Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of polyunsaturated fatty acid consumption in diabetic nephropathy

Abstract

The complex metabolic, vascular and inflammatory perturbations that characterize diabetes mellitus often lead to progressive albuminuria, renal injury and dysfunction (diabetic nephropathy [DN]), and diabetes is the leading cause of end-stage renal disease in the US and Europe. Diet has an important role in cardiometabolic disorders and its potential influence on DN is of interest. Fatty acids are a major source of energy, but in excess, fatty acids (particularly saturated fatty acids) can induce lipotoxicity. Omega-3 polyunsaturated fatty acids (PUFAs) confer protection against cardiovascular disease—the major cause of death in patients with DN—by virtue of their antihyperlipidemic, antihypertensive, anti-inflammatory and other properties. Omega-6 PUFAs are also cardioprotective. However, a significant proportion of adults consume insufficient quantities of these essential nutrients. This Review describes the role of omega-3 and omega-6 PUFAs in nutrition and metabolism, with a focus on experimental, epidemiologic and clinical studies that have investigated their renoprotective effect in patients with diabetes. Results from a number of studies suggest, but do not firmly establish, that long-chain omega-3 PUFAs (found in fish oil) reduce albuminuria in the setting of DN. Intake of omega-6 fatty acids is associated with reduced albuminuria in experimental settings and in epidemiologic studies of DN. Although PUFAs do not seem to attenuate glomerular dysfunction, insufficient evidence exists to rule out such an effect. We feel that further research is needed into the potential of PUFA consumption and supplementation in DN.

Key Points

  • Plant-derived omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) and fish-oil-derived long-chain omega-3 PUFAs attenuate hypertension, inflammation, glomerulosclerosis and albuminuria in most experimental studies of diabetic nephropathy

  • Epidemiologic studies suggest that increased intake of PUFAs protects against albuminuria in humans with type 1 and 2 diabetes mellitus

  • In clinical trials, the reduction in albuminuria in patients with type 1 and 2 diabetes mellitus receiving fish oil supplementation approaches statistical significance

  • PUFAs do not seem to attenuate glomerular dysfunction in diabetic nephropathy, but insufficient evidence exists to rule out such an effect

  • Further mechanistic, epidemiologic and clinical studies are warranted to determine a role for dietary or supplemental PUFAs in the prevention and treatment of diabetic nephropathy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of fatty acids.
Figure 2: Long-chain PUFAs are incorporated into phospholipids and serve as oxygenated PUFA precursors.
Figure 3: Extrarenal and intrarenal factors involved in DN and ways in which they might be ameliorated by long-chain omega-3 PUFA consumption.

Similar content being viewed by others

References

  1. Powers, A. C. in Harrison's Principles of Internal Medicine 17th edn Ch. 338 (eds Fauci, A. S. et al.) 2275–2304 (McGraw-Hill Professional, New York, 2008).

    Google Scholar 

  2. Molitch, M. E. et al. Nephropathy in diabetes. Diabetes Care 27 (Suppl. 1), S79–S83 (2004).

    PubMed  Google Scholar 

  3. Botham, K. M. & Mayes, P. A. in Harper's Illustrated Biochemistry 27th edn Ch. 15 (eds Murray, R. K., Granner, D. K. & Rodwell V. W.) 121–131 (McGraw-Hill Medical, New York, 2006).

    Google Scholar 

  4. Kris-Etherton, P. M., Harris, W. S. & Appel, L. J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106, 2747–2757 (2002).

    Article  Google Scholar 

  5. Harris, W. S. et al. Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation 119, 902–907 (2009).

    Article  Google Scholar 

  6. Calder, P. C. Immunomodulation by omega-3 fatty acids. Prostaglandins Leukot. Essent. Fatty Acids 77, 327–335 (2007).

    Article  CAS  Google Scholar 

  7. Donadio, J. V. & Grande, J. P. The role of fish oil/omega-3 fatty acids in the treatment of IgA nephropathy. Semin. Nephrol. 24, 225–243 (2004).

    Article  CAS  Google Scholar 

  8. Friedman, A. & Moe, S. Review of the effects of omega-3 supplementation in dialysis patients. Clin. J. Am. Soc. Nephrol. 1, 182–192 (2006).

    Article  CAS  Google Scholar 

  9. Higdon, J. in An Evidence-Based Approach to Dietary Phytochemicals 78–99 (Thieme Medical Publishers, New York, 2006).

    Google Scholar 

  10. Simopoulos, A. P. Evolutionary aspects of the dietary omega-6:omega-3 fatty acid ratio: medical implications. World Rev. Nutr. Diet. 100, 1–21 (2009).

    Article  CAS  Google Scholar 

  11. Hao, C. M. & Breyer, M. D. Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kidney Int. 71, 1105–1115 (2007).

    Article  CAS  Google Scholar 

  12. Câmara, N. O., Martins, J. O., Landgraf, R. G. & Jancar, S. Emerging roles for eicosanoids in renal diseases. Curr. Opin. Nephrol. Hypertens. 18, 21–27 (2009).

    Article  Google Scholar 

  13. Zhao, X. & Imig, J. D. Kidney CYP450 enzymes: biological actions beyond drug metabolism. Curr. Drug Metab. 4, 73–84 (2003).

    Article  CAS  Google Scholar 

  14. Spector, A. A. Arachidonic acid cytochrome P450 epoxygenase pathway. J. Lipid Res. 50 (Suppl.), S52–S56 (2009).

    Article  Google Scholar 

  15. Lauterbach, B. et al. Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators. Hypertension 39, 609–613 (2002).

    Article  CAS  Google Scholar 

  16. Hercule, H. C. et al. The vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BK alpha channel subunit in rodents. Exp. Physiol. 92, 1067–1076 (2007).

    Article  CAS  Google Scholar 

  17. Olearczyk, J. J. et al. Administration of a substituted adamantyl urea inhibitor of soluble epoxide hydrolase protects the kidney from damage in hypertensive Goto-Kakizaki rats. Clin. Sci. (Lond.) 116, 61–70 (2009).

    Article  CAS  Google Scholar 

  18. Fer, M. et al. Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism. J. Lipid Res. 49, 2379–2389 (2008).

    Article  CAS  Google Scholar 

  19. Hardwick, J. P. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem. Pharmacol. 75, 2263–2275 (2008).

    Article  CAS  Google Scholar 

  20. Rodgers, K., McMahon, B., Mitchell, D., Sadlier, D. & Godson, C. Lipoxin A4 modifies platelet-derived growth factor-induced pro-fibrotic gene expression in human renal mesangial cells. Am. J. Pathol. 167, 683–694 (2005).

    Article  CAS  Google Scholar 

  21. Duffield, J. S. et al. Resolvin D series and protectin D1 mitigate acute kidney injury. J. Immunol. 177, 5902–5911 (2006).

    Article  CAS  Google Scholar 

  22. Zhang, J., Sasaki, S., Amano, K. & Kesteloot, H. Fish consumption and mortality from all causes, ischemic heart disease, and stroke: an ecological study. Prev. Med. 28, 520–529 (1999).

    Article  CAS  Google Scholar 

  23. Hu, F. B., Cho, E., Rexrode, K. M., Albert, C. M. & Manson, J. E. Fish and long-chain omega-3 fatty acid intake and risk of coronary heart disease and total mortality in diabetic women. Circulation 107, 1852–1857 (2003).

    Article  Google Scholar 

  24. The ORIGIN Trial (Outcome Reduction with Initial Glargine Intervention) [online], (2010).

  25. ASCEND: A Study of Cardiovascular Events iN Diabetes [online], (2010).

  26. Hooper, L. et al. Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review. BMJ 332, 752–760 (2006).

    Article  CAS  Google Scholar 

  27. Bantle, J. P. et al. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 31 (Suppl. 1), S61–S78 (2008).

    CAS  Google Scholar 

  28. De Caterina, R., Madonna, R., Bertolotto, A. & Schmidt, E. B. N-3 fatty acids in the treatment of diabetic patients: biological rationale and clinical data. Diabetes Care 30, 1012–1026 (2007).

    Article  CAS  Google Scholar 

  29. Kris-Etherton, P. M. & Hill, A. M. N-3 fatty acids: food or supplements? J. Am. Diet. Assoc. 108, 1125–1130 (2008).

    Article  CAS  Google Scholar 

  30. Brenna, J. T., Salem, N. Jr, Sinclair, A. J. & Cunnane, S. C. Alpha-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot. Essent. Fatty Acids 80, 85–91 (2009).

    Article  CAS  Google Scholar 

  31. Burdge, G. Alpha-linolenic acid metabolism in men and women: nutritional and biological implications. Curr. Opin. Clin. Nutr. Metab. Care 7, 137–144 (2004).

    Article  CAS  Google Scholar 

  32. Schaeffer, L. et al. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum. Mol. Genet. 15, 1745–1756 (2006).

    Article  CAS  Google Scholar 

  33. Zhou, Y. E., Kubow, S., Dewailly, E., Julien, P. & Egeland, G. M. Decreased activity of desaturase 5 in association with obesity and insulin resistance aggravates declining long-chain n-3 fatty acid status in Cree undergoing dietary transition. Br. J. Nutr. 102, 888–894 (2009).

    Article  CAS  Google Scholar 

  34. Goyens, P. L., Spilker, M. E., Zock, P. L., Katan, M. B. & Mensink, R. P. Conversion of alpha-linolenic acid in humans is influenced by the absolute amounts of alpha-linolenic acid and linoleic acid in the diet and not by their ratio. Am. J. Clin. Nutr. 84, 44–53 (2006).

    Article  CAS  Google Scholar 

  35. Lane, J. T. Microalbuminuria as a marker of cardiovascular and renal risk in type 2 diabetes mellitus: a temporal perspective. Am. J. Physiol. Renal Physiol. 286, F442–F450 (2004).

    Article  CAS  Google Scholar 

  36. Hagiwara, S. et al. Eicosapentaenoic acid ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice: involvement of MCP-1 suppression and decreased ERK1/2 and p38 phosphorylation. Nephrol. Dial. Transplant. 21, 605–615 (2006).

    Article  CAS  Google Scholar 

  37. Zhang, M. et al. Effects of eicosapentaenoic acid on the early stage of type 2 diabetic nephropathy in KKA(y)/Ta mice: involvement of anti-inflammation and antioxidative stress. Metabolism 55, 1590–1598 (2006).

    Article  CAS  Google Scholar 

  38. Garman, J. H., Mulroney, S., Manigrasso, M., Flynn, E. & Maric, C. Omega-3 fatty acid rich diet prevents diabetic renal disease. Am. J. Physiol. Renal Physiol. 296, F306–F316 (2009).

    Article  CAS  Google Scholar 

  39. Jia, Q., Shi, Y., Bennink, M. B. & Pestka, J. J. Docosahexaenoic acid and eicosapentaenoic acid, but not alpha-linolenic acid, suppress deoxynivalenol-induced experimental IgA nephropathy in mice. J. Nutr. 134, 1353–1361 (2004).

    Article  CAS  Google Scholar 

  40. Moon, Y. A., Hammer, R. E. & Horton, J. D. Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. J. Lipid Res. 50, 412–423 (2009).

    Article  CAS  Google Scholar 

  41. Logan, J. L. Studies on the impact of dietary fat composition on proteinuria in diabetic rats. Diabetes Res. Clin. Pract. 33, 21–29 (1996).

    Article  CAS  Google Scholar 

  42. Berdanier, C. D., Johnson, B., Hartle, D. K. & Crowell, W. Life span is shortened in BHE/cdb rats fed a diet containing 9% menhaden oil and 1% corn oil. J. Nutr. 122, 1309–1317 (1992).

    Article  CAS  Google Scholar 

  43. Singer, P. et al. Anti-inflammatory properties of omega-3 fatty acids in critical illness: novel mechanisms and an integrative perspective. Intensive Care Med. 34, 1580–1592 (2008).

    Article  CAS  Google Scholar 

  44. Galli, C. & Calder, P. C. Effects of fat and fatty acid intake on inflammatory and immune responses: a critical review. Ann. Nutr. Metab. 55, 123–139 (2009).

    Article  CAS  Google Scholar 

  45. Chaudhary, A., Mishra, A. & Sethi, S. Oxidized omega-3 fatty acids inhibit pro-inflammatory responses in glomerular endothelial cells. Nephron Exp. Nephrol. 97, e136–e145 (2004).

    Article  CAS  Google Scholar 

  46. Li, H. et al. EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int. 67, 867–874 (2005).

    Article  CAS  Google Scholar 

  47. Diaz Encarnacion, M. M. et al. Signaling pathways modulated by fish oil in salt-sensitive hypertension. Am. J. Physiol. Renal Physiol. 294, F1323–F1335 (2008).

    Article  Google Scholar 

  48. An, W. S., Kim, H. J., Cho, K. H. & Vaziri, N. D. Omega-3 fatty acid supplementation attenuates oxidative stress, inflammation, and tubulointerstitial fibrosis in the remnant kidney. Am. J. Physiol. Renal Physiol. 297, F895–F903 (2009).

    Article  CAS  Google Scholar 

  49. Theuer, J. et al. Inducible NOS inhibition, eicosapentaenoic acid supplementation, and angiotensin II-induced renal damage. Kidney Int. 67, 248–258 (2005).

    Article  CAS  Google Scholar 

  50. Ferraro, P. M., Ferraccioli, G. F., Gambaro, G., Fulignati, P. & Costanzi, S. Combined treatment with renin-angiotensin system blockers and polyunsaturated fatty acids in proteinuric IgA nephropathy: a randomized controlled trial. Nephrol. Dial. Transplant. 24, 156–160 (2009).

    Article  CAS  Google Scholar 

  51. Appel, L. J., Miller, E. R. 3rd, Seidler, A. J. & Whelton, P. K. Does supplementation of diet with 'fish oil' reduce blood pressure? A meta-analysis of controlled clinical trials. Arch. Intern. Med. 153, 1429–1438 (1993).

    Article  CAS  Google Scholar 

  52. Morris, M. C., Sacks, F. & Rosner, B. Does fish oil lower blood pressure? A meta-analysis of controlled trials. Circulation 88, 523–533 (1993).

    Article  CAS  Google Scholar 

  53. Geleijnse, J. M., Giltay, E. J., Grobbee, D. E., Donders, A. R. & Kok, F. J. Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials. J. Hypertens. 20, 1493–1499 (2002).

    Article  CAS  Google Scholar 

  54. Hilpert, K. F. et al. Postprandial effect of n-3 polyunsaturated fatty acids on apolipoprotein B-containing lipoproteins and vascular reactivity in type 2 diabetes. Am. J. Clin. Nutr. 85, 369–376 (2007).

    Article  CAS  Google Scholar 

  55. McVeigh, G. E. et al. Dietary fish oil augments nitric oxide production or release in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 36, 33–38 (1993).

    Article  CAS  Google Scholar 

  56. Hartweg, J. et al. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD003205. doi:10.1002/14651858.CD003205.pub2 (2008).

  57. Pownall, H. J. et al. Correlation of serum triglyceride and its reduction by omega-3 fatty acids with lipid transfer activity and the neutral lipid compositions of high-density and low-density lipoproteins. Atherosclerosis 143, 285–297 (1999).

    Article  CAS  Google Scholar 

  58. Wang, Z. et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes 54, 2328–2335 (2005).

    Article  CAS  Google Scholar 

  59. Proctor, G. et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 55, 2502–2509 (2006).

    Article  CAS  Google Scholar 

  60. Lee, C. C., Sharp, S. J., Wexler, D. J. & Adler, A. I. Dietary intake of eicosapentaenoic and docosahexaenoic acid and diabetic nephropathy: cohort analysis of the diabetes control and complications trial. Diabetes Care 33, 1454–1456 (2010).

    Article  CAS  Google Scholar 

  61. [No authors listed] The Diabetes Control and Complications Trial (DCCT). Design and methodologic considerations for the feasibility phase. The DCCT Research Group. Diabetes 35, 530–545 (1986).

  62. Cárdenas, C., Bordiu, E., Bagazgoitia, J. & Calle-Pascual, A. L. Polyunsaturated fatty acid consumption may play a role in the onset and regression of microalbuminuria in well-controlled type 1 and type 2 diabetic people: a 7-year, prospective, population-based, observational multicenter study. Diabetes Care 27, 1454–1457 (2004).

    Article  Google Scholar 

  63. Lee, C. T. et al. Cross-sectional association between fish consumption and albuminuria: the European Prospective Investigation of Cancer-Norfolk Study. Am. J. Kidney Dis. 52, 876–886 (2008).

    Article  Google Scholar 

  64. Möllsten, A. V., Dahlquist, G. G., Stattin, E. L. & Rudberg, S. Higher intakes of fish protein are related to a lower risk of microalbuminuria in young Swedish type 1 diabetic patients. Diabetes Care 24, 805–810 (2001).

    Article  Google Scholar 

  65. Perassolo, M. S. et al. Fatty acid composition of serum lipid fractions in type 2 diabetic patients with microalbuminuria. Diabetes Care 26, 613–618 (2003).

    Article  CAS  Google Scholar 

  66. Tilvis, R. S., Taskinen, M. R. & Miettinen, T. A. Effect of insulin treatment on fatty acids of plasma and erythrocyte membrane lipids in type 2 diabetes. Clin. Chim. Acta 171, 293–303 (1988).

    Article  CAS  Google Scholar 

  67. Miller, E. R. 3rd et al. The effect of n-3 long-chain polyunsaturated fatty acid supplementation on urine protein excretion and kidney function: meta-analysis of clinical trials. Am. J. Clin. Nutr. 89, 1937–1945 (2009).

    Article  CAS  Google Scholar 

  68. Haines, A. P. et al. Effects of a fish oil supplement on platelet function, haemostatic variables and albuminuria in insulin-dependent diabetics. Thromb. Res. 43, 643–655 (1986).

    Article  CAS  Google Scholar 

  69. Jensen, T., Stender, S., Goldstein, K., Hølmer, G. & Deckert, T. Partial normalization by dietary cod-liver oil of increased microvascular albumin leakage in patients with insulin-dependent diabetes and albuminuria. N. Engl. J. Med. 321, 1572–1577 (1989).

    Article  CAS  Google Scholar 

  70. Hamazaki, T., Takazakura, E., Osawa, K., Urakaze, M. & Yano, S. Reduction in microalbuminuria in diabetics by eicosapentaenoic acid ethyl ester. Lipids 25, 541–545 (1990).

    Article  CAS  Google Scholar 

  71. Shimizu, H. et al. Long-term effect of eicosapentaenoic acid ethyl (EPA-E) on albuminuria of non-insulin dependent diabetic patients. Diabetes Res. Clin. Pract. 28, 35–40 (1995).

    Article  CAS  Google Scholar 

  72. Rossing, P. et al. Fish oil in diabetic nephropathy. Diabetes Care 19, 1214–1219 (1996).

    Article  CAS  Google Scholar 

  73. Lungershausen, Y. K. et al. Evaluation of an omega-3 fatty acid supplement in diabetics with microalbuminuria. Ann. NY Acad. Sci. 827, 369–381 (1997).

    Article  CAS  Google Scholar 

  74. Zeman, M. et al. N-3 fatty acid supplementation decreases plasma homocysteine in diabetic dyslipidemia treated with statin–fibrate combination. J. Nutr. Biochem. 17, 379–384 (2006).

    Article  CAS  Google Scholar 

  75. Wong, C. Y. et al. Fish-oil supplement has neutral effects on vascular and metabolic function but improves renal function in patients with type 2 diabetes mellitus. Diabet. Med. 27, 54–60 (2010).

    Article  CAS  Google Scholar 

  76. De Lorenzo, A. et al. The effects of Italian Mediterranean organic diet (IMOD) on health status. Curr. Pharm. Des. 16, 814–824 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H. Shapiro, M. Theilla and P. Singer researched data for the article. H. Shapiro, J. Attal-Singer and P. Singer provided a substantial contribution to discussions of content. H. Shapiro wrote the article. H. Shapiro, M. Theilla and P. Singer were involved in the review/editing of the manuscript before submission.

Corresponding author

Correspondence to Haim Shapiro.

Ethics declarations

Competing interests

H. Shapiro declares an association with Fischer Pharmaceutical Laboratories (lecture fees). The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, H., Theilla, M., Attal-Singer, J. et al. Effects of polyunsaturated fatty acid consumption in diabetic nephropathy. Nat Rev Nephrol 7, 110–121 (2011). https://doi.org/10.1038/nrneph.2010.156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing