. et al. Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40, 1105–1118 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, Y. J. et al. Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation. Cell 151, 1097–1112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, L., Melendez, J., Campbell, K., Kuan, C. Y. & Zheng, Y. Rac1 deficiency in the forebrain results in neural progenitor reduction and microcephaly. Dev. Biol. 325, 162–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Leone, D. P. Srinivasan, K., Brakebusch, C. & McConnell, S. K. The rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain. Dev. Neurobiol. 70, 659–678 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Glickstein, S. B., Monaghan, J. A., Koeller, H. B., Jones, T. K. & Ross, M. E. Cyclin D2 is critical for intermediate progenitor cell proliferation in the embryonic cortex. J. Neurosci. 29, 9614–9624 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nigg, E. A. & Raff, J. W. Centrioles, centrosomes, and cilia in health and disease. Cell 139, 663–678 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Lee, J. E. & Gleeson, J. G. Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr. Opin. Neurol. 24, 98–105 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Louvi, A. & Grove, E. A. Cilia in the CNS: the quiet organelle claims center stage. Neuron 69, 1046–1060 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Willaredt, M. A., Tasouri, E. & Tucker, K. L. Primary cilia and forebrain development. Mech. Dev. 130, 373–380 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Higginbotham, H. et al. Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nature Neurosci. 16, 1000–1007 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Tucker, R. W., Pardee, A. B. & Fujiwara, K. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17, 527–535 (1979).

    Article  CAS  PubMed  Google Scholar 

  59. Gate, D., Danielpour, M., Levy, R., Breunig, J. J. & Town, T. Basic biology and mechanisms of neural ciliogenesis and the B9 family. Mol. Neurobiol. 45, 564–570 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Li, A. et al. Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors. Nature Cell Biol. 13, 402–411 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Yeh, C. et al. IGF-1 activates a cilium-localized noncanonical Gβγ signaling pathway that regulates cell-cycle progression. Dev. Cell 26, 358–368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Paridaen, J. T., Wilsch-Brauninger, M. & Huttner, W. B. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell 155, 333–344 (2013). These authors demonstrate that the cilium membrane is asymmetrically inherited during divisions of apical progenitors, suggesting a new mechanism for the regulation of symmetrical versus asymmetrical divisions of cortical NPs.

    Article  CAS  PubMed  Google Scholar 

  63. Banizs, B. et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132, 5329–5339 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Blaschke, A. J., Staley, K. & Chun, J. Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122, 1165–1174 (1996).

    CAS  PubMed  Google Scholar 

  65. Thomaidou, D., Mione, M. C., Cavanagh, J. F. & Parnavelas, J. G. Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J. Neurosci. 17, 1075–1085 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Haydar, T. F., Kuan, C. Y., Flavell, R. A. & Rakic, P. The role of cell death in regulating the size and shape of the mammalian forebrain. Cereb. Cortex 9, 621–626 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Berger, J. et al. Conditional activation of Pax6 in the developing cortex of transgenic mice causes progenitor apoptosis. Development 134, 1311–1322 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, X. et al. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev. Biol. 269, 81–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Pulvers, J. N. & Huttner, W. B. Brca1 is required for embryonic development of the mouse cerebral cortex to normal size by preventing apoptosis of early neural progenitors. Development 136, 1859–1868 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Sii-Felice, K. et al. Fanconi DNA repair pathway is required for survival and long-term maintenance of neural progenitors. EMBO J. 27, 770–781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Depaepe, V. et al. Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435, 1244–1250 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325–337 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Kingsbury, M. A., Rehen, S. K., Contos, J. J., Higgins, C. M. & Chun, J. Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nature Neurosci. 6, 1292–1299 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. De Pietri Tonelli, D. et al. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135, 3911–3921 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Kawase-Koga, Y., Otaegi, G. & Sun, T. Different timings of dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev. Dyn. 238, 2800–2812 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nowakowski, T. J., Mysiak, K. S., Pratt, T. & Price, D. J. Functional dicer is necessary for appropriate specification of radial glia during early development of mouse telencephalon. PLoS ONE 6, e23013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kawase-Koga, Y. et al. RNAase-III enzyme Dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. J. Cell Sci. 123, 586–594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Saurat, N., Andersson, T., Vasistha, N. A., Molnar, Z. & Livesey, F. J. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev. 8, 14 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Davis, T. H. et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J. Neurosci. 28, 4322–4330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hong, J., Zhang, H., Kawase-Koga, Y. & Sun, T. MicroRNA function is required for neurite outgrowth of mature neurons in the mouse postnatal cerebral cortex. Front. Cell. Neurosci. 7, 151 (2013).

    PubMed  PubMed Central  Google Scholar 

  82. Tanzer, A. & Stadler, P. F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Bian, S. et al. MicroRNA cluster miR-17-92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse neocortex. Cell Rep. 3, 1398–1406 (2013). The authors demonstrate that proper expression of miR-17-92 is required for the expansion of RGCs and for their transition to IPs using mouse genetic tools. They further show that essential target genes Pten and Tbr2 are regulated by miR-17-92 using miRNA sponges.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294, 2186–2189 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Nowakowski, T. J. et al. MicroRNA-92b regulates the development of intermediate cortical progenitors in embryonic mouse brain. Proc. Natl. Acad. Sci. USA 110, 7056–7061 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhao, C., Sun, G., Li, S. & Shi, Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature Struct. Mol. Biol. 16, 365–371 (2009).

    Article  CAS  Google Scholar 

  87. Gaughwin, P., Ciesla, M., Yang, H., Lim, B. & Brundin, P. Stage-specific modulation of cortical neuronal development by Mmu-miR-134. Cereb. Cortex 21, 1857–1869 (2011).

    Article  PubMed  Google Scholar 

  88. Vo, N. et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. USA 102, 16426–16431 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu, J. Y., Chung, K. H., Deo, M., Thompson, R. C. & Turner, D. L. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp. Cell Res. 314, 2618–2633 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Franke, K. et al. miR-124-regulated RhoG reduces neuronal process complexity via ELMO/Dock180/Rac1 and Cdc42 signalling. EMBO J. 31, 2908–2921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Clovis, Y. M., Enard, W., Marinaro, F., Huttner, W. B. & De Pietri Tonelli, D. Convergent repression of Foxp2 3'UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development 139, 3332–3342 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Bian, S., Xu, T. L. & Sun, T. Tuning the cell fate of neurons and glia by microRNAs. Curr. Opin. Neurobiol. 23, 928–934 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. de Pontual, L. et al. Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nature Genet. 43, 1026–1030 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Fietz, S. A. & Huttner, W. B. Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr. Opin. Neurobiol. 21, 23–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Lancaster, M. A. & Knoblich, J. A. Spindle orientation in mammalian cerebral cortical development. Curr. Opin. Neurobiol. 22, 737–746 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Megraw, T. L., Sharkey, J. T. & Nowakowski, R. S. Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends Cell Biol. 21, 470–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci. 7, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, Q. & Margolis, B. Apical junctional complexes and cell polarity. Kidney Int. 72, 1448–1458 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Insolera, R., Chen, S. & Shi, S. H. Par proteins and neuronal polarity. Dev. Neurobiol. 71, 483–494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Costa, M. R., Wen, G., Lepier, A., Schroeder, T. & Gotz, M. Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development 135, 11–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Bultje, R. S. et al. Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63, 189–202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gaiano, N., Nye, J. S. & Fishell, G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Cappello, S. et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nature Neurosci. 9, 1099–1107 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nature Cell Biol. 10, 93–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Zheng, Z. et al. LGN regulates mitotic spindle orientation during epithelial morphogenesis. J. Cell Biol. 189, 275–288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Postiglione, M. P. et al. Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron 72, 269–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sakai, D., Dixon, J., Dixon, M. J. & Trainor, P. A. Mammalian neurogenesis requires Treacle-Plk1 for precise control of spindle orientation, mitotic progression, and maintenance of neural progenitor cells. PLoS Genet. 8, e1002566 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Feng, Y. & Walsh, C. A. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44, 279–293 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Yingling, J. et al. Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 132, 474–486 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Srinivasan, K. et al. MALS-3 regulates polarity and early neurogenesis in the developing cerebral cortex. Development 135, 1781–1790 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Asami, M. et al. The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex. Development 138, 5067–5078 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Kusek, G. et al. Asymmetric segregation of the double-stranded RNA binding protein Staufen2 during mammalian neural stem cell divisions promotes lineage progression. Cell Stem Cell 11, 505–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sanada, K. & Tsai, L. H. G protein βγ subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122, 119–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Xie, Y., Juschke, C., Esk, C., Hirotsune, S. & Knoblich, J. A. The phosphatase PP4c controls spindle orientation to maintain proliferative symmetric divisions in the developing neocortex. Neuron 79, 254–265 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Noctor, S. C., Martinez-Cerdeno, V. & Kriegstein, A. R. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J. Comp. Neurol. 508, 28–44 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Smart, I. H. Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J. Anat. 116, 67–91 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mochida, G. H. & Walsh, C. A. Molecular genetics of human microcephaly. Curr. Opin. Neurol. 14, 151–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Woods, C. G., Bond, J. & Enard, W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am. J. Hum. Genet. 76, 717–728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jackson, A. P. et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet. 71, 136–142 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rai, R. et al. BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell 10, 145–157 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gruber, R. et al. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1–Cdc25 pathway. Nature Cell Biol. 13, 1325–1334 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Bond, J. et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nature Genet. 37, 353–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Barrera, J. A. et al. CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev. Cell 18, 913–926 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lizarraga, S. B. et al. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development 137, 1907–1917 (2010). References 124, 126 and 127 demonstrate molecular mechanisms of dysregulation of the centrosome cycle caused by altered expression of MCPH1 and CDK5RAP2 in mice, indicating the genetic basis of microcephaly in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bond, J. et al. Protein-truncating mutations in ASPM cause variable reduction in brain size. Am. J. Hum. Genet. 73, 1170–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nature Genet. 32, 316–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Fish, J. L., Kosodo, Y., Enard, W., Paabo, S. & Huttner, W. B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl. Acad. Sci. USA 103, 10438–10443 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pulvers, J. N. et al. Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. Proc. Natl. Acad. Sci. USA 107, 16595–16600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bilguvar, K. et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467, 207–210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yu, T. W. et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nature Genet. 42, 1015–1020 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Nicholas, A. K. et al. WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nature Genet. 42, 1010–1014 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Bogoyevitch, M. A. et al. WD40-repeat protein 62 is a JNK-phosphorylated spindle pole protein required for spindle maintenance and timely mitotic progression. J. Cell Sci. 125, 5096–5109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kaindl, A. M. et al. Many roads lead to primary autosomal recessive microcephaly. Prog. Neurobiol. 90, 363–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Wang, X. et al. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461, 947–955 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Riviere, J. B. et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nature Genet. 44, 934–940 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Mirzaa, G. M., Riviere, J. B. & Dobyns, W. B. Megalencephaly syndromes and activating mutations in the PI3K–AKT pathway: MPPH and MCAP. Am. J. Med. Genet. C Semin. Med. Genet. 163, 122–130 (2013).

    Article  CAS  Google Scholar 

  140. Boland, E. et al. Mapping of deletion and translocation breakpoints in 1q44 implicates the serine/threonine kinase AKT3 in postnatal microcephaly and agenesis of the corpus callosum. Am. J. Hum. Genet. 81, 292–303 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lee, J. H. et al. De novo somatic mutations in components of the PI3K–AKT3–mTOR pathway cause hemimegalencephaly. Nature Genet. 44, 941–945 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Poduri, A. et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74, 41–48 (2012). References 138, 141 and 142 demonstrate the crucial role of the PI3K–AKT3 pathway in controlling cortical growth and megalencephaly using linkage mapping and exome sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. DiLiberti, J. H. Inherited macrocephaly-hamartoma syndromes. Am. J. Med. Genet. 79, 284–290 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Song, M. S., Salmena, L. & Pandolfi, P. P. The functions and regulation of the PTEN tumour suppressor. Nature Rev. Mol. Cell Biol. 13, 283–296 (2012).

    Article  CAS  Google Scholar 

  145. Groszer, M. et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc. Natl. Acad. Sci. USA 103, 111–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Klein, S., Sharifi-Hannauer, P. & Martinez-Agosto, J. A. Macrocephaly as a clinical indicator of genetic subtypes in autism. Autism Res. 6, 51–56 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. O'Roak, B. J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619–1622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhou, J. & Parada, L. F. PTEN signaling in autism spectrum disorders. Curr. Opin. Neurobiol. 22, 873–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Kwon, C. H. et al. Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377–388 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lange, C., Huttner, W. B. & Calegari, F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5, 320–331 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Mairet-Coello, G. et al. p57KIP2 regulates radial glia and intermediate precursor cell cycle dynamics and lower layer neurogenesis in developing cerebral cortex. Development 139, 475–487 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sahara, S. & O'Leary, D. D. Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron 63, 48–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Borrell, V. & Reillo, I. Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev. Neurobiol. 72, 955–971 (2012).

    Article  PubMed  Google Scholar 

  154. Lewitus, E., Kelava, I. & Huttner, W. B. Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development. Front. Hum. Neurosci. 7, 424 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  155. O'Leary, M. A. et al. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339, 662–667 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Kelava, I. et al. Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb. Cortex 22, 469–481 (2012).

    Article  PubMed  Google Scholar 

  157. Reep, R. L. & O'Shea, T. J. Regional brain morphometry and lissencephaly in the Sirenia. Brain Behav. Evol. 35, 185–194 (1990).

    Article  CAS  PubMed  Google Scholar 

  158. Narr, K. L. et al. Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb. Cortex 15, 708–719 (2005).

    Article  PubMed  Google Scholar 

  159. Lerch, J. P. et al. Cortical thickness measured from MRI in the YAC128 mouse model of Huntington's disease. Neuroimage 41, 243–251 (2008).

    Article  PubMed  Google Scholar 

  160. Kriegstein, A., Noctor, S. & Martinez-Cerdeno, V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Rev. Neurosci. 7, 883–890 (2006).

    Article  CAS  Google Scholar 

  161. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83 (1972).

    Article  CAS  PubMed  Google Scholar 

  162. Smart, I. H. & McSherry, G. M. Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes. J. Anat. 147, 27–43 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Stahl, R. et al. Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153, 535–549 (2013). This paper shows that gyri can be induced in the mouse cortex by focal knockdown of Trnp1 , a negative transcriptional regulator of basal progenitor genesis. Regional variations of TRNP1 expression were also found to correlate with prospective gyri and sulci in fetal human cortex.

    Article  CAS  PubMed  Google Scholar 

  164. Pinto, L. et al. Prospective isolation of functionally distinct radial glial subtypes—lineage and transcriptome analysis. Mol. Cell. Neurosci. 38, 15–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Rash, B. G., Tomasi, S., Lim, H. D., Suh, C. Y. & Vaccarino, F. M. Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J. Neurosci. 33, 10802–10814 (2013). This paper demonstrates that gyri with a well-formed, six-layered cortex could be induced in the mouse cortex by early exposure to increased expression of FGF2 in the ventricles. The formation of new gyri correlates with increased production of TBR2-expressing IPs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kreiner, J. Fissural cortex in the brain of the mouse. Acta. Anat. 86, 23–33 (1973).

    Article  CAS  PubMed  Google Scholar 

  167. Vaccarino, F. M. et al. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nature Neurosci. 2, 246–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. Nonaka-Kinoshita, M. et al. Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J. 32, 1817–1828 (2013). This paper shows that the pattern of gyri and sulci in ferrets could be altered, and made more complex, by local amplification of basal progenitor genesis. The increased production of basal progenitors was induced by overexpression of CDK4 and cyclin D1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kostovic, I. & Rakic, P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J. Comp. Neurol. 297, 441–470 (1990).

    Article  CAS  PubMed  Google Scholar 

  170. Rajagopalan, V. et al. Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J. Neurosci. 31, 2878–2887 (2011). This paper shows that zones of the human cerebral cortex undergo differential growth during gyrus formation, with greatest growth in the OSVZ, IZ and SP. The data were collected by MRI imaging of live foetuses of different ages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Goldman, P. S. & Galkin, T. W. Prenatal removal of frontal association cortex in the fetal rhesus monkey: anatomical and functional consequences in postnatal life. Brain Res. 152, 451–485 (1978).

    Article  CAS  PubMed  Google Scholar 

  172. Dehay, C., Horsburgh, G., Berland, M., Killackey, H. & Kennedy, H. Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input. Nature 337, 265–267 (1989).

    Article  CAS  PubMed  Google Scholar 

  173. Dehay, C., Giroud, P., Berland, M., Killackey, H. & Kennedy, H. Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J. Comp. Neurol. 367, 70–89 (1996).

    Article  CAS  PubMed  Google Scholar 

  174. Dehay, C., Savatier, P., Cortay, V. & Kennedy, H. Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J. Neurosci. 21, 201–214 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Vue, T. Y. et al. Thalamic control of neocortical area formation in mice. J. Neurosci. 33, 8442–8453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chou, S. J. et al. Geniculocortical input drives genetic distinctions between primary and higher-order visual areas. Science 340, 1239–1242 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Van Essen, D. C. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313–318 (1997).

    Article  CAS  PubMed  Google Scholar 

  178. Hilgetag, C. C. & Barbas, H. Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput. Biol. 2, e22 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mota, B. & Herculano-Houzel, S. How the cortex gets its folds: an inside-out, connectivity-driven model for the scaling of mammalian cortical folding. Front. Neuroanat. 6, 3 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Ronan, L. et al. Differential tangential expansion as a mechanism for cortical gyrification. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bht082 (2013).

  181. Gross, C. G. Huxley versus Owen: the hippocampus minor and evolution. Trends Neurosci. 16, 493–498 (1993).

    Article  CAS  PubMed  Google Scholar 

  182. Hevner, R. F. The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathol. 110, 208–221 (2005). This paper shows that aberrant occipitotemporal gyri in thanatophoric dysplasia, a disorder caused by activating mutations in FGFR3 , are produced by tangential expansion of the VZ early in cortical development, before gestational week 18. The excessive growth also causes megalencephaly.

    Article  PubMed  Google Scholar 

  183. Cohen, M. M. Jr & Kreiborg, S. The central nervous system in the Apert syndrome. Am. J. Med. Genet. 35, 36–45 (1990).

    Article  PubMed  Google Scholar 

  184. Yamaguchi, K. & Honma, K. Autopsy case of thanatophoric dysplasia: observations on the serial sections of the brain. Neuropathology 21, 222–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Thomson, R. E. et al. Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex. Neural Dev. 4, 4 (2009). This paper shows in mice that an activating mutation in Fgfr3 , which is identical to the mutation in humans with thanatophoric dysplasia, causes selective tangential expansion of the occipitotemporal cortex, thus mimicking the human condition. In mice, however, the overgrowth is not sufficient to induce the formation of new gyri and sulci.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Siegenthaler, J. A. & Pleasure, S. J. We have got you 'covered': how the meninges control brain development. Curr. Opin. Genet. Dev. 21, 249–255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bahi-Buisson, N. et al. GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain 133, 3194–3209 (2010).

    Article  PubMed  Google Scholar 

  188. Devisme, L. et al. Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 135, 469–482 (2012).

    Article  PubMed  Google Scholar 

  189. Radmanesh, F. et al. Mutations in LAMB1 cause cobblestone brain malformation without muscular or ocular abnormalities. Am. J. Hum. Genet. 92, 468–474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Myshrall, T. D. et al. Dystroglycan on radial glia end feet is required for pial basement membrane integrity and columnar organization of the developing cerebral cortex. J. Neuropathol. Exp. Neurol. 71, 1047–1063 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Zarbalis, K. et al. Cortical dysplasia and skull defects in mice with a Foxc1 allele reveal the role of meningeal differentiation in regulating cortical development. Proc. Natl. Acad. Sci. USA 104, 14002–14007 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Rash, B. G., Lim, H. D., Breunig, J. J. & Vaccarino, F. M. FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis. J. Neurosci. 31, 15604–15617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wrobel, C. N., Mutch, C. A., Swaminathan, S., Taketo, M. M. & Chenn, A. Persistent expression of stabilized β-catenin delays maturation of radial glial cells into intermediate progenitors. Dev. Biol. 309, 285–297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Munji, R. N., Choe, Y., Li, G., Siegenthaler, J. A. & Pleasure, S. J. Wnt signaling regulates neuronal differentiation of cortical intermediate progenitors. J. Neurosci. 31, 1676–1687 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lee, S. M., Tole, S., Grove, E. & McMahon, A. P. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127, 457–467 (2000).

    CAS  PubMed  Google Scholar 

  196. Siegenthaler, J. A. et al. Retinoic acid from the meninges regulates cortical neuron generation. Cell 139, 597–609 (2009). This paper shows that the meninges regulate cortical development by producing retinoic acid. This is one of several mechanisms by which the meninges regulate cortical growth and, ultimately, gyrification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Aronica, E., Becker, A. J. & Spreafico, R. Malformations of cortical development. Brain Pathol. 22, 380–401 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Judkins, A. R., Martinez, D., Ferreira, P., Dobyns, W. B. & Golden, J. A. Polymicrogyria includes fusion of the molecular layer and decreased neuronal populations but normal cortical laminar organization. J. Neuropathol. Exp. Neurol. 70, 438–443 (2011).

    Article  PubMed  Google Scholar 

  199. Shiba, N. Neuropathology of brain and spinal malformations in a case of monosomy 1p36. Acta Neuropathol. Commun. 1, 45 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Fischl, B. et al. Cortical folding patterns and predicting cytoarchitecture. Cereb. Cortex 18, 1973–1980 (2008).

    Article  PubMed  Google Scholar 

  201. Galaburda, A. M. & Geschwind, N. Anatomical asymmetries in the adult and developing brain and their implications for function. Adv. Pediatr. 28, 271–292 (1981).

    CAS  PubMed  Google Scholar 

  202. Sun, T. & Walsh, C. A. Molecular approaches to brain asymmetry and handedness. Nature Rev. Neurosci. 7, 655–662 (2006).

    Article  CAS  Google Scholar 

  203. Lickiss, T., Cheung, A. F., Hutchinson, C. E., Taylor, J. S. & Molnar, Z. Examining the relationship between early axon growth and transcription factor expression in the developing cerebral cortex. J. Anat. 220, 201–211 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Williams, C. A., Dagli, A. & Battaglia, A. Genetic disorders associated with macrocephaly. Am. J. Med. Genet. A 146A, 2023–2037 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Olney, A. H. Macrocephaly syndromes. Semin. Pediatr. Neurol. 14, 128–135 (2007).

    Article  PubMed  Google Scholar 

  206. Fombonne, E., Roge, B., Claverie, J., Courty, S. & Fremolle, J. Microcephaly and macrocephaly in autism. J. Autism Dev. Disord. 29, 113–119 (1999).

    Article  CAS  PubMed  Google Scholar 

  207. Lainhart, J. E. Increased rate of head growth during infancy in autism. JAMA 290, 393–394 (2003).

    Article  PubMed  Google Scholar 

  208. Witelson, S. F., Kigar, D. L. & Harvey, T. The exceptional brain of Albert Einstein. Lancet 353, 2149–2153 (1999). In this paper, the sulcal anatomy of Einstein's brain, which was evaluated from newly released autopsy photos, was compared with control brains. The comparisons show that Einstein's brain had an unusual macroscopic anatomy that might have contributed to his unique talents as well as autistic traits in childhood.

    Article  CAS  PubMed  Google Scholar 

  209. Galaburda, A. M. Albert Einstein's brain. Lancet 354, 1821; author reply 1822 (1999).

    Article  CAS  PubMed  Google Scholar 

  210. Falk, D., Lepore, F. E. & Noe, A. The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs. Brain 136, 1304–1327 (2013).

    Article  PubMed  Google Scholar 

  211. DeArmond, S. J., Fusco, M. M. & Dewey, M. M. Structure of the Human Brain: A Photographic Atlas 2nd edn (Oxford Univ. Press, 1976).

    Google Scholar 

Download references

Acknowledgements

The authors thank J. Knauss for critical reading of the manuscript. The authors thank W. Dobyns at Seattle Children's Hospital, Washington, USA, for sharing the unpublished images used in Box 1. This work was supported by the Hirschl/Weill-Caulier Trust (T.S.), R01-MH083680 (T.S.), R21-MH087070 (R.F.H.) and R01-NS085081 (R.F.H.) grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Sun or Robert F. Hevner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

SUN-domain-containing protein

A protein containing SUN (Sad1p and UNC-84) domains in the carboxy-terminal regions. These proteins are often involved in positioning of the nucleus in a cell.

Joubert syndrome

A genetic disorder that affects the cerebellum. The most common features include ataxia and abnormal eye and tongue movements. Abnormal functions of cilia are associated with this disorder.

Centriole

A cell structure that is composed mainly of tubulin. A centrosome is made up by a pair of centrioles. Centrioles are involved in the organization of the mitotic spindle in dividing cells.

Hydrocephalus

A medical condition in which there is an abnormal accumulation of cerebrospinal fluid in the ventricles or cavities of the brain.

Dicer

An RNAase III enzyme that cleaves double-stranded RNA and microRNA precursors into short (20–25 base pairs) double-stranded RNA fragments. It facilitates the formation of the RNA-induced silencing complex (RISC) and participates in the RNAi pathway and microRNA-mediated gene silencing.

Myeloarchitecture

The laminar and radial arrangement of myelinated fibres in cortical areas. Like cytoarchitecture (the organization of cells), myeloarchitecture reveals important structural features of cortical areas.

Monosomy 1p36

A chromosomal deletion syndrome, in which the distal tip of the short arm of chromosome 1 (containing dozens of genes) is deleted. The syndrome is associated with neurological problems, such as epilepsy, and cortical malformations, including polymicrogyria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, T., Hevner, R. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci 15, 217–232 (2014). https://doi.org/10.1038/nrn3707

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3707

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing