Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Animal models of neurological deficits: how relevant is the rat?

Abstract

Animal models of neurological deficits are essential for the assessment of new therapeutic options. It has been suggested that rats are not as appropriate as primates for the symptomatic modelling of disease, but a large body of data argues against this view. Comparative analyses of movements in rats and primates show homology of many motor patterns across species. Advances have been made in identifying rat equivalents of akinesia, tremor, postural deficits and dyskinesia, which are relevant to Parkinson's disease. Rat models of hemiplegia, neglect and tactile extinction are useful in assessing the outcome of ischaemic or traumatic brain injury, and in monitoring the effects of therapeutic interventions. Studies in rodents that emphasize careful behavioural analysis should continue to be developed as effective and inexpensive models that complement studies in primates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Iwaniuk, A. N. & Whishaw, I. Q. On the origin of skilled forelimb movements. Trends Neurosci. 23, 372–376 (2000).

    Article  CAS  Google Scholar 

  2. Metz, G. A., Farr, T., Ballermann, M. & Whishaw, I. Q. Chronic levodopa therapy does not improve skilled reach accuracy or reach range on a pasta matrix reaching task in 6-OHDA dopamine-depleted (hemi-Parkinson analogue) rats. Eur. J. Neurosci. 14, 27–37 (2001).

    Article  CAS  Google Scholar 

  3. Whishaw, I. Q. et al. Impairment of pronation, supination, and body co-ordination in reach-to-grasp tasks in human Parkinson's disease (PD) reveals homology to deficits in animal models. Behav. Brain Res. (in the press).

  4. Rouiller, E. M., Liang, F. Y., Moret, V. & Wiesendanger, M. Trajectory of redirected corticospinal axons after unilateral lesion of the sensorimotor cortex in neonatal rat; a Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study. Exp. Neurol. 114, 53–65 (1991).

    Article  CAS  Google Scholar 

  5. Valverde, F. The pyramidal tract in rodents. A study of its relationship with the posterior column nuclei, dorsolateral reticular formation of the medulla oblongata, and cervical spinal cord. Z. Zellforsch. Mikrosk. Anat. 71, 298–363 (1996).

    Google Scholar 

  6. Nudo, R. J. & Masterton, R. B. Descending pathways to the spinal cord, III. Sites of origin of the corticospinal tract. J. Comp. Neurol. 296, 559–583 (1990).

    Article  CAS  Google Scholar 

  7. Zilles, K. in The Cerebral Cortex of the Rat (eds Kolb, B. & Tees, R. C.) 77–112 (MIT Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  8. Nudo, R. J. & Masterton, R. B. Descending pathways to the spinal cord, IV. Some factors related to the amount of cortex devoted to the corticospinal tract. J. Comp. Neurol. 296, 584–597 (1990).

    Article  CAS  Google Scholar 

  9. Passingham, R. E., Myers, C., Rawlins, N., Lightfoot, V. & Fearn, S. Premotor cortex in the rat. Behav. Neurosci. 102, 101–109 (1988).

    Article  CAS  Google Scholar 

  10. Graybiel, A. M. Building action repertoires: memory and learning functions of the basal ganglia. Curr. Opin. Neurobiol. 5, 733–741 (1995).

    Article  CAS  Google Scholar 

  11. Redgrave, P., Prescott, T. J. & Gurney, K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999).

    Article  CAS  Google Scholar 

  12. Dirnagl, U., Iadecola, C. & Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397 (1999).

    Article  CAS  Google Scholar 

  13. Boyce, S., Rupniak, N. M. J., Steventon, M. J. & Iversen, S. D. Characterization of dyskinesias induced by l-DOPA in MPTP-treated squirrel monkeys. Psychopharmacology 102, 21–27 (1990).

    Article  CAS  Google Scholar 

  14. Gomez-Mancilla, B. & Bedard, P. J. Effect of nondopaminergic drugs on l-DOPA-induced dyskinesias in MPTP-treated monkeys. Clin. Neuropharmacol. 16, 418–427 (1993).

    Article  CAS  Google Scholar 

  15. Langston, J. W., Quik, M., Petzinger, G., Jakowec, M. & Di Monte, D. A. Investigating levodopa-induced dyskinesias in the parkinsonian primate. Ann. Neurol. 47, S79–S89 (2000).

    CAS  PubMed  Google Scholar 

  16. Löschmann, P. A. et al. Motor activity following the administration of selective D-1 and D-2 dopaminergic drugs to MPTP-treated common marmosets. Psychopharmacology 109, 49–56 (1992).

    Article  Google Scholar 

  17. Pearce, R. K., Banerji, T., Jenner, P. & Marsden, C. D. De novo administration of ropinirole and bromocriptine induces less dyskinesia than l-DOPA in the MPTP-treated marmoset. Mov. Disord. 13, 234–241 (1998).

    Article  CAS  Google Scholar 

  18. Schneider, J. S. Levodopa-induced dyskinesias in parkinsonian monkeys: relationship to extent of nigrostriatal damage. Pharmacol. Biochem. Behav. 34, 193–196 (1989).

    Article  CAS  Google Scholar 

  19. Salamone, J. D. et al. Tremulous jaw movements in rats: a model of parkinsonian tremor. Prog. Neurobiol. 56, 591–611 (1998).

    Article  CAS  Google Scholar 

  20. Staal, R. G., Hogan, K. A., Liang, C. L., German, D. C. & Sonsalla, P. K. In vitro studies of striatal vesicles containing the vesicular monoamine transporter (VMAT2): rat versus mouse differences in sequestration of 1-methyl-4-phenylpyridinium. J. Pharmacol. Exp. Ther. 293, 329–335 (2000).

    CAS  PubMed  Google Scholar 

  21. Sundstrom, E. & Samuelsson, E. B. Comparison of key steps in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in rodents. Pharmacol. Toxicol. 81, 226–231 (1997).

    Article  CAS  Google Scholar 

  22. Ungerstedt, U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5, 107–110 (1968).

    Article  CAS  Google Scholar 

  23. Schallert, T. & Wilcox, R. E. in Neuromethods (Series 1: Neurochemistry), General Neurochemical Techniques (eds Boulton, A. A. & Baker, G. B.) 343–387 (Humana, Clifton, New Jersey, 1985).

    Google Scholar 

  24. Kirik, D., Rosenblad, C. & Björklund, A. Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp. Neurol. 152, 259–277 (1998).

    Article  CAS  Google Scholar 

  25. Sauer, H. & Oertel, W. H. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59, 401–415 (1994).

    Article  CAS  Google Scholar 

  26. Wolfarth, S., Konieczny, J., Smialowska, M., Schulze, G. & Ossowska, K. Influence of 6-hydroxydopamine lesion of the dopaminergic nigrostriatal pathway on the muscle tone and electromyographic activity measured during passive movements. Neuroscience 74, 985–996 (1996).

    Article  CAS  Google Scholar 

  27. Rodter, A., Winkler, C., Samii, M. & Nikkhah, G. Complex sensorimotor behavioral changes after terminal striatal 6-OHDA lesion and transplantation of dopaminergic embryonic micrografts. Cell Transplant. 9, 197–214 (2000).

    Article  CAS  Google Scholar 

  28. Schallert, T., Whishaw, I. Q., Ramirez, V. D. & Teitelbaum, P. Compulsive abnormal walking caused by anticholinergics in akinetic, 6-hydroxydopamine-treated rats. Science 199, 1461–1463 (1978).

    Article  CAS  Google Scholar 

  29. Marshall, J. F., Richardson, J. S. & Teitelbaum, P. Nigrostriatal bundle damage and the lateral hypothalamic syndrome. J. Comp. Physiol. Psychol. 87, 808–830 (1974).

    Article  CAS  Google Scholar 

  30. Schallert, T., De Ryck, M., Whishaw, I. Q., Ramirez, V. D. & Teitelbaum, P. Excessive bracing reactions and their control by atropine and l–DOPA in an animal analog of parkinsonism. Exp. Neurol. 64, 33–43 (1979).

    Article  CAS  Google Scholar 

  31. Berardelli, A., Rothwell, J. C., Thompson, P. D. & Hallett, M. Pathophysiology of bradykinesia in Parkinson's disease. Brain 124, 2131–2146 (2001).

    Article  CAS  Google Scholar 

  32. Buonamici, M., Maj, R., Pagani, F., Rossi, A. C. & Khazan, N. Tremor at rest episodes in unilaterally 6-OHDA-induced substantia nigra lesioned rats: EEG–EMG and behavior. Neuropharmacology 25, 323–325 (1986).

    Article  CAS  Google Scholar 

  33. Lindner, M. D. et al. Incomplete nigrostriatal dopaminergic cell loss and partial reductions in striatal dopamine produce akinesia, rigidity, tremor and cognitive deficits in middle-aged rats. Behav. Brain Res. 102, 1–16 (1999).

    Article  CAS  Google Scholar 

  34. Schallert, T., Petrie, B. F. & Whishaw, I. Q. Neonatal dopamine depletion: spared and unspared sensorimotor and attentional disorders and effects of further depletion in adulthood. Psychobiology 17, 386–396 (1989).

    CAS  Google Scholar 

  35. Schwarting, R. K. W. & Huston, J. P. The unilateral 6-hydroxydopamine lesion model in behavioural brain research. Analysis of functional deficits, recovery and treatments. Prog. Neurobiol. 50, 275–331 (1996).

    Article  CAS  Google Scholar 

  36. Annett, L. E., Rogers, D. C., Hernandez, T. D. & Dunnett, S. B. Behavioural analysis of unilateral monoamine depletion in the marmoset. Brain 115, 825–856 (1992).

    Article  Google Scholar 

  37. Dunnett, S. B. & Robbins, T. W. The functional role of mesotelencephalic dopamine systems. Biol. Rev. Camb. Philos. Soc. 67, 491–518 (1992).

    Article  CAS  Google Scholar 

  38. Ungerstedt, U. 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway: the turning syndrome. Pharmacol Ther 2, 37–40 (1976). | PubMed |

    CAS  Google Scholar 

  39. Lundblad, M. et al. Pharmacological validation of behavioural measures of dyskinesia and akinesia in a rat model of Parkinson's disease. Eur. J. Neurosci. 15, 120–132 (2002).

    Article  CAS  Google Scholar 

  40. Metz, G. A. & Whishaw, I. Q. Drug-induced rotation in unilateral dopamine-depleted rats is not correlated with end-point or qualitative measures of forelimb or hindlimb motor performance. Neuroscience 111, 325–336 (2002).

    Article  CAS  Google Scholar 

  41. Schallert, T., Norton, D. & Jones, T. A. A clinically relevant unilateral model of Parkinsonian akinesia. J. Neural Transplant. Plast. 3, 332–333 (1992).

    Article  Google Scholar 

  42. Schallert, T. & Tillerson, J. L. in Central Nervous System Diseases: Innovative Models of CNS Diseases from Molecule to Therapy (eds Emerich, D. F., Dean III, R. L. & Sanberg, P. R.) 131–151 (Humana, Totowa, New Jersey, 2000).

    Book  Google Scholar 

  43. Barker, R. & Dunnett, S. B. Ibotenic acid lesions of the striatum reduce drug-induced rotation in the 6-hydroxydopamine-lesioned rat. Exp. Brain. Res. 101, 365–374 (1994).

    Article  CAS  Google Scholar 

  44. Isacson, O. Behavioral effects and gene delivery in a rat model of Parkinson's disease. Science 269, 856–857 (1995).

    Article  CAS  Google Scholar 

  45. Schallert, T., Upchurch, M., Wilcox, R. E. & Vaughn, D. M. Posture-independent sensorimotor analysis of interhemispheric receptor asymmetries in neostriatum. Pharmacol. Biochem. Behav. 18, 753–759 (1983).

    Article  CAS  Google Scholar 

  46. Miklyaeva, E. I., Martens, D. J. & Whishaw, I. Q. Impairments and compensatory adjustments in spontaneous movement after unilateral dopamine depletion in rats. Brain Res. 681, 23–40 (1995).

    Article  CAS  Google Scholar 

  47. Carli, M., Evenden, J. L. & Robbins, T. W. Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature 313, 679–682 (1985).

    Article  CAS  Google Scholar 

  48. Spirduso, W. W. et al. Reactive capacity: a sensitive behavioral marker of movement initiation and nigrostriatal dopamine function. Brain Res. 335, 45–54 (1985).

    Article  CAS  Google Scholar 

  49. Montoya, C. P., Campbell-Hope, L. J., Pemberton, K. D. & Dunnett, S. B. The 'staircase test': a measure of independent forelimb reaching and grasping abilities in rats. J. Neurosci. Methods 36, 219–228 (1991).

    Article  CAS  Google Scholar 

  50. Nutt, J. G. Levodopa-induced dyskinesia: review, observations and speculations. Neurology 40, 340–345 (1990).

    Article  CAS  Google Scholar 

  51. Clarke, C. E., Boyce, S., Robertson, R. G., Sambrook, M. A. & Crossman, A. R. Drug-induced dyskinesia in primates rendered hemiparkinsonian by intracarotid administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). J. Neurol. Sci. 90, 307–314 (1989).

    Article  CAS  Google Scholar 

  52. Brotchie, J. M. & Fox, S. H. Quantitative assessment of dyskinesias in subhuman primates. Mov. Disord. 14, 40–47 (1999).

    PubMed  Google Scholar 

  53. Hagell, P. & Widner, H. Clinical rating of dyskinesias in Parkinson's disease: use and reliability of a new rating scale. Mov. Disord. 14, 448–455 (1999).

    Article  CAS  Google Scholar 

  54. Cenci, M. A., Lee, C. S. & Björklund, A. l-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur. J. Neurosci. 10, 2694–2706 (1998).

    Article  CAS  Google Scholar 

  55. Lee, C. S., Cenci, M. A., Schulzer, M. & Bjorklund, A. Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson's disease. Brain 123, 1365–1379 (2000).

    Article  Google Scholar 

  56. Winkler, C., Kirik, D., Björklund, A. & Cenci, M. A. l-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine lesion model of Parkinson's disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol. Dis. (in the press).

  57. Brotchie, J. M., Henry, B., Hille, C. J. & Crossman, A. R. in Advances in Neurology. Dystonia 3 (eds Fahn, S., Marsden, C. D. & DeLong, M. R.) 41–52 (Lippincott–Raven, Philadelphia, Pennsylvania, 1998).

    Google Scholar 

  58. Andersson, M., Hilbertson, A. & Cenci, M. A. Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson's disease. Neurobiol. Dis. 6, 461–474 (1999).

    Article  CAS  Google Scholar 

  59. Doucet, J.-P. et al. Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of Δ-FosB-like proteins in both the rodent and primate striatum. Eur. J. Neurosci. 8, 365–381 (1996).

    Article  CAS  Google Scholar 

  60. Johansson, P. A., Andersson, M., Andersson, K. E. & Cenci, M. A. Alterations in cortical and basal ganglia levels of opioid receptor binding in a rat model of l-DOPA-induced dyskinesia. Neurobiol. Dis. 8, 220–239 (2001).

    Article  CAS  Google Scholar 

  61. Piccini, P., Weeks, R. A. & Brooks, D. J. Alterations in opioid receptor binding in Parkinson's disease patients with levodopa-induced dyskinesias. Ann. Neurol. 42, 720–726 (1997).

    Article  CAS  Google Scholar 

  62. Kanda, T. et al. Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann. Neurol. 43, 507–513 (1998).

    Article  CAS  Google Scholar 

  63. Bezard, E., Brotchie, J. M. & Gross, C. E. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nature Rev. Neurosci. 2, 577–588 (2001).

    Article  CAS  Google Scholar 

  64. Chase, T. N. Levodopa therapy: consequences of the nonphysiologic replacement of dopamine. Neurology 50, S17–S25 (1998).

    Article  CAS  Google Scholar 

  65. Andersson, M., Konradi, C. & Cenci, M. A. CREB is required for dopamine-dependent gene expression in the intact but not the dopamine-denervated striatum. J. Neurosci. 21, 9930–9943 (2001).

    Article  CAS  Google Scholar 

  66. Creese, I. & Iversen, S. D. Blockage of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine. Brain Res. 55, 369–382 (1973).

    Article  CAS  Google Scholar 

  67. McLean, P. D. Effects of lesions of globus pallidus on species-typical display behavior of squirrel monkeys. Brain Res. 149, 175–196 (1978).

    Article  Google Scholar 

  68. Alonso de Lecinana, M., Diez-Tejedor, E., Carceller, F. & Roda, J. M. Cerebral ischemia: from animal studies to clinical practice. Should the methods be reviewed? Cerebrovasc. Dis. 11, 20–30 (2001).

    Article  Google Scholar 

  69. Fuxe, K. et al. Endothelin-1 induced lesions of the frontoparietal cortex of the rat. A possible model of focal cortical ischemia. Neuroreport 8, 2623–2629 (1997).

    Article  CAS  Google Scholar 

  70. Ginsberg, M. D. & Busto, R. in Cerebrovascular Diseases. Pathophysiology, Diagnosis, and Management (eds Ginsberg, M. D. & Bogousslavsky, J.) 14–35 (1998).

    Google Scholar 

  71. Kline, A. E. & Dixon, C. E. in Head Trauma: Basic, Preclinical and Clinical Directions (eds Miller, L. P., Hayes, R. L. & Newcomb, J. K.) 65–84 (John Wiley & Sons, New York, 2001).

    Google Scholar 

  72. Koehler, R. C. in Cerebrovascular Diseases. Pathophysiology, Diagnosis, and Management (eds Ginsberg, M. D. & Bogousslavsky, J.) 36–51 (Blackwell Science, Boston, Massachusetts, 1998).

    Google Scholar 

  73. Corbett, D. & Nurse, S. The problem of assessing effective neuroprotection in experimental cerebral ischemia. Prog. Neurobiol. 54, 531–548 (1998).

    Article  CAS  Google Scholar 

  74. DeVries, A. C., Nelson, R. J., Traystman, R. J. & Hurn, P. D. Cognitive and behavioral assessment in experimental stroke research: will it prove useful? Neurosci. Biobehav. Rev. 25, 325–342 (2001).

    Article  CAS  Google Scholar 

  75. Schallert, T., Leasure, J. L. & Kolb, B. Experience-associated structural events, subependymal cellular proliferative activity, and functional recovery after injury to the central nervous system. J. Cereb. Blood Flow Metab. 20, 1513–1528 (2000).

    Article  CAS  Google Scholar 

  76. Kolb, B. & Whishaw, I. Q. Earlier is not always better: behavioral dysfunction and abnormal cerebral morphogenesis following neonatal cortical lesions in the rat. Behav. Brain Res. 17, 25–43 (1985).

    Article  CAS  Google Scholar 

  77. Schallert, T., Fleming, S. M., Leasure, J. L., Tillerson, J. L. & Bland, S. T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39, 777–787 (2000).

    Article  CAS  Google Scholar 

  78. Lees, K. R. & Diener, H.-C. in Cerebral Blood Flow and Metabolism (eds Edvinsson, L. & Krause, D. N.) 452–456 (Lippincott, Williams & Wilkins, Philadelphia, Pennsylvania, 2002).

    Google Scholar 

  79. Li, Z. et al. A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J. Neurosci. Methods (in the press).

  80. Schallert, T., Fleming, S. & Bland, S. T. in Pharmacology of Cerebral Ischemia (eds Krieglstein, J. & Klumpp, S.) 329–344 (Medpharm Scientific, Stuttgart, 2000).

    Google Scholar 

Download references

Acknowledgements

We wish to thank M. Woodlee and P. Whishaw for their help, and P. Hagell, M.-L. Smith and P. Mohapel for critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Angela Cenci.

Supplementary information

41583_2002_BFnrn877_MOESM1_ESM.mov

Movie 1 | Skilled limb movements in an intact ratA control rat reaches for a food pellet using normal movements. A detailed analysis of its skilled limb movements reveals very similar motor components in humans and in rats. (MOV 772 kb)

41583_2002_BFnrn877_MOESM2_ESM.mov

Movie 2 | Tremor at restOccasional resting tremor has been observed in the wrist and the paw of rats that have been lesioned with 6-hydroxydopamine (6-OHDA). Tremor occurs when the forelimb is not being used for movement or postural support in the home cage. (MOV 196 kb)

41583_2002_BFnrn877_MOESM3_ESM.mov

Movie 3 | Akinesia in a rat model of Parkinson’s disease Severe unilateral loss of nigrostriatal dopamine terminals in a rat 1.6 years after the infusion of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle in the right hemisphere. The rat shows deficits in movement initiation (spontaneous stepping) with its left, but not its right, forelimb. In this test, the experimenter does not impose weight shifting; rather, the rat is allowed to initiate stepping on its own. Note that normal rats use primarily their forelimbs, rather than their hindlimbs, to initiate walking. (MOV 400 kb)

41583_2002_BFnrn877_MOESM4_ESM.mov

Movie 4 | The cylinder testThe cylinder test: Limb-use asymmetry caused by unilateral loss of nigrostriatal dopamine after infusion of 6-hydroxydopamine (6-OHDA) into the nigrostriatal projections of the left hemisphere. The rat shows a preference for the left forelimb when initiating weight-shifting movements during vertical/lateral exploration. Use of the right forelimb is impaired; it is not used independently for weight shifts, support or stepping movements on the walls of the cylinder. The level of dopamine-terminal loss is correlated with percentage preferential use of the non-impaired forelimb. (MOV 776 kb)

41583_2002_BFnrn877_MOESM5_ESM.mov

Movie 5 | Skilled limb movements in a 6-OHDA-lesioned ratRats with unilateral 6-hydroxydopamine (6-OHDA) lesions show abnormalities in both quantitative and qualitative aspects of reach-to-grasp movements on the side contralateral to dopamine depletion. When approaching a target, the impaired limb makes fragmented rather than concurrent movements, and shows incomplete pronation on the substrate. The deficits are partially compensated for using whole-body movements. (MOV 861 kb)

41583_2002_BFnrn877_MOESM6_ESM.mov

Movie 6 | Minimal dyskinesiaWhen treated with 3,4-dihydroxyphenylalanine (l-DOPA), rats with unilateral 6-hydroxydopamine (6-OHDA) lesions can show abnormal involuntary movements (AIMs), which mainly affect the forelimb contralateral to the lesion, the trunk and the orofacial musculature. These abnormal involuntary movements can be quantified on the basis of their topographical distribution, amplitude and duration; that is, using the same criteria that are used in the clinic. This sequence of movies shows rats with l-DOPA-induced AIMs of increasing amplitude and severity. (MOV 921 kb)

Movie 7 | Noticeable dyskinesia (MOV 951 kb)

Movie 8 | Moderate dyskinesia (MOV 966 kb)

Movie 9| Severe dyskinesia (MOV 1363 kb)

Related links

Related links

DATABASES

Medscape DrugInfo

amantadine

bromocriptine

clozapine

l-DOPA

OMIM

Parkinson's disease

FURTHER INFORMATION

Encyclopedia of Life Sciences

Parkinson disease

stroke

traumatic central nervous system injury

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cenci, M., Whishaw, I. & Schallert, T. Animal models of neurological deficits: how relevant is the rat?. Nat Rev Neurosci 3, 574–579 (2002). https://doi.org/10.1038/nrn877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn877

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing