Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sexual dimorphism in the aging kidney: differences in the nitric oxide system

Abstract

Females—both rats and women—are substantially protected against the age-dependent decrease in renal function that occurs in males of the species. In part, this finding reflects the cardioprotective and renoprotective effects of estrogens, but estrogen has multiple actions, not all of which are beneficial. In addition, the low androgen level in women might be protective against a decline in renal function, but animal and clinical data on possible adverse effects of androgens are controversial. Androgens also have multiple actions, one of which—aromatization to estrogen—is likely to be protective. Sex steroids clearly have many complex actions, which explains the conflicting information on their relative benefits and dangers. Endothelial nitric oxide (NO) deficiency contributes importantly to cardiovascular risk and intrarenal NO deficiency is clearly linked to chronic kidney disease progression in animal models. Endothelial dysfunction develops with increasing age but is delayed in females, correlating with a delayed rise in asymmetric dimethylarginine level. There is no clear link between aging and arginine (the NO synthase substrate) deficiency. Animal data suggest that the aging kidney develops NO deficiency as a result of changes in neuronal NO synthase. The increased oxidative stress that occurs with aging affects multiple stages of the NO biosynthetic pathway and results in decreased production and/or action of NO. NO production is better preserved in females than in males, partly as a result of the actions of estrogens.

Key Points

  • The rate of loss of kidney function with aging should be slow—about 1% per year after age 40 in men; a more-rapid rate of loss probably reflects undiagnosed comorbidities

  • Women with a history of pre-eclampsia should be monitored as they age as they have a small but increased risk of developing kidney disease and end-stage renal disease

  • The sex hormones have complex and sometimes competing actions on cardiovascular and renal function and extrapolating from animal to clinical data is dangerous

  • Native estrogen is preferred to conjugated equine estrogens and transdermal or transvaginal administration is preferable to oral administration; de novo hormone replacement therapy should be administered cautiously after the onset of menopause

  • Prospective clinical studies are needed to specifically investigate the influence of androgen supplementation on cardiovascular and renal function in both aging men and women

  • Nitric oxide deficiency develops during aging, probably for multiple reasons, and contributes to both cardiovascular and renal dysfunction

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The association between age and relative GFR (measured by inulin clearance) in a | healthy men and b | healthy women (aged 21–67 years) who were evaluated as potential kidney transplant donors.
Figure 2: The association between age and relative ERPF (measured by para-aminohippurate clearance) in a | healthy men and b | healthy women (aged 21–67 years) who were evaluated as potential kidney transplant donors.
Figure 3: Graphs showing a | GFR (from inulin clearances), b | percentage glomerulosclerosis and c | glomerular BP in 18–20-month-old intact males, intact females, castrated males and ovariectomized females of the Munich–Wistar rat strain.
Figure 4: Graphs showing a | 24 h urinary nitric oxide excretion (UNOxV) and b | glomerular injury, in young (aged 3–5 months) and old (18–22 months) male and female Sprague–Dawley rats.
Figure 5: Simplified scheme showing the biosynthetic pathway for in vivo NO production and possible mechanisms of NO deficiency.
Figure 6: Regression analysis of ADMA levels and age in a | female and b | male healthy, non-smoking, non-obese individuals aged 19–75 years.
Figure 7: The relative abundance of nNOS α protein in homogenates of renal cortex from young, middle-aged and old male and female Sprague–Dawley rats.

Similar content being viewed by others

References

  1. Wesson, L. G. Jr. Renal hemodynamics in physiological states. In Physiology of the Human Kidney 96–108 (Grune and Stratton, New York, 1969).

    Google Scholar 

  2. Baylis, C. & Corman, B. The aging kidney: insights from experimental studies. J. Am. Soc. Nephrol. 9, 699–709 (1998).

    CAS  PubMed  Google Scholar 

  3. Lindeman, R. D., Tobin, J. & Shock, N. W. Longitudinal studies on the rate of decline in renal function with age. J. Am. Geriatr. Soc. 33, 278–285 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Bleyer, A. J., Shemanski, L. R., Burke, G. L., Hansen, K. J. & Appel, R. G. Tobacco, hypertension and vascular disease: risk factors for renal functional decline in an older population. Kidney Int. 57, 2072–2079 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Hemmelgarn, B. R. et al. Progression of kidney dysfunction in the community-dwelling elderly. Kidney Int. 69, 2155–2161 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Kasiske, B. L. Relationship between vascular disease and age-associated changes in the human kidney. Kidney Int. 31, 1153–1159 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Yamagata, K. et al. Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study. Kidney Int. 71, 159–166 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Xue, J. L., Eggers, P. W., Agodoa, L. Y., Foley, R. N. & Collins, A. J. Longitudinal study of racial and ethnic differences in developing end-stage renal disease among aged medicare beneficiaries. J. Am. Soc. Nephrol. 18, 1299–1306 (2007).

    Article  PubMed  Google Scholar 

  9. Van Dijk, S. J., Specht, P. A., Lazar, J., Jacob, H. J. & Provoost, A. P. Renal damage susceptibility and autoregulation in RF-1 and RF-5 congenic rats. Nephron Exp. Nephrol. 101, e59–e66 (2005).

    Article  PubMed  Google Scholar 

  10. Luyckx, V. A. & Brenner, B. M. Low birth weight, nephron number, and kidney disease. Kidney Int. Suppl 97, S68–S77 (2005).

    Article  Google Scholar 

  11. Levi, M. & Rowe, J. W. Renal function and dysfunction in aging. In The Kidney: Physiology and Pathophysiology, Ch. 101 (Eds Seldin, D. W. & Giebisch, G.) 3433–3456 (Raven Press, New York, 1992).

    Google Scholar 

  12. McLachlan, M. S., Guthrie, J. C., Anderson, C. K. & Fulker, M. J. Vascular and glomerular changes in the ageing kidney. J. Pathol. 121, 65–78 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. Neugarten, J., Gallo, G., Silbiger, S. & Kasiske, B. Glomerulosclerosis in aging humans is not influenced by gender. Am. J. Kidney Dis. 34, 884–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Baylis, C. Age-dependent glomerular damage in the rat: dissociation between glomerular injury and both glomerular hypertension and hypertrophy. Male gender as a primary risk factor. J. Clin. Invest. 94, 1823–1829 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fliser, D. et al. Renal function in the elderly: impact of hypertension and cardiac function. Kidney Int. 51, 1196–1204 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Anderson, S., Rennke, H. G. & Zatz, R. Glomerular adaptations with normal aging and with long-term converting enzyme inhibition in rats. Am. J. Physiol. 267, F35–F43 (1994).

    CAS  PubMed  Google Scholar 

  17. Remuzzi, A., Puntorieri, S., Mazzoleni, A. & Remuzzi, G. Sex related differences in glomerular ultrafiltration and proteinuria in Munich–Wistar rats. Kidney Int. 34, 481–486 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Fujihara, C. K., Limongi, D. M., DeOliveira, H. C. & Zatz, R. Absence of focal glomerulosclerosis in aging analbuminemic rats. Am. J. Physiol. 262, R947–R954 (1992).

    CAS  PubMed  Google Scholar 

  19. Berg, U. B. Differences in decline in GFR with age between males and females. Reference data on clearances of inulin and PAH in potential kidney donors. Nephrol. Dial. Transplant. 21, 2577–2582 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Kielstein, J. T. et al. Asymmetric dimethylarginine, blood pressure, and renal perfusion in elderly subjects. Circulation 107, 1891–1895 (2003).

    Article  PubMed  Google Scholar 

  21. Erdely, A., Greenfeld, Z., Wagner, L. & Baylis, C. Sexual dimorphism in the aging kidney: effects on injury and nitric oxide system. Kidney Int. 63, 1021–1026 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hodgin, J. B. & Maeda, N. Minireview: estrogen and mouse models of atherosclerosis. Endocrinology 143, 4495–4501 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Neugarten, J., Acharya, A. & Silbiger, S. R. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J. Am. Soc. Nephrol. 11, 319–329 (2000).

    CAS  PubMed  Google Scholar 

  24. Zheng, F. et al. Resistance to glomerulosclerosis in B6 mice disappears after menopause. Am. J. Pathol. 162, 1339–1348 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Elliot, S. J. et al. Estrogen deficiency accelerates progression of glomerulosclerosis in susceptible mice. Am. J. Pathol. 162, 1441–1448 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dubey, R. K. & Jackson, E. K. Estrogen-induced cardiorenal protection: potential cellular, biochemical and molecular mechanisms. Am. J. Physiol. Renal Physiol. 280, F365–F388 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Guccione, M., Silbiger, S., Lei, J. & Neugarten, J. Estradiol upregulates mesangial cell MMP-2 activity via the transcription factor AP-2. Am. J. Physiol. Renal Physiol. 282, F164–F169 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Dubey, R. K., Imthurn, B., Barton, M. & Jackson, E. K. Vascular consequences of menopause and hormone therapy: importance of timing of treatment and type of estrogen. Cardiovasc. Res. 66, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Hulley, S. et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 280, 605–613 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    Article  CAS  Google Scholar 

  31. Rogers, J. L. et al. Effect of sex hormones on renal estrogen and angiotensin type 1 receptors in female and male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R794–R799 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Pinna, C., Cignarella, A., Sanvito, P., Pelosi, V. & Bolego, C. Prolonged ovarian hormone deprivation impairs the protective vascular actions of estrogen receptor-α agonists. Hypertension 51, 1210–1217 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Sowers, M. R. et al. Levels of sex steroid and cardiovascular disease measures in premenopausal and hormone-treated women at midlife: implications for the “timing hypothesis”. Arch. Intern. Med. 168, 2146–2153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fenkci, S., Fenkci, V., Yilmazer, M., Serteser, M. & Koken, T. Effects of short-term transdermal hormone replacement therapy on glycaemic control, lipid metabolism, C-reactive protein and proteinuria in postmenopausal women with type 2 diabetes or hypertension. Hum. Reprod. 18, 866–870 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Szekacs, B. et al. Postmenopausal hormone replacement improves proteinuria and impaired creatinine clearance in type 2 diabetes mellitus and hypertension. BJOG 107, 1017–1021 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Machado, R. B., Careta, M. F., Balducci, G. P., Araújo, T. S. & Bernardes, C. R. Effects of estrogen therapy on microalbuminuria in healthy post-menopausal women. Gynecol. Endocrinol. 24, 681–685 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Manning, P. J., Sutherland, W. H., Allum, A. R., de Jong, S. A. & Jones, S. D. HRT does not improve urinary albumin excretion in postmenopausal diabetic women. Diabetes Res. Clin. Pract. 60, 33–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Monster, T. B., Janssen, W. M., de Jong, P. E. & de Jong-van den Berg, L. T. Prevention of Renal and Vascular End Stage Disease Study Group. Oral contraceptive use and hormone replacement therapy are associated with microalbuminuria. Arch. Intern. Med. 161, 2000–2005 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Agarwal, M., Selvan, V., Freedman, B. I., Liu, Y. & Wagenknecht, L. E. The relationship between albuminuria and hormone therapy in postmenopausal women. Am. J. Kidney Dis. 45, 1019–1025 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Ahmed, S. B. et al. Oral estrogen therapy in postmenopausal women is associated with loss of kidney function. Kidney Int. 74, 370–376 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Meyer, M. R., Haas, E. & Barton, M. Gender differences of cardiovascular disease: new perspectives for estrogen receptor signaling. Hypertension 47, 1019–1026 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Yanes, L. L., Sartori-Valinotti, J. C. & Reckelhoff, J. F. Sex steroids and renal disease: lessons from animal studies. Hypertension 51, 976–981 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Jelinsky, S. A. et al. Global transcription profiling of estrogen activity: estrogen receptor regulates gene expression in the kidney. Endocrinology 144, 701–710 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Lu, H., Lei, X. & Klaassen, C. Gender differences in renal nuclear receptors and aryl hydrocarbon receptor in 5/6 nephrectomized rats. Kidney Int. 70, 1920–1928 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Fadel, P. J., Zhao, W. & Thomas, G. D. Impaired vasomodulation is associated with reduced neuronal nitric oxide synthase in skeletal muscle of ovariectomized rats. J. Physiol. 549, 243–253 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wynne, F. L., Payne, J. A., Cain, A. E., Reckelhoff, J. F. & Khalil, R. A. Age-related reduction in estrogen receptor–mediated mechanisms of vascular relaxation in female spontaneously hypertensive rats. Hypertension 43, 405–412 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Sharma, P. K. & Thakur, M. K. Estrogen receptor α-expression in mice kidney shows sex differences during aging. Biogerontology 5, 375–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Sun, J., Langer, W. J., Devish, K. & Lane, P. H. Compensatory kidney growth in estrogen receptor-α null mice. Am. J. Physiol. Renal Physiol. 290, F319–F323 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Lovegrove, A. S. et al. Estrogen receptor α-mediated events promote sex-specific diabetic glomerular hypertrophy. Am. J. Physiol. Renal Physiol. 287, F586–F591 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Wells, C. C. et al. Diabetic nephropathy is associated with decreased circulating estradiol levels and imbalance in the expression of renal estrogen receptors. Gend. Med. 2, 227–237 (2005).

    Article  PubMed  Google Scholar 

  51. Potier, M. et al. Estrogen-related abnormalities in glomerulosclerosis-prone mice: reduced mesangial cell estrogen receptor expression and prosclerotic response to estrogens. Am. J. Pathol. 160, 1877–1885 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Esqueda, M. E., Craig, T. & Hinojosa-Laborde, C. Effect of ovariectomy on renal estrogen receptor-α and renal estrogen receptor-β in young salt-sensitive and resistant rats. Hypertension 50, 768–772 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Elliot, S. J. et al. Gender-specific effects of endogenous testosterone: female α-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis. Kidney Int. 72, 464–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Zhu, Y. et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor-β. Science 295, 505–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Gabel, S. A. et al. Estrogen receptor-β mediates gender differences in ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 38, 289–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Karl, M. et al. Autocrine activation of the local insulin-like growth factor I system is up-regulated by estrogen receptor (ER)-independent estrogen actions and accounts for decreased ER expression in type 2 diabetic mesangial cells. Endocrinology 146, 889–900 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Stier, C. T. Jr, Chander, P. N., Rosenfeld, L. & Powers, C. A. Estrogen promotes microvascular pathology in female stroke-prone spontaneously hypertensive rats. Am. J. Physiol. Endocrinol. Metab. 285, E232–E239 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Oestreicher, E. M. et al. Estradiol increases proteinuria and angiotensin II type 1 receptor in kidneys of rats receiving L-NAME and angiotensin II. Kidney Int. 70, 1759–1768 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Joles, J. A., van Goor, H. & Koomans, H. A. Estrogen induces glomerulosclerosis in analbuminemic rats. Kidney Int. 53, 862–868 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Gades, M. D. et al. Estrogen accelerates the development of renal disease in female obese Zucker rats. Kidney Int. 53, 130–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Baylis, C. Glomerular filtration rate in normal and abnormal pregnancies. Semin. Nephrol. 19, 133–139 (1999).

    CAS  PubMed  Google Scholar 

  62. Vikse, B. E., Irgens, L. M., Leivestad, T., Skjaerven, R. & Iversen, B. M. Pre-eclampsia and the risk of end-stage renal disease. N. Engl. J. Med. 359, 800–809 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Wu, F. C. & von Eckardstein, A. Androgens and coronary artery disease. Endocr. Rev. 24, 183–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Lombet, J. R. et al. Sex vulnerability in the subtotal nephrectomy model of glomerulosclerosis in the rat. J. Lab. Clin. Med. 114, 66–74 (1989).

    CAS  PubMed  Google Scholar 

  65. Reckelhoff, J. F. & Baylis, C. Glomerular metalloprotease activity in the aging rat kidney: inverse correlation with injury. J. Am. Soc. Nephrol. 3, 1835–1838 (1993).

    CAS  PubMed  Google Scholar 

  66. Reckelhoff, J. F., Yanes, L. L., Iliescu, R., Fortepiani, L. A. & Granger, J. P. Testosterone supplementation in aging men and women: possible impact on cardiovascular-renal disease. Am. J. Physiol. Renal Physiol. 289, F941–F948 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Rahman, F. & Christian, H. C. Non-classical actions of testosterone: an update. Trends Endocrinol. Metab. 18, 371–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Shaw, L. J. et al. Postmenopausal women with a history of irregular menses and elevated androgen measurements at high risk for worsening cardiovascular event-free survival: results from the National Institutes of Health--National Heart, Lung, and Blood Institute sponsored Women's Ischemia Syndrome Evaluation. J. Clin. Endocrinol. Metab. 93, 1276–1284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brinkworth, G. D., Noakes, M., Moran, L. J., Norman, R. & Clifton, P. M. Flow-mediated dilatation in overweight and obese women with polycystic ovary syndrome. BJOG 113, 1308–1314 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Patel, A. A., Bloomgarden, Z. T. & Futterweit, W. Premicroalbuminuria in women with polycystic ovary syndrome: a metabolic risk marker. Endocr. Pract. 14, 193–200 (2008).

    Article  PubMed  Google Scholar 

  71. Braunstein, G. D. Safety of testosterone treatment in postmenopausal women. Fertil. Steril. 88, 1–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Miller, K. K. et al. Effects of testosterone therapy on cardiovascular risk markers in androgen-deficient women with hypopituitarism. J. Clin. Endocrinol. Metab. 92, 2474–2479 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Gooren, L. J. & Giltay, E. J. Review of studies of androgen treatment of female-to-male transsexuals: effects and risks of administration of androgens to females. J. Sex. Med. 93, 19–25 (2008).

    CAS  Google Scholar 

  74. McCredie, R. J. et al. Vascular reactivity is impaired in genetic females taking high-dose androgens. J. Am. Coll. Cardiol. 32, 1331–1335 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Rizzo, M., Rini, G. B. & Carmina, E. Androgen excess and cardiovascular risk. Minerva Endocrinol. 32, 67–71 (2007).

    CAS  PubMed  Google Scholar 

  76. Laughlin, G. A., Barrett-Connor, E. & May, S. Sex-specific association of the androgen to oestrogen ratio with adipocytokine levels in older adults: the Rancho Bernardo Study. Clin. Endocrinol. 65, 506–513 (2006).

    Article  CAS  Google Scholar 

  77. Liu, P. Y., Death, A. K. & Handelsman, D. J. Androgens and cardiovascular disease. Endocr. Rev. 24, 313–340 (2003).

  78. Baltatu, O. et al. Abolition of hypertension-induced end-organ damage by androgen receptor blockade in transgenic rats harboring the mouse ren-2 gene. J. Am. Soc. Nephrol. 13, 2681–2687 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Cho, J. J., Cadet, P., Salamon, E., Mantione, K. J. & Stefano, G. B. The nongenomic protective effects of estrogen on the male cardiovascular system: clinical and therapeutic implications in aging men. Med. Sci. Monit. 9, RA63–RA68 (2003).

    CAS  PubMed  Google Scholar 

  80. Nathan, L. et al. Testosterone inhibits early atherogenesis by conversion to estradiol: critical role of aromatase. Proc. Natl Acad. Sci. USA 98, 3589–3593 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Mukherjee, T. K., Dinh, H., Chaudhuri, G. & Nathan, L. Testosterone attenuates expression of vascular cell adhesion molecule-1 by conversion to estradiol in endothelial cells: implications in atherosclerosis. Proc. Natl Acad. Sci. USA 99, 4055–4060 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Blush, J. et al. Estradiol reverses renal injury in Alb/TGF-β1 transgenic mice. Kidney Int. 66, 2148–2154 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Malkin, C. J., Jones, R. D., Jones, T. H. & Channer, K. S. Effect of testosterone on ex vivo vascular reactivity in man. Clin. Sci. (Lond.) 111, 265–274 (2006).

    Article  CAS  Google Scholar 

  84. Baylis, C. Sexual dimorphism of the aging kidney: role of nitric oxide deficiency. Physiology (Bethesda) 23, 142–150 (2008).

    CAS  Google Scholar 

  85. Reckelhoff, J. F. et al. Changes in nitric oxide precursor, L-arginine and metabolites, nitrate and nitrite, with aging. Life Sci. 55, 1895–1902 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Sonaka, I., Futami, Y. & Maki, T. L-Arginine-nitric oxide pathway and chronic nephropathy in aged rats. J. Gerontol. 49, B157–B161 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Schmidt, R. J., Beierwaltes, W. H. & Baylis, C. Effects of aging and alterations in dietary sodium intake on total nitric oxide production. Am. J. Kidney Dis. 37, 900–908 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lyons, D., Roy, S., Patel, M., Benjamin, N. & Swift, C. G. Impaired nitric oxide-mediated vasodilatation and total body nitric oxide production in healthy old age. Clin. Sci. 93, 519–525 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Celermajer, D. S. et al. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J. Am. Coll. Cardiol. 24, 471–476 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Forte, P. et al. Evidence for a difference in nitric oxide biosynthesis between healthy women and men. Hypertension 32, 730–734 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Neugarten, J., Ding, Q., Friedman, A., Le, J. & Silbiger, S. Sex hormones and renal nitric oxide synthases. J. Am. Soc. Nephrol. 8, 1240–1246 (1997).

    CAS  PubMed  Google Scholar 

  92. Reckelhoff, J. F., Hennington, B. S., Moore, A. G., Blanchard, E. J. & Cameron, J. Gender differences in the renal nitric oxide (NO) system: dissociation between expression of endothelial NO synthase and renal hemodynamic response to NO synthase inhibition. Am. J. Hypertens. 11, 97–104 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Holden, D. P., Cartwright, J. E., Nussey, S. S. & Whitley, G. S. Estrogen stimulates dimethylarginine dimethylaminohydrolase activity and the metabolism of asymmetric dimethylarginine. Circulation 108, 1575–1580 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Orshal, J. M. & Khalil, R. A. Gender, sex hormones, and vascular tone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R233–R249 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Harris, H. A. Estrogen receptor-β: recent lessons from in vivo studies. Mol. Endocrinol. 21, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Sabolić, I. et al. Gender differences in kidney function. Pflugers Arch. 455, 397–429 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Herman, S. M. et al. Androgen deprivation is associated with enhanced endothelium-dependent dilatation in adult men. Arterioscler. Thromb. Vasc. Biol. 17, 2004–2009 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. McCredie, R. J. et al. Vascular reactivity is impaired in genetic females taking high-dose androgens. J. Am. Coll. Cardiol. 32, 1331–1335 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Verhagen, A. M., Attia, D. M., Koomans, H. A. & Joles, J. A. Male gender increases sensitivity to proteinuria induced by mild NOS inhibition in rats: role of sex hormones. Am. J. Physiol. Renal Physiol. 279, F664–F670 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Vasudevan, H., Nagareddy, P. R. & McNeill, J. H. Gonadectomy prevents endothelial dysfunction in fructose-fed male rats, a factor contributing to the development of hypertension. Am. J. Physiol. Heart Circ. Physiol. 291, H3058–H3064 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Attia, D. M. et al. Male gender increases sensitivity to renal injury in response to cholesterol loading. Am. J. Physiol. Renal Physiol. 284, F718–F726 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Bode-Boger, S. M. et al. Oral L-arginine improves endothelial function in healthy individuals older than 70 years. Vasc. Med. 8, 77–81 (2003).

    Article  PubMed  Google Scholar 

  103. Cernadas, M. R. et al. Expression of constitutive and inducible NOS in the vascular wall of young and aging rats. Circ. Res. 83, 279–286 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Wu, G. & Morris, S. M. Jr. Arginine metabolism: nitric oxide and beyond. Biochem. J. 33, 1–17 (1998).

    Article  Google Scholar 

  105. Mistry, S., Greenfeld, Z., Morris, S. & Baylis, C. The “intestinal-renal” arginine biosynthetic axis in the aging rat. Mech. Ageing Dev. 123, 1159–1165 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gates, P. E., Boucher, M. L., Silver, A. E., Monahan, K. D. & Seals, D. R. Impaired flow-mediated dilation with age is not explained by L-arginine bioavailability or endothelial asymmetric dimethylarginine protein expression. J. Appl. Physiol. 102, 63–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. White, A. R. et al. Knockdown of arginase I restores NO signaling in the vasculature of old rats. Hypertension 47, 245–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Delp, M. D., Behnke, B. J., Spier, S. A., Wu, G. & Muller-Delp, J. M. Ageing diminishes endothelium-dependent vasodilatation and tetrahydrobiopterin content in rat skeletal muscle arterioles. J. Physiol. 586, 2041–2042 (2008).

    Article  CAS  Google Scholar 

  109. Bode-Boger, S. M., Scalera, F. & Ignarro, L. J. The L-arginine paradox: importance of the L-arginine/asymmetrical dimethylarginine ratio. Pharmacol. Ther. 114, 295–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Xiong, Y., Yuan, L. W., Deng, H. W., Li, Y. J. & Chen, B. M. Elevated serum endogenous inhibitor of nitric oxide synthase and endothelial dysfunction in aged rats. Clin. Exp. Pharmacol. Physiol. 28, 842–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Schulze, F. et al. Determination of a reference value for N(G), N(G)-dimethyl-L-arginine in 500 subjects. Eur. J. Clin. Invest. 35, 622–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Nijveldt, R. J. et al. Handling of asymmetrical dimethylarginine and symmetrical dimethylarginine by the rat kidney under basal conditions and during endotoxaemia. Nephrol. Dial. Transplant. 18, 2542–2550 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Nijveldt, R. J. et al. Net renal extraction of asymmetrical (ADMA) and symmetrical (SDMA) dimethylarginine in fasting humans. Nephrol. Dial. Transplant. 17, 1999–2002 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Verhoeven, M. O., Hemelaar, M., Teerlink, T., Kenemans, P. & van der Mooren, M. J. Effects of intranasal versus oral hormone therapy on asymmetric dimethylarginine in healthy postmenopausal women: a randomized study. Atherosclerosis 195, 181–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Çevik, D., Unay, O., Durmusoglu, F., Yurdun, T. & Bilsel, A. S. Plasma markers of NO synthase activity in women after ovarian hyperstimulation: influence of estradiol on ADMA. Vasc. Med. 11, 7–12 (2006).

    Article  PubMed  Google Scholar 

  116. Böger, R. H. et al. LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases. Circ. Res. 87, 99–105 (2000).

    Article  PubMed  Google Scholar 

  117. Marliss, E. B. et al. Elevations of plasma methylarginines in obesity and ageing are related to insulin sensitivity and rates of protein turnover. Diabetologia 49, 351–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Moens, A. L. & Kass, D. A. Tetrahydrobiopterin and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 26, 2439–2444 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Higashi, Y. et al. Tetrahydrobiopterin improves aging-related impairment of endothelium-dependent vasodilation through increase in nitric oxide production. Atherosclerosis 186, 390–395 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Druhan, L. J. et al. Regulation of eNOS-derived superoxide by endogenous methylarginines. Biochemistry 47, 7256–7263 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Moningka, N., Sasser, J., Croker, B., Carter, C. & Baylis, C. Effects of aging on renal cortical (RC) enzymes that control nitric oxide (NO) bioavailability in the Fischer 344XBrown Norway (F344/BN) rat [abstract]. J. Am. Soc. Nephrol. 19, 388A (2008).

    Article  CAS  Google Scholar 

  122. Hayashi, T., Yamada, K., Esaki, T., Mutoh, E. & Iguchi, A. Effect of estrogen on isoforms of nitric oxide synthase: possible mechanism of anti-atherosclerotic effect of estrogen. Gerontology 43 (Suppl. 1), 24–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Ceccatelli, S., Grandison, L., Scott, R. E., Pfaff, D. W. & Kow, L. M. Estradiol regulation of nitric oxide synthase mRNAs in rat hypothalamus. Neuroendocrinology 64, 357–363 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Vlassara, H. & Palace, M. R. Glycoxidation: the menace of diabetes and aging. Mt Sinai J. Med. 70, 232–241 (2003).

    PubMed  Google Scholar 

  125. Wautier, J. L. & Schmidt, A. M. Protein glycation: a firm link to endothelial cell dysfunction. Circ. Res. 95, 233–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Baylis, C. Mini-Review: Changes in renal hemodynamics and structure in the aging kidney; sexual dimorphism and the nitric oxide system. Experimental Gerontol. 40, 271–278 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baylis, C. Sexual dimorphism in the aging kidney: differences in the nitric oxide system. Nat Rev Nephrol 5, 384–396 (2009). https://doi.org/10.1038/nrneph.2009.90

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.90

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing