Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Restoring the renal microvasculature to treat chronic kidney disease

Abstract

Chronic kidney disease is characterized by progressive loss of the renal microvasculature, which leads to local areas of hypoxia and induction of profibrotic responses, scarring and deterioration of renal function. Revascularization alone might be sufficient to restore kidney function and regenerate the structure of the diseased kidney. For revascularization to be successful, however, the underlying disease process needs to be halted or alleviated and there must remain a sufficient number of surviving nephron units that can serve as a scaffold for kidney regeneration. This Perspectives article describes how revascularization might be achieved using vascular growth factors or adoptive transfer of endothelial progenitor cells and provides a brief outline of the studies performed to date. An overview of how therapeutic strategies targeting the microvasculature could be enhanced in the future is also presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic strategies that target the microvasculature in chronic kidney disease.
Figure 2: Disruption of the angiogenic balance in CKD.
Figure 3: The microarchitecture of a diseased kidney from a patient with terminal hemorrhagic Bright's disease of 2 years duration.

Similar content being viewed by others

References

  1. Coresh, J., Astor, B. C., Greene, T., Eknoyan, G. & Levey, A. S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 41, 1–12 (2003).

    PubMed  Google Scholar 

  2. Fine, L. G., Orphanides, C. & Norman, J. T. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int. Suppl. 65, S74–S78 (1998).

    CAS  PubMed  Google Scholar 

  3. Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 17, 17–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maeshima, Y. & Makino, H. Angiogenesis and chronic kidney disease. Fibrogenesis Tissue Repair 3, 13 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mayer, G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease. Nephrol. Dial. Transplant. 26, 1132–1137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kang, D. H., Hughes, J., Mazzali, M., Schreiner, G. F. & Johnson, R. J. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J. Am. Soc. Nephrol. 12, 1448–1457 (2001).

    CAS  PubMed  Google Scholar 

  8. Iliescu, R., Fernandez, S. R., Kelsen, S., Maric, C. & Chade, A. R. Role of renal microcirculation in experimental renovascular disease. Nephrol. Dial. Transplant. 25, 1079–1087 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, W. et al. COMP-Angiopoietin-1 ameliorates renal fibrosis in a unilateral ureteral obstruction model. J. Am. Soc. Nephrol. 17, 2474–2483 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Long, D. A. et al. Angiopoietin-1 therapy enhances fibrosis and inflammation following folic acid-induced acute renal injury. Kidney Int. 74, 300–309 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Sato, W. et al. Selective stimulation of VEGFR2 accelerates progressive renal disease. Am. J. Pathol. 179, 155–166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schrijvers, B. F. et al. Pathophysiological role of vascular endothelial growth factor in the remnant kidney. Nephron Exp. Nephrol. 101, e9–e15 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Nakagawa, T., Kosugi, T., Haneda, M., Rivard, C. J. & Long, D. A. Abnormal angiogenesis in diabetic nephropathy. Diabetes 58, 1471–1478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saito, D. et al. Amelioration of renal alterations in obese type 2 diabetic mice by vasohibin-1, a negative feedback regulator of angiogenesis. Am. J. Physiol. Renal Physiol. 300, F873–F886 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Leonard, E. C., Friedrich, J. L. & Basile, D. P. VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury. Am. J. Physiol. Renal Physiol. 295, F1648–F1657 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mu, W. et al. Angiostatin overexpression is associated with an improvement in chronic kidney injury by an anti-inflammatory mechanism. Am. J. Physiol. Renal Physiol. 296, F145–F152 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Bottinger, E. P. TGF-beta in renal injury and disease. Semin. Nephrol. 27, 309–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kawai, H. et al. Lack of the growth factor midkine enhances survival against cisplatin-induced renal damage. Am. J. Pathol. 165, 1603–1612 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Denby, L. et al. Development of renal-targeted vector through combined in vivo phage display and capsid engineering of adenoviral fibers from serotype 19p. Mol. Ther. 15, 1647–1654 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Korpisalo, P. et al. Capillary enlargement, not sprouting angiogenesis, determines beneficial therapeutic effects and side effects of angiogenic gene therapy. Eur. Heart J. 32, 1664–1672 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Nagy, J. A. et al. Permeability properties of tumor surrogate blood vessels induced by VEGF.-A. Lab. Invest. 86, 767–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Gavard, J., Patel, V. & Gutkind, J. S. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev. Cell 14, 25–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Elson, D. A. et al. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1. Genes Dev. 15, 2520–2532 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tanaka, T. et al. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab. Invest. 85, 1292–1307 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Higgins, D. F. et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest. 117, 3810–3820 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bates, D. O. et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62, 4123–4131 (2002).

    CAS  PubMed  Google Scholar 

  27. Manetti, M. et al. Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor leads to insufficient angiogenesis in patients with systemic sclerosis. Circ. Res. 109, e14–e26 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Ghosh, G. et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J. Clin. Invest. 120, 4141–4154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anand, S. et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angigogenesis. Nat. Med. 16, 909–914 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dwivedi, R. S., Herman, J. G., McCaffrey, T. A. & Raj, D. S. Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int. 79, 23–32 (2011).

    Article  PubMed  Google Scholar 

  31. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell. Biol. 12, 943–953 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Lin, S. L. et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am. J. Pathol. 178, 911–923 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Armulik, A., Abramsson, A. & Betsholtz C. Endothelial/pericyte interactions. Circ. Res. 97, 512–523 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, J. et al. Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int. 74, 879–889 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bussolati, B. et al. Isolation of renal progenitor cells from adult human kidney. Am. J. Pathol. 166, 545–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yasuda, K. et al. Adriamycin nephropathy, a failure of endothelial progenitor cell-induced repair. Am. J. Pathol. 176, 1685–1695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oliver, J. Architecture of the kidney in chronic Bright's disease (Paul B. Hoeber Inc., New York, 1939).

  38. Fine, L. G. First heal thyself: Rescue of dysfunctional endothelial progenitor cells restores function to the injured kidney. Am. J. Pathol. 176, 1586–1587 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Grant, M. B. et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med. 8, 607–612 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Hirschi, K. K., Ingram, D. A. & Yoder, M. C. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 28, 1584–1595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goligorsky, M. S., Yasuda, K. & Ratliff, B. Dysfunctional endothelial progenitor cells in chronic kidney disease. J. Am. Soc. Nephrol. 21, 911–919 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Togel, F., Issac, J., Hu, Z., Weiss, K. & Westernfelder, C. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int. 67, 1772–1784 (2005).

    Article  PubMed  Google Scholar 

  44. Chade, A. R. et al. Endothelial progenitor cells homing and renal repair in experimental renovascular disease. Stem Cells 28, 1039–1047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu, X. Y. et al. Enhanced endothelial progenitor cell angiogenic potency, present in early experimental renovascular hypertension, deteriorates with disease duration. J. Hypertens. 29, 1972–1979 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krenning, G. et al. Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease. Am. J. Physiol. Renal Physiol. 296, F1314–F1322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sangidorj, O. et al. Bone marrow-derived endothelial progenitor cells confer renal protection in a murine chronic renal failure model. Am. J. Physiol. Renal Physiol. 299, F325–F335 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Chade, A. R. et al. Endothelial progenitor cells restore renal function in chronic experimental renovascular disease. Circulation 119, 547–557 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Medici, D. et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat. Med. 16, 1400–1406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoon, C.-H. et al. Mechanism of improved cardiac function after bone marrow mononuclear cell therapy: role of cardiovascular lineage commitment. Circulation 121, 2001–2011 (2010).

    Article  PubMed  Google Scholar 

  51. Sakamoto, I. et al. Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int. 75, 828–838 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Matsui, K. et al. Lymphatic microvessels in the rat remnant kidney model of renal fibrosis: aminopeptidase p and podoplanin are discriminatory markers for endothelial cells of blood and lymphatic vessels. J. Am. Soc. Nephrol. 14, 1981–1989 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Kidney Research UK Senior Non-Clinical Fellowship and a Medical Research Council New Investigator Award to D. A. Long and research support for L. G. Fine from Cedars-Sinai Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Long.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, D., Norman, J. & Fine, L. Restoring the renal microvasculature to treat chronic kidney disease. Nat Rev Nephrol 8, 244–250 (2012). https://doi.org/10.1038/nrneph.2011.219

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.219

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing