Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolomics in the study of kidney diseases

Abstract

Metabolomics—the nontargeted measurement of all metabolites produced by the body—is beginning to show promise in both biomarker discovery and, in the form of pharmacometabolomics, in aiding the choice of therapy for patients with specific diseases. In its two basic forms (pattern recognition and metabolite identification), this developing field has been used to discover potential biomarkers in several renal diseases, including acute kidney injury (attributable to a variety of causes), autosomal dominant polycystic kidney disease and kidney cancer. NMR and gas chromatography or liquid chromatography, together with mass spectrometry, are generally used to separate and identify metabolites. Many hurdles need to be overcome in this field, such as achieving consistency in collection of biofluid samples, controlling for batch effects during the analysis and applying the most appropriate statistical analysis to extract the maximum amount of biological information from the data obtained. Pathway and network analyses have both been applied to metabolomic analysis, which vastly extends its clinical relevance and effects. In addition, pharmacometabolomics analyses, in which a metabolomic signature can be associated with a given therapeutic effect, are beginning to appear in the literature, which will lead to personalized therapies. Thus, metabolomics holds promise for early diagnosis, increased choice of therapy and the identification of new metabolic pathways that could potentially be targeted in kidney disease.

Key Points

  • Metabolomics is the study of all small-molecule metabolites produced by the body and thus provides a functional fingerprint of the physiological and pathophysiological state of the body

  • Two useful clinical methods exist for metabolomics analysis: pattern recognition and metabolite identification

  • The study design (adequate sample size and the statistical analysis strategy) should be carefully planned to detect small differences in metabolic profiles in a population with wide biological variation

  • Metabolomics has resulted in potential biomarkers for several renal diseases, but to become true biomarkers, the clinical merit of potential biomarkers needs to be validated in separate targeted studies

  • Pharmacometabolomics could enable metabolomics to be used in personalized medicine

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The science of metabolomics has been practiced in the field of nephrology, albeit with slightly less sophisticated analytical techniques, for centuries.
Figure 2: This flow chart details the use of metabolomics to find clinically useful biomarkers.
Figure 3: Two separate methods exist for metabolomics analysis that can stratify patients as being healthy or having a disease: global metabolomics refers to true biomarker discovery and chemical identification, whereas metabolic fingerprinting refers to pattern recognition to segregate healthy patients from patients with a disease without the need for rigorous chemical identification or quantification of metabolites.
Figure 4: Pharmacometabolomics combines metabolomic analysis with drug response through the association of altered metabolites with metabolic pathways that are affected by specific drugs.

Similar content being viewed by others

References

  1. German, J. B., Hammock, B. D. & Watkins, S. M. Metabolomics: building on a century of biochemistry to guide human health. Metabolomics 1, 3–9 (2005).

    Article  CAS  Google Scholar 

  2. Kim, K. et al. Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol. Cell. Proteomics 8, 558–570 (2009).

    Article  CAS  Google Scholar 

  3. Calvani, R. et al. Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. Int. J. Obes. (Lond.) 34, 1095–1098 (2010).

    Article  CAS  Google Scholar 

  4. Romick-Rosendale, L. E. et al. NMR-based metabonomics analysis of mouse urine and fecal extracts following oral treatment with the broad-spectrum antibiotic enrofloxacin (Baytril). Magn. Reson. Chem. 47 (Suppl. 1), S36–S46 (2009).

    Article  CAS  Google Scholar 

  5. Martin, F. P. et al. Dietary modulation of gut functional ecology studied by fecal metabonomics. J. Proteome Res. 9, 5284–5295 (2010).

    Article  CAS  Google Scholar 

  6. Kim, K. B. et al. Toxicometabolomics approach to urinary biomarkers for mercuric chloride (HgCl)-induced nephrotoxicity using proton nuclear magnetic resonance (1H NMR) in rats. Toxicol. Appl. Pharmacol. 249, 114–126 (2010).

    Article  CAS  Google Scholar 

  7. Hwang, G.-S., Yang, J.-Y., Ryu, D. H. & Kwon, T.-H. Metabolic profiling of kidney and urine in rats with lithium-induced nephrogenic diabetes insipidus by 1H-NMR-based metabonomics. Am. J. Physiol. Renal Physiol. 298, F461–F470 (2010).

    Article  CAS  Google Scholar 

  8. Nicholson, J. K. & Lindon, J. C. Systems biology: metabonomics. Nature 455, 1054–1056 (2008).

    Article  CAS  Google Scholar 

  9. Jellum, E., Stokke, O. & Eldjarn, L. Application of gas chromatography, mass spectrometry, and computer methods in clinical biochemistry. Anal. Chem. 46, 1099–1106 (1973).

    CAS  PubMed  Google Scholar 

  10. Shoemaker, J. D. & Elliott, W. H. Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J. Chromatogr. 562, 125–138 (1991).

    Article  CAS  Google Scholar 

  11. Kuhara, T. et al. Pilot study of gas chromatographic-mass spectrometric screening of newborn urine for inborn errors of metabolism after treatment with urease. J. Chromatogr. B Biomed. Sci. Appl. 731, 141–147 (1999).

    Article  CAS  Google Scholar 

  12. Kuhara, T. Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism. Mass Spectrom. Rev. 24, 814–827 (2005).

    Article  CAS  Google Scholar 

  13. Wishart, D. S. et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 35, D521–D526 (2007).

    Article  CAS  Google Scholar 

  14. Pauling, L., Robinson, A. B., Teranishi, R. & Cary, P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl Acad. Sci. USA 68, 2374–2376 (1971).

    Article  CAS  Google Scholar 

  15. Horning, E. C. & Horning, M. G. Metabolic profiles: gas-phase methods for analysis of metabolites. Clin. Chem. 17, 802–809 (1971).

    CAS  PubMed  Google Scholar 

  16. Kind, T., Tolstikov, V., Fiehn, O. & Weiss, R. H. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal. Biochem. 363, 185–195 (2007).

    Article  CAS  Google Scholar 

  17. Lindon, J. C. & Nicholson, J. K. Analytical techniques for metabonomics and metabolomics, and multi-omic information recovery. Trends Anal. Chem. 27, 194–204 (2008).

    Article  CAS  Google Scholar 

  18. Kind, T. et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009).

    Article  CAS  Google Scholar 

  19. Dehaven, C. D., Evans, A. M., Dai, H. & Lawton, K. A. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J. Cheminform. 2, 9 (2010).

    Article  Google Scholar 

  20. Saude, E. J. & Sykes, B. D. Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics 3, 19–27 (2007).

    Article  CAS  Google Scholar 

  21. Gika, H. G., Theodoridis, G. A. & Wilson, I. D. Liquid chromatography and ultra-performance liquid chromatography-mass spectrometry fingerprinting of human urine: sample stability under different handling and storage conditions for metabonomics studies. J. Chromatogr. A 1189, 314–322 (2008).

    Article  CAS  Google Scholar 

  22. Gu, H. et al. Monitoring diet effects via biofluids and their implications for metabolomics studies. Anal. Chem. 79, 89–97 (2007).

    Article  CAS  Google Scholar 

  23. Slupsky, C. M. et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal. Chem. 79, 6995–7004 (2007).

    Article  CAS  Google Scholar 

  24. Gika, H. G., Theodoridis, G. A., Wingate, J. E. & Wilson, I. D. Within-day reproducibility of an HPLC-MS-based method for metabonomic analysis: application to human urine. J. Proteome Res. 6, 3291–3303 (2007).

    Article  CAS  Google Scholar 

  25. Katajamaa, M. & Oresic, M. Data processing for mass spectrometry-based metabolomics. J. Chromatogr. A 1158, 318–328 (2007).

    Article  CAS  Google Scholar 

  26. Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009).

    Article  CAS  Google Scholar 

  27. Kim, K. et al. Urine metabolomic analysis identifies potential biomarkers and pathogenic pathways in kidney cancer. OMICS 15, 293–303 (2011).

    Article  CAS  Google Scholar 

  28. Wang, W. et al. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem. 75, 4818–4826 (2003).

    Article  CAS  Google Scholar 

  29. Oresic, M. et al. Phenotype characterisation using integrated gene transcript, protein and metabolite profiling. Appl. Bioinformatics 3, 205–217 (2004).

    Article  CAS  Google Scholar 

  30. van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K. & van der Werf, M. J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7, 142 (2006).

    Article  Google Scholar 

  31. Westfall, P. H. & Young, S. S. Resampling-based multiple testing: examples and methods for P-value adjustment (John Wiley & Sons, New York, 1993).

    Google Scholar 

  32. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  33. Taylor, S. L. et al. A metabolomics approach using juvenile cystic mice to identify urinary biomarkers and altered pathways in polycystic kidney disease. Am. J. Physiol. Renal Physiol. 298, F909–F922 (2010).

    Article  CAS  Google Scholar 

  34. Rubingh, C. M. et al. Assessing the performance of statistical validation tools for megavariate metabolomics data. Metabolomics 2, 53–61 (2006).

    Article  CAS  Google Scholar 

  35. Mahadevan, S., Shah, S. L., Marrie, T. J. & Slupsky, C. M. Analysis of metabolomic data using support vector machines. Anal. Chem. 80, 7562–7570 (2008).

    Article  CAS  Google Scholar 

  36. Brougham, D. F. et al. Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance. J. Biomed. Biotechnol. 2011, 158094 (2011).

    Article  CAS  Google Scholar 

  37. Ein-Dor, L., Zuk, O. & Domany, E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl Acad. Sci. USA 103, 5923–5928 (2006).

    Article  CAS  Google Scholar 

  38. Niemann, C. U. & Serkova, N. J. Biochemical mechanisms of nephrotoxicity: application for metabolomics. Expert Opin. Drug Metab. Toxicol. 3, 527–544 (2007).

    Article  CAS  Google Scholar 

  39. Wishart, D. S. Metabolomics: the principles and potential applications to transplantation. Am. J. Transplant. 5, 2814–2820 (2005).

    Article  CAS  Google Scholar 

  40. Niwa, T. Update of uremic toxin research by mass spectrometry. Mass Spectrom. Rev. 30, 510–521 (2011).

    Article  CAS  Google Scholar 

  41. Kikuchi, K. et al. Metabolomic analysis of uremic toxins by liquid chromatography/electrospray ionization-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878, 1662–1668 (2010).

    Article  CAS  Google Scholar 

  42. Niwa, T., Maeda, K., Ohki, T., Saito, A. & Kobayashi, K. A gas chromatographic-mass spectrometric analysis for phenols in uremic serum. Clin. Chim. Acta 110, 51–57 (1981).

    Article  CAS  Google Scholar 

  43. Toyohara, T. et al. Metabolomic profiling of uremic solutes in CKD patients. Hypertens. Res. 33, 944–952 (2010).

    Article  Google Scholar 

  44. Boudonck, K. J. et al. Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicol. Pathol. 37, 280–292 (2009).

    Article  CAS  Google Scholar 

  45. Star, R. A. Treatment of acute renal failure. Kidney Int. 54, 1817–1831 (1998).

    Article  CAS  Google Scholar 

  46. Xu, E. Y. et al. Integrated pathway analysis of rat urine metabolic profiles and kidney transcriptomic profiles to elucidate the systems toxicology of model nephrotoxicants. Chem. Res. Toxicol. 21, 1548–1561 (2008).

    Article  CAS  Google Scholar 

  47. Perroud, B. et al. Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol. Cancer 5, 64 (2006).

    Article  Google Scholar 

  48. Melnick, J. Z., Baum, M. & Thompson, J. R. Aminoglycoside-induced Fanconi's syndrome. Am. J. Kidney Dis. 23, 118–122 (1994).

    Article  CAS  Google Scholar 

  49. Pratt, C. B. et al. Ifosfamide, Fanconi's syndrome, and rickets. J. Clin. Oncol. 9, 1495–1499 (1991).

    Article  CAS  Google Scholar 

  50. Portilla, D. et al. Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int. 69, 2194–2204 (2006).

    Article  CAS  Google Scholar 

  51. Perroud, B., Ishimaru, T., Borowsky, A. D. & Weiss, R. H. Grade-dependent proteomics characterization of kidney cancer. Mol. Cell. Proteomics 8, 971–985 (2009).

    Article  CAS  Google Scholar 

  52. Park, J. C. et al. A metabonomic study on the biochemical effects of doxorubicin in rats using (1)H-NMR spectroscopy. J. Toxicol. Environ. Health A 72, 374–384 (2009).

    Article  CAS  Google Scholar 

  53. Xie, G. et al. Metabonomic evaluation of melamine-induced acute renal toxicity in rats. J. Proteome Res. 9, 125–133 (2010).

    Article  CAS  Google Scholar 

  54. Wei, L. et al. Metabolic profiling studies on the toxicological effects of realgar in rats by 1H NMR spectroscopy. Toxicol. Appl. Pharmacol. 234, 314–325 (2009).

    Article  CAS  Google Scholar 

  55. Broumand, B. Diabetes: changing the fate of diabetics in the dialysis unit. Blood Purif. 25, 39–47 (2007).

    Article  Google Scholar 

  56. Lu, D. et al. 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc. Natl Acad. Sci. USA 99, 2708–2713 (2002).

    Article  CAS  Google Scholar 

  57. Jensen, M. V. et al. Metabolic cycling in control of glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. Metab. 295, E1287–E1297 (2008).

    Article  CAS  Google Scholar 

  58. Cline, G. W., Lepine, R. L., Papas, K. K., Kibbey, R. G. & Shulman, G. I. 13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells. J. Biol. Chem. 279, 44370–44375 (2004).

    Article  CAS  Google Scholar 

  59. Savage, D. B., Petersen, K. F. & Shulman, G. I. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 87, 507–520 (2007).

    Article  CAS  Google Scholar 

  60. Holland, W. L. & Summers, S. A. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr. Rev. 29, 381–402 (2008).

    Article  CAS  Google Scholar 

  61. Lucio, M. et al. Insulin sensitivity is reflected by characteristic metabolic fingerprints—a Fourier transform mass spectrometric non-targeted metabolomics approach. PLoS ONE 5, e13317 (2010).

    Article  Google Scholar 

  62. Suhre, K. et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 5, e13953 (2010).

    Article  Google Scholar 

  63. Zhao, X. et al. Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics 6, 362–374 (2010).

    Article  CAS  Google Scholar 

  64. Connor, S. C., Hansen, M. K., Corner, A., Smith, R. F. & Ryan, T. E. Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes. Mol. Biosyst. 6, 909–921 (2010).

    Article  CAS  Google Scholar 

  65. Ganti, S. et al. Urinary acylcarnitines are altered in kidney cancer. Int. J. Cancer http://dx.doi.org/10.1002/ijc.26274.

  66. Marchesini, G. et al. Elimination of infused branched-chain amino-acids from plasma of patients with non-obese type 2 diabetes mellitus. Clin. Nutr. 10, 105–113 (1991).

    Article  CAS  Google Scholar 

  67. Alam, A. & Perrone, R. D. Management of ESRD in patients with autosomal dominant polycystic kidney disease. Adv. Chronic Kidney Dis. 17, 164–172 (2010).

    Article  Google Scholar 

  68. Saude, E. J., Adamko, D., Rowe, B. H., Marrie, T. & Sykes, B. D. Variation of metabolites in normal human urine. Metabolomics 3, 439–451 (2007).

    Article  CAS  Google Scholar 

  69. van der Greef, J., Hankemeier, T. & McBurney, R. N. Metabolomics-based systems biology and personalized medicine: moving towards n = 1 clinical trials? Pharmacogenomics 7, 1087–1094 (2006).

    Article  CAS  Google Scholar 

  70. Bayet-Robert, M., Morvan, D., Chollet, P. & Barthomeuf, C. Pharmacometabolomics of docetaxel-treated human MCF7 breast cancer cells provides evidence of varying cellular responses at high and low doses. Breast Cancer Res. Treat. 120, 613–626 (2010).

    Article  CAS  Google Scholar 

  71. Ji, Y. et al. Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics. Clin. Pharmacol. Ther. 89, 97–104 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. H. Weiss would like to acknowledge the support of NIH grants 5UO1CA86402 (Early Detection Research Network), 1R01CA135401-01A1 and 1R01DK082690-01A1, and the Medical Service of the US Department of Veterans' Affairs.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of this article.

Corresponding author

Correspondence to Robert H. Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, R., Kim, K. Metabolomics in the study of kidney diseases. Nat Rev Nephrol 8, 22–33 (2012). https://doi.org/10.1038/nrneph.2011.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.152

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research