Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Contrast-induced acute kidney injury and diabetic nephropathy

Abstract

Contrast-induced acute kidney injury (CIAKI) is a leading cause of iatrogenic renal failure. Multiple studies have shown that patients with diabetic nephropathy are at high risk of CIAKI. This Review presents an overview of the pathogenesis of CIAKI in patients with diabetic nephropathy and discusses the currently available and potential future strategies for CIAKI prevention.

Key Points

  • Contrast-induced acute kidney injury (CIAKI) is caused by the intra-arterial and intravenous administration of contrast media and is associated with a high risk of mortality

  • Diabetes, even in the absence of renal impairment, might increase the risk of CIAKI, and CIAKI might favor progression of diabetic nephropathy

  • CIAKI prophylaxis should be considered in all patients with diabetes who require intra-arterial or intravenous administration of contrast medium

  • Intravenous hydration is the cornerstone of CIAKI prophylaxis, whereas the administration of sodium bicarbonate is of unclear benefit and might be harmful in patients with diabetes owing to its pro-oxidant properties

  • N-acetylcysteine administration might have protective effects and has low toxicity and should be considered for CIAKI prevention in patients with diabetes

  • Adenosine A1 receptor antagonists seem to be promising agents for CIAKI prophylaxis, but additional studies in humans are needed

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pathways potentially underlying the pathogenesis of CIAKI in patients with diabetes.
Figure 2: Both contrast media and diabetes affect dilation of the renal vasculature.

Similar content being viewed by others

References

  1. Weisbord, S. D. et al. Prevention, incidence, and outcomes of contrast-induced acute kidney injury. Arch. Intern. Med. 168, 1325–1332 (2008).

    Article  PubMed  Google Scholar 

  2. Barrett, B. J. & Carlisle, E. J. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology 188, 171–178 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Pflueger, A. et al. Role of adenosine in contrast media-induced acute renal failure in diabetes mellitus. Mayo Clin. Proc. 75, 1275–1283 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Rudnick, M. R., Berns, J. S., Cohen, R. M. & Goldfarb, S. Contrast media-associated nephrotoxicity. Curr. Opin. Nephrol. Hypertens. 5, 127–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Rudnick, M. & Feldman, H. Contrast-induced nephropathy: what are the true clinical consequences? Clin. J. Am. Soc. Nephrol. 3, 263–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Harjai, K. J. et al. A comparison of contemporary definitions of contrast nephropathy in patients undergoing percutaneous coronary intervention and a proposal for a novel nephropathy grading system. Am. J. Cardiol. 101, 812–819 (2008).

    Article  PubMed  Google Scholar 

  7. Gruberg, L. et al. The prognostic implications of further renal function deterioration within 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency. J. Am. Coll. Cardiol. 36, 1542–1548 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Gruberg, L. et al. Acute renal failure requiring dialysis after percutaneous coronary interventions. Catheter Cardiovasc. Interv. 52, 409–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Kowalczyk, J. et al. Risk stratification according to the type of impaired renal function in patients with acute myocardial infarction treated with percutaneous coronary intervention. Kardiol. Pol. 65, 635–643 (2007).

    PubMed  Google Scholar 

  10. Rihal, C. S. et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation 105, 2259–2264 (2002).

    Article  PubMed  Google Scholar 

  11. Iakovou, I. et al. Impact of gender on the incidence and outcome of contrast-induced nephropathy after percutaneous coronary intervention. J. Invasive Cardiol. 15, 18–22 (2003).

    PubMed  Google Scholar 

  12. From, A. M., Bartholmai, B. J., Williams, A. W., Cha, S. S. & McDonald, F. S. Mortality associated with nephropathy after radiographic contrast exposure. Mayo Clin. Proc. 83, 1095–1100 (2008).

    Article  PubMed  Google Scholar 

  13. Kane, G. C. et al. Comparison between gadolinium and iodine contrast for percutaneous intervention in atherosclerotic renal artery stenosis: clinical outcomes. Nephrol. Dial. Transplant. 23, 1233–1240 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Idée, J. M. et al. Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review. Toxicology 248, 77–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Broome, D. R. Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur. J. Radiol. 66, 230–234 (2008).

    Article  PubMed  Google Scholar 

  16. Reed, P. S., Dixon, S. R., Boura, J. A., O'Neill, W. W. & Kahn, J. K. Comparison of the usefulness of gadodiamide and iodine mixture versus iodinated contrast alone for prevention of contrast-induced nephropathy in patients with chronic kidney disease undergoing coronary angiography. Am. J. Cardiol. 100, 1090–1093 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. From, A. M. et al. Sodium bicarbonate is associated with an increased incidence of contrast nephropathy: a retrospective cohort study of 7977 patients at mayo clinic. Clin. J. Am. Soc. Nephrol. 3, 10–18 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Al-Ghonaim, M. & Pannu, N. Prevention and treatment of contrast-induced nephropathy. Tech. Vasc. Interv. Radiol. 9, 42–49 (2006).

    Article  PubMed  Google Scholar 

  19. Rudnick, M. R. et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol Cooperative Study. Kidney Int. 47, 254–261 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Persson, P. B., Hansell, P. & Liss, P. Pathophysiology of contrast medium-induced nephropathy. Kidney Int. 68, 14–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Liss, P., Persson, P. B., Hansell, P. & Lagerqvist, B. Renal failure in 57 925 patients undergoing coronary procedures using iso-osmolar or low-osmolar contrast media. Kidney Int. 70, 1811–1817 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Ueda, J. et al. Iodine concentrations in the rat kidney measured by X-ray microanalysis. Comparison of concentrations and viscosities in the proximal tubules and renal pelvis after intravenous injections of contrast media. Acta Radiol. 39, 90–95 (1998).

    CAS  PubMed  Google Scholar 

  23. Solomon, R. The role of osmolality in the incidence of contrast-induced nephropathy: a systematic review of angiographic contrast media in high risk patients. Kidney Int. 68, 2256–2263 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Voeltz, M. D., Nelson, M. A., McDaniel, M. C. & Manoukian, S. V. The important properties of contrast media: focus on viscosity. J. Invasive Cardiol. 19, 1A–9A (2007).

    PubMed  Google Scholar 

  25. Aspelin, P. et al. Nephrotoxic effects in high-risk patients undergoing angiography. N. Engl. J. Med. 348, 491–499 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Chalmers, N. & Jackson, R. W. Comparison of iodixanol and iohexol in renal impairment. Br. J. Radiol. 72, 701–703 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Solomon, R. J. et al. Cardiac Angiography in Renally Impaired Patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation 115, 3189–3196 (2007).

    Article  PubMed  Google Scholar 

  28. Rudnick, M. R., Davidson, C., Laskey, W., Stafford, J. L. & Sherwin, P. F. Nephrotoxicity of iodixanol versus ioversol in patients with chronic kidney disease: the Visipaque Angiography/Interventions with Laboratory Outcomes in Renal Insufficiency (VALOR) Trial. Am. Heart J. 156, 776–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Chawarnkul, O., Vareesangthip, K., Ongajyooth, L., Cheunsuchon, B. & Parichatikanond, P. Non-diabetic glomerular disease in type II DM: 10 years experience. J. Med. Assoc. Thai. 92 (Suppl. 2), S57–S60 (2009).

    PubMed  Google Scholar 

  30. Pham, T. T., Sim, J. J., Kujubu, D. A., Liu, I. L. & Kumar, V. A. Prevalence of nondiabetic renal disease in diabetic patients. Am. J. Nephrol. 27, 322–328 (2007).

    Article  PubMed  Google Scholar 

  31. Harkonen, S. & Kjellstrand, C. M. Exacerbation of diabetic renal failure following intravenous pyelography. Am. J. Med. 63, 939–946 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Harnish, P. P., Fountaine, H. & Ebrahimi, R. Iodixanol. Experience in 1,259 patients in the United States. Invest. Radiol. 29 (Suppl. 2), S236–S237 (1994).

    Article  PubMed  Google Scholar 

  33. Manske, C. L., Sprafka, J. M., Strony, J. T. & Wang, Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am. J. Med. 89, 615–620 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Morcos, S. K. Contrast media-induced nephrotoxicity--questions and answers. Br. J. Radiol. 71, 357–365 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Hostetter, T. H., Troy, J. L. & Brenner, B. M. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 19, 410–415 (1981).

    Article  CAS  PubMed  Google Scholar 

  36. Chudleigh, R. A. et al. Use of cystatin C-based estimations of glomerular filtration rate in patients with type 2 diabetes. Diabetologia 52, 1274–1278 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Bellomo, R., Ronco, C., Kellum, J. A., Mehta, R. L. & Palevsky, P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 8, R204–R212 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mehta, R. L. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care 11, R31 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ricci, Z., Cruz, D. & Ronco, C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int. 73, 538–546 (2007).

    Article  PubMed  Google Scholar 

  40. Uchino, S., Bellomo, R., Goldsmith, D., Bates, S. & Ronco, C. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit. Care Med. 34, 1913–1917 (2006).

    Article  PubMed  Google Scholar 

  41. Ahlström, A. et al. Comparison of 2 acute renal failure severity scores to general scoring systems in the critically ill. Am. J. Kidney Dis. 48, 262–268 (2006).

    Article  PubMed  Google Scholar 

  42. Hoste, E. A. et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit. Care 10, R73 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Abosaif, N. Y., Tolba, Y. A., Heap, M., Russell, J. & Nahas, A. M. The outcome of acute renal failure in the intensive care unit according to RIFLE: model application, sensitivity, and predictability. Am. J. Kidney Dis. 46, 1038–1048 (2005).

    Article  PubMed  Google Scholar 

  44. Kuitunen, A., Vento, A., Suojaranta-Ylinen, R. & Pettilä, V. Acute renal failure after cardiac surgery: evaluation of the RIFLE classification. Ann. Thorac. Surg. 81, 542–546 (2006).

    Article  PubMed  Google Scholar 

  45. Bell, M. et al. Optimal follow-up time after continuous renal replacement therapy in actual renal failure patients stratified with the RIFLE criteria. Nephrol. Dial. Transplant. 20, 354–360 (2005).

    Article  PubMed  Google Scholar 

  46. Heyman, S. N. et al. Radiocontrast agents induce endothelin release in vivo and in vitro. J. Am. Soc. Nephrol. 3, 58–65 (1992).

    CAS  PubMed  Google Scholar 

  47. Arend, L. J., Bakris, G. L., Burnett, J. C. Jr, Megerian, C. & Spielman, W. S. Role for intrarenal adenosine in the renal hemodynamic response to contrast media. J. Lab. Clin. Med. 110, 406–411 (1987).

    CAS  PubMed  Google Scholar 

  48. Deray, G. et al. A role for adenosine and calcium and ischemia in radiocontrast-induced intrarenal vasoconstriction. Am. J. Nephrol. 10, 316–322 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Agmon, Y., Peleg, H., Greenfeld, Z., Rosen, S. & Brezis, M. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. J. Clin. Invest. 94, 1069–1075 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yuan, Z. & Li, S. Role of increased cytosolic calcium in rabbit proximal tubule cell injury induced by diatrizoate and protection by chlorpromazine. Abstract 279 presented at the 12th International Congress of Nephrology.

  51. Pflueger, A. C., Schenk, F. & Osswald, H. Increased sensitivity of the renal vasculature to adenosine in streptozotocin-induced diabetes mellitus rats. Am. J. Physiol. 269, F529–F535 (1995).

    CAS  PubMed  Google Scholar 

  52. Barrett, B. J. et al. Contrast nephropathy in patients with impaired renal function: high versus low osmolar media. Kidney Int. 41, 1274–1279 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. McCoy, D. E. et al. The renal adenosine system: structure, function, and regulation. Semin. Nephrol. 13, 31–40 (1993).

    CAS  PubMed  Google Scholar 

  54. Osswald, H. in Regulatory Function of Adenosine, Adenosine and Renal Function (eds Berne, R. M., Rall, T. W. & Rubio, R.) 399–415 (Martinus Nijhof Publishers, The Hague, 1983).

    Book  Google Scholar 

  55. Erley, C. M. et al. Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application. Kidney Int. 45, 1425–1431 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Katholi, R. E. et al. Nephrotoxicity from contrast media: attenuation with theophylline. Radiology 195, 17–22 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, H. T. et al. A1 adenosine receptor knockout mice are protected against acute radiocontrast nephropathy in vivo. Am. J. Physiol. Renal Physiol. 290, F1367–F1375 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Richardson, D. E., Regino, C. A., Yao, H. & Johnson, J. V. Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide. Free Radic. Biol. Med. 35, 1538–1550 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Heyman, S. N. et al. Effects of ioversol versus iothalamate on endothelin release and radiocontrast nephropathy. Invest. Radiol. 28, 313–318 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Erley, C. M. et al. Prevention of radiocontrast-media-induced nephropathy in patients with pre-existing renal insufficiency by hydration in combination with the adenosine antagonist theophylline. Nephrol. Dial. Transplant. 14, 1146–1149 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Kolonko, A., Wiecek, A. & Kokot, F. The nonselective adenosine antagonist theophylline does prevent renal dysfunction induced by radiographic contrast agents. J. Nephrol. 11, 151–156 (1998).

    CAS  PubMed  Google Scholar 

  62. Brady, H. R., Brenner, B. M. & Lieberthal, W. in Brenner & Rector's The Kidney 5th edn Vol. 2 (ed. Brenner, B. M.) 1200–1252 (WB Saunders Co., Philadelphia, 1996).

    Google Scholar 

  63. Cronin, R. E. & Henrich, W. L. in Brenner & Rector's The Kidney 5th edn Vol. 2 (ed. Brenner, B. M.) 1680–1711 (WB Saunders Co., Philadelphia, 1996).

    Google Scholar 

  64. Moreau, J. F., Helenon, O., Kinkel, K. & Melki, P. in Oxford Textbook of Clinical Nephrology 2nd edn Vol. 1 (eds Davison, A. M. et al.) 93–132 (Oxford Medical Publications, 1998).

    Google Scholar 

  65. Toprak, O. et al. Impact of diabetic and pre-diabetic state on development of contrast-induced nephropathy in patients with chronic kidney disease. Nephrol. Dial. Transplant. 22, 819–826 (2007).

    Article  PubMed  Google Scholar 

  66. Toprak, O. Risk markers for contrast-induced nephropathy. Am. J. Med. Sci. 334, 283–290 (2007).

    Article  PubMed  Google Scholar 

  67. McCullough, P. A. et al. Risk prediction of contrast-induced nephropathy. Am. J. Cardiol. 98, 27K–36K (2006).

    Article  PubMed  Google Scholar 

  68. Heyman, S. N., Rosen, S. & Brezis, M. Radiocontrast nephropathy: a paradigm for the synergism between toxic and hypoxic insults in the kidney. Exp. Nephrol. 2, 153–157 (1994).

    CAS  PubMed  Google Scholar 

  69. Weisberg, L. S., Kurnik, P. B. & Kurnik, B. R. Risk of radiocontrast nephropathy in patients with and without diabetes mellitus. Kidney Int. 45, 259–265 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Shafi, T., Chou, S. Y., Porush, J. G. & Shapiro, W. B. Infusion intravenous pyelography and renal function. Effects in patients with chronic renal insufficiency. Arch. Intern. Med. 138, 1218–1221 (1978).

    Article  CAS  PubMed  Google Scholar 

  71. Lautin, E. M. et al. Radiocontrast-associated renal dysfunction: incidence and risk factors. AJR Am. J. Roentgenol. 157, 49–58 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Parfrey, P. S. et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N. Engl. J. Med. 320, 143–149 (1989).

    Article  CAS  PubMed  Google Scholar 

  73. Parving, H. H. et al. in Brenner & Rector's The Kidney 5th edn Vol. 2 (ed. Brenner, B. M.) 1864–1892 (WB Saunders Co., Philadelphia, 1996).

    Google Scholar 

  74. Thomas, M. C., Weekes, A. J., Broadley, O. J., Cooper, M. E. & Mathew, T. H. The burden of chronic kidney disease in Australian patients with type 2 diabetes (the NEFRON study). Med. J. Aust. 185, 140–144 (2006).

    PubMed  Google Scholar 

  75. Rosolowsky, E. T. et al. Between hyperfiltration and impairment: demystifying early renal functional changes in diabetic nephropathy. Diabetes Res. Clin. Pract. 82 (Suppl. 1), S46–S53 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Pflueger, A. C., Osswald, H. & Knox, F. G. Adenosine-induced renal vasoconstriction in diabetes mellitus rats: role of nitric oxide. Am. J. Physiol. 276, F340–F346 (1999).

    CAS  PubMed  Google Scholar 

  77. Ishimura, E. et al. Intrarenal hemodynamic abnormalities in diabetic nephropathy measured by duplex Doppler sonography. Kidney Int. 51, 1920–1927 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Frauchiger, B., Nussbaumer, P., Hugentobler, M. & Staub, D. Duplex sonographic registration of age and diabetes-related loss of renal vasodilatory response to nitroglycerine. Nephrol. Dial. Transplant. 15, 827–832 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Epstein, F. H., Veves, A. & Prasad, P. V. Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care 25, 575–578 (2002).

    Article  PubMed  Google Scholar 

  80. Kanwar, Y. S. et al. Diabetic nephropathy: mechanisms of renal disease progression. Exp. Biol. Med. (Maywood) 233, 4–11 (2008).

    Article  CAS  Google Scholar 

  81. Dai, F. X., Diederich, A., Skopec, J. & Diederich, D. Diabetes-induced endothelial dysfunction in streptozotocin-treated rats: role of prostaglandin endoperoxides and free radicals. J. Am. Soc. Nephrol. 4, 1327–1336 (1993).

    CAS  PubMed  Google Scholar 

  82. Diederich, D. in Nitric Oxide and the Kidney: Physiology and Pathophysiology (eds Goligorsky, M. S. & Gross, S. S.) 349–367 (Chapman & Hall, New York, 1997).

    Book  Google Scholar 

  83. Pflueger, A. C., Larson, T. S., Hagl, S. & Knox, F. G. Role of nitric oxide in intrarenal hemodynamics in experimental diabetes mellitus in rats. Am. J. Physiol. 277, R725–R733 (1999).

    CAS  PubMed  Google Scholar 

  84. Weisbord, S. D. & Palevsky, P. M. Prevention of contrast-induced nephropathy with volume expansion. Clin. J. Am. Soc. Nephrol. 3, 273–280 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Trivedi, H. S. et al. A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin. Pract. 93, C29–C34 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Mueller, C. et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch. Intern. Med. 162, 329–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Bader, B. D. et al. What is the best hydration regimen to prevent contrast media-induced nephrotoxicity? Clin. Nephrol. 62, 1–7 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Krasuski, R. A., Beard, B. M., Geoghagan. J. D., Thompson, C. M. & Guidera, S. A. Optimal timing of hydration to erase contrast-associated nephropathy: the OTHER CAN study. J. Invasive Cardiol. 15, 699–702 (2003).

    PubMed  Google Scholar 

  89. Landoni, G. et al. Beneficial impact of fenoldopam in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials. Am. J. Kidney Dis. 49, 56–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Cacoub, P., Deray, G., Baumelou, A. & Jacobs, C. No evidence for protective effects of nifedipine against radiocontrast-induced acute renal failure. Clin. Nephrol. 29, 215–216 (1988).

    CAS  PubMed  Google Scholar 

  91. Khoury, Z. et al. The effect of prophylactic nifedipine on renal function in patients administered contrast media. Pharmacotherapy 15, 59–65 (1995).

    CAS  PubMed  Google Scholar 

  92. Madsen, J. K. et al. Effect of nitrendipine on renal function and on hormonal parameters after intravascular iopromide. Acta Radiol. 39, 375–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Stone, G. W. et al. Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 290, 2284–2291 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Merten, G. J. et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA 291, 2328–2334 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Brar, S. S. et al. Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial. JAMA 300, 1038–1046 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Maioli, M. et al. Sodium bicarbonate versus saline for the prevention of contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. J. Am. Coll. Cardiol. 52, 599–604 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Romano, G. et al. Contrast agents and renal cell apoptosis. Eur. Heart J. 20, 2569–2576 (2008).

    Article  CAS  Google Scholar 

  98. Vasheghani-Farahani, A. et al. Sodium bicarbonate in preventing contrast nephropathy in patients at risk for volume overload: a randomized controlled trial. J. Nephrol. 23, 216–223 (2010).

    CAS  PubMed  Google Scholar 

  99. Zoungas, S. et al. Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann. Intern. Med. 151, 631–638 (2009).

    Article  PubMed  Google Scholar 

  100. Kunadian, V., Zaman, A., Spyridopoulos, I. & Qiu, W. Sodium bicarbonate for the prevention of contrast induced nephropathy: a meta-analysis of published clinical trials. Eur. J. Radiol. doi: 10.1016/j.ejrad.2009.12.015.

  101. Tepel, M. et al. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N. Engl. J. Med. 343, 180–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Fishbane, S. N-acetylcysteine in the prevention of contrast-induced nephropathy. Clin. J. Am. Soc. Nephrol. 3, 281–287 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Sterling, K. A., Tehrani, T. & Rudnick, M. R. Clinical significance and preventive strategies for contrast-induced nephropathy. Curr. Opin. Nephrol. Hypertens. 17, 616–623 (2008).

    Article  PubMed  Google Scholar 

  104. El-Osta, A. et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 205, 2409–2417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Moldéus, P. & Cotgreave, I. A. N-acetylcysteine. Methods Enzymol. 234, 482–492 (1994).

    Article  PubMed  Google Scholar 

  106. Olsson, B., Johansson, M., Gabrielsson, J. & Bolme, P. Pharmacokinetics and bioavailability of reduced and oxidized N-acetylcysteine. Eur. J. Clin. Pharmacol. 34, 77–82 (1988).

    Article  CAS  PubMed  Google Scholar 

  107. Borgström, L., Kågedal, B. & Paulsen, O. Pharmacokinetics of N-acetylcysteine in man. Eur. J. Clin. Pharmacol. 31, 217–222 (1986).

    Article  PubMed  Google Scholar 

  108. Frei, B. Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am. J. Med. 26, 5S–13S (1994).

    Article  Google Scholar 

  109. Marenzi, G. et al. N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N. Engl. J. Med. 354, 2773–2782 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Kanter, M. Z. Comparison of oral and i.v. acetylcysteine in the treatment of acetaminophen poisoning. Am. J. Health Syst. Pharm. 63, 1821–1827 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Schlienger, R. G., Wyser, C., Ritz, R. & Haefeli, W. E. [Clinico-pharmacological case (4). Epileptic seizure as an unwanted drug effect on theophylline poisoning]. Praxis 85, 1407–1412 (1996).

    CAS  PubMed  Google Scholar 

  112. Bagshaw, S. M. & Ghali, W. A. Theophylline for prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Arch. Intern. Med. 165, 1087–1093 (2005).

    Article  PubMed  Google Scholar 

  113. Givertz, M. M., Massie, B. M., Fields, T. K., Pearson, L. L. & Dittrich, H. C. The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J. Am. Coll. Cardiol. 50, 1551–1560 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Pflueger, A. C., Berndt, T. J. & Knox, F. G. Effect of renal interstitial adenosine infusion on phosphate excretion in diabetes mellitus rats. Am. J. Physiol. 274, R1228–R1235 (1998).

    CAS  PubMed  Google Scholar 

  115. Xu, B., Berkich, D. A., Crist, G. H. & LaNoue, K. F. A1 adenosine receptor antagonism improves glucose tolerance in Zucker rats. Am. J. Nephrol. 274, E271–E279 (1998).

    CAS  Google Scholar 

  116. Gare, M. et al. The renal effect of low-dose dopamine in high-risk patients undergoing coronary angiography. J. Am. Coll. Cardiol. 34, 1682–1688 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Kuan, C. J., Herzer, W. A. & Jackson, E. K. Cardiovascular and renal effects of blocking A1 adenosine receptors. J. Cardiovasc. Pharmacol. 21, 822–828 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. Maczewski, M. & Beresewicz, A. The role of adenosine and ATP-sensitive potassium channels in the protection afforded by ischemic preconditioning against the post-ischemic endothelial dysfunction in guinea-pig hearts. J. Mol. Cell Cardiol. 30, 1735–1747 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Neely, C. F., DiPierro, F. V., Kong, M., Greelish, J. P. & Gardner, T. J. A1 adenosine receptor antagonists block ischemia-reperfusion injury of the heart. Circulation 94 (Suppl.), II376–II380 (1996).

    CAS  PubMed  Google Scholar 

  120. Balakrishnan, V. S., Coles, G. A. & Williams, J. D. Effects of intravenous adenosine on renal function in healthy human subjects. Am. J. Physiol. 271, F374–F381 (1996).

    CAS  PubMed  Google Scholar 

  121. Pfister, J. R. et al. Synthesis and biological evaluation of the enantiomers of the potent and selective A1-adenosine antagonist 1,3-dipropyl-8-[2-(5,6-epoxynorbonyl)]-xanthine. J. Med. Chem. 40, 1773–1778 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Chang, L. C. et al. 2,4,6-Trisubstituted pyrimidines as a new class of selective adenosine A1 receptor antagonists. J. Med. Chem. 47, 6529–6540 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Weyler, S. et al. Improving potency, selectivity, and water solubility of adenosine A1 receptor antagonists: xanthines modified at position 3 and related pyrimido[1,2,3-cd]purinediones. ChemMedChem 1, 891–902 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Agarwal, R. Effects of statins on renal function. Mayo Clin. Proc. 82, 1381–1390 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Sharyo, S. et al. Pravastatin improves renal ischemia-reperfusion injury by inhibiting the mevalonate pathway. Kidney Int. 74, 577–584 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Khanal, S. et al. Statin therapy reduces contrast-induced nephropathy: an analysis of contemporary percutaneous interventions. Am. J. Med. 118, 843–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Patti, G. et al. Usefulness of statin pretreatment to prevent contrast-induced nephropathy and to improve long-term outcome in patients undergoing percutaneous coronary intervention. Am. J. Cardiol. 101, 279–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Jo, S. H. et al. Prevention of radiocontrast medium-induced nephropathy using short-term high-dose simvastatin in patients with renal insufficiency undergoing coronary angiography (PROMISS) trial--a randomized controlled study. Am. Heart J. 155, 499 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Toso, A. et al. Usefulness of atorvastatin (80 mg) in prevention of contrast-induced nephropathy in patients with chronic renal disease. Am. J. Cardiol. 105, 288–292 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Schindler, R. et al. Removal of contrast media by different extracorporeal treatments. Nephrol. Dial. Transplant. 16, 1471–1474 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Donnelly, P. K. et al. Hemodialysis and iopamidol clearance after subclavian venography. Invest. Radiol. 28, 629–632 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. Furukawa, T., Ueda, J., Takahashi, S. & Sakaguchi, K. Elimination of low-osmolality contrast media by hemodialysis. Acta Radiol. 37, 996–971 (1996).

    Article  Google Scholar 

  133. Moon, S. S., Bäck, S. E., Kurkus, J. & Nilsson-Ehle, P. Hemodialysis for elimination of the nonionic contrast medium iohexol after angiography in patients with impaired renal function. Nephron 70, 430–437 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Lee, P. T. et al. Renal protection for coronary angiography in advanced renal failure patients by prophylactic hemodialysis. A randomized controlled trial. J. Am. Coll. Cardiol. 50, 1015–1020 (2007).

    Article  PubMed  Google Scholar 

  135. Lehnert, T. et al. Effect of haemodialysis after contrast medium administration in patients with renal insufficiency. Nephrol. Dial. Transplant. 13, 358–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Sterner, G., Frennby, B., Kurkus, J. & Nyman, U. Does post-angiographic hemodialysis reduce the risk of contrast-medium nephropathy? Scand. J. Urol. Nephrol. 34, 323–326 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Reinecke, H. et al. A randomized controlled trial comparing hydration therapy to additional hemodialysis or N-acetylcysteine for the prevention of contrast medium-induced nephropathy: the Dialysis-versus-Diuresis (DVD) Trial. Clin. Res. Cardiol. 96, 130–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Huber, W. et al. Haemodialysis for the prevention of contrast-induced nephropathy: outcome of 31 patients with severely impaired renal function, comparison with patients at similar risk and review. Invest. Radiol. 37, 471–481 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Frank, H. et al. Simultaneous hemodialysis during coronary angiography fails to prevent radiocontrast-induced nephropathy in chronic renal failure. Clin. Nephrol. 60, 176–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Vogt, B. et al. Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful. Am. J. Med. 111, 692–698 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Marenzi, G. et al. The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. N. Engl. J. Med. 349, 1333–1340 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Jacobs, F. Hemofiltration and the prevention of radiocontrast-agent-induced nephropathy. N. Engl. J. Med. 19, 836–838 (2004).

    Google Scholar 

  143. Derhaschnig, U. et al. Evaluation of antiinflammatory and antiadhesive effects of heparins in human endotoxemia. Crit. Care Med. 31, 1108–1112 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Sela, S. et al. Oxidative stress during hemodialysis: effect of heparin. Kidney Int. Suppl. 78, S159–S163 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. D. Calvin's research is supported by the Mayo Clinic Clinician–Investigator Training Program. The authors gratefully acknowledge D. Mackenburg and E. Pflueger, who contributed to this Review with editorial support, including help with references and figures. Both D. Mackenburg and E. Pflueger are affiliated with the Mayo Clinic College of Medicine, Rochester, MN, USA.

Author information

Authors and Affiliations

Authors

Contributions

A. D. Calvin and A. Pflueger researched data for the article, made substantial contributions to the discussion of content, wrote the article and reviewed/edited the manuscript before submission. S. Misra made substantial contribution to the discussion of content and wrote the article.

Corresponding author

Correspondence to Axel Pflueger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvin, A., Misra, S. & Pflueger, A. Contrast-induced acute kidney injury and diabetic nephropathy. Nat Rev Nephrol 6, 679–688 (2010). https://doi.org/10.1038/nrneph.2010.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing