Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Case Study
  • Published:

Azathioprine-related myelosuppression in a patient homozygous for TPMT*3A

Abstract

Background. A 50-year-old man who had received a simultaneous pancreas and kidney transplant 9 years earlier developed pancytopenia 3 weeks after starting azathioprine therapy to treat worsening proteinuria suspected to be caused by sirolimus.

Investigations. Laboratory tests, including complete blood counts, measurement of serum levels of vitamin B12 and folate, liver function tests, virological assays, and thiopurine S-methyltransferase (TPMT) genotyping.

Diagnosis. Severe myelosuppression as a consequence of azathioprine therapy in a patient homozygous for the TPMT*3A allele.

Management. Discontinuation of azathioprine, treatment with an erythropoiesis-stimulating agent, red blood cell transfusions, filgrastim (a granulocyte colony-stimulating factor analogue) and folic acid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trend in complete blood counts after starting (green arrows) and stopping (purple arrows) azathioprine therapy.
Figure 2: Azathioprine metabolism.
Figure 3: Role of folate, MTHFR and S-adenosylmethionine in azathioprine metabolism.

References

  1. Lennard, L., Gibson, B. E., Nicole, T. & Lilleyman, J. S. Congenital thiopurine methyltransferase deficiency and 6-mercaptopurine toxicity during treatment for acute lymphoblastic leukaemia. Arch. Dis. Child. 69, 577–579 (1993).

    Article  CAS  Google Scholar 

  2. Relling, M. V. et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 89, 387–391 (2011).

    Article  CAS  Google Scholar 

  3. Otterness, D. et al. Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin. Pharmacol. Ther. 62, 60–73 (1997).

    Article  CAS  Google Scholar 

  4. Lennard, L., Van Loon, J. A., Lilleyman, J. S. & Weinshilboum, R. M. Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin. Pharmacol. Ther. 41, 18–25 (1987).

    Article  CAS  Google Scholar 

  5. Sandborn, W. J. et al. Lack of effect of intravenous administration on time to respond to azathioprine for steroid-treated Crohn's disease. North American Azathioprine Study Group. Gastroenterology 117, 527–535 (1999).

    Article  CAS  Google Scholar 

  6. Elion, G. B. The George Hitchings and Gertrude Elion Lecture. The pharmacology of azathioprine. Ann. NY Acad. Sci. 685, 400–407 (1993).

    Article  CAS  Google Scholar 

  7. Provenzale, D. & Onken, J. E. TPMT genotype screening for patients about to begin azathioprine treatment—a look at costs and potential benefits. Inflamm. Bowel Dis. 11, 1119–1120 (2005).

    Article  Google Scholar 

  8. Cheung, S. T. & Allan, R. N. Mistaken identity: misclassification of TPMT phenotype following blood transfusion. Eur. J. Gastroenterol. Hepatol. 15, 1245–1247 (2003).

    Article  CAS  Google Scholar 

  9. Yates, C. R. et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann. Intern. Med. 126, 608–614 (1997).

    Article  CAS  Google Scholar 

  10. Schaeffeler, E. et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 14, 407–417 (2004).

    Article  CAS  Google Scholar 

  11. Langley, P. G., Underhill, J., Tredger, J. M., Norris, S. & McFarlane, I. G. Thiopurine methyltransferase phenotype and genotype in relation to azathioprine therapy in autoimmune hepatitis. J. Hepatol. 37, 441–447 (2002).

    Article  CAS  Google Scholar 

  12. Evans, W. E. et al. Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J. Clin. Oncol. 19, 2293–2301 (2001).

    Article  CAS  Google Scholar 

  13. Barlow, N. L., Graham, V. & Berg, J. D. Expressing thiopurine S-methyltransferase activity as units per litre of whole-blood overcomes misleading high results in patients with anaemia. Ann. Clin. Biochem. 47, 408–414 (2010).

    Article  CAS  Google Scholar 

  14. Yan, L. et al. Thiopurine methyltransferase polymorphic tandem repeat: genotype-phenotype correlation analysis. Clin. Pharmacol. Ther. 68, 210–219 (2000).

    Article  CAS  Google Scholar 

  15. Chocair, P. R., Duley, J. A., Simmonds, H. A. & Cameron, J. S. The importance of thiopurine methyltransferase activity for the use of azathioprine in transplant recipients. Transplantation 53, 1051–1056 (1992).

    Article  CAS  Google Scholar 

  16. Stocco, G. et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin. Pharmacol. Ther. 85, 164–172 (2009).

    Article  CAS  Google Scholar 

  17. Kurzawski, M., Dziewanowski, K., Lener, A. & Drozdzik, M. TPMT but not ITPA gene polymorphism influences the risk of azathioprine intolerance in renal transplant recipients. Eur. J. Clin. Pharmacol. 65, 533–540 (2009).

    Article  CAS  Google Scholar 

  18. Chalmers, A. H. Studies on the mechanism of formation of 5-mercapto-1-methyl-4-nitroimidazole, a metabolite of the immunosuppressive drug azathioprine. Biochem. Pharmacol. 23, 1891–1901 (1974).

    Article  CAS  Google Scholar 

  19. Panetta, J. C., Evans, W. E. & Cheok, M. H. Mechanistic mathematical modelling of mercaptopurine effets on cell cycle of human acute lymphoblastic leukaemia cells. Br. J. Cancer 94, 93–100 (2006).

    Article  CAS  Google Scholar 

  20. Berns, A., Rubenfeld, S., Rymzo, W. T. Jr & Calabro, J. J. Hazard of combining allopurinol and thiopurine. N. Engl. J. Med. 286, 730–731 (1972).

    CAS  PubMed  Google Scholar 

  21. Qasim, A., Seery, J., Buckley, M. & Morain, C. O. TPMT in the treatment of inflammatory bowel disease with azathioprine. Gut 52, 767 (2003).

    Article  CAS  Google Scholar 

  22. Dubinsky, M. C. et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 118, 705–713 (2000).

    Article  CAS  Google Scholar 

  23. Osterman, M. T., Kundu, R., Lichtenstein, G. R. & Lewis, J. D. Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis. Gastroenterology 130, 1047–1053 (2006).

    Article  CAS  Google Scholar 

  24. Duley, J. A. & Florin, T. H. Thiopurine therapies: problems, complexities, and progress with monitoring thioguanine nucleotides. Ther. Drug Monit. 27, 647–654 (2005).

    Article  CAS  Google Scholar 

  25. Chan, G. L., Erdmann, G. R., Gruber, S. A., Matas, A. J. & Canafax, D. M. Azathioprine metabolism: pharmacokinetics of 6-mercaptopurine, 6-thiouric acid and 6-thioguanine nucleotides in renal transplant patients. J. Clin. Pharmacol. 30, 358–363 (1990).

    Article  CAS  Google Scholar 

  26. Schmaldienst, S. et al. Recombinant human granulocyte colony-stimulating factor after kidney transplantation: a retrospective analysis to evaluate the benefit or risk of immunostimulation. Transplantation 69, 527–531 (2000).

    Article  CAS  Google Scholar 

  27. Scheuermann, T. H., Keeler, C. & Hodsdon, M. E. Consequences of binding an S-adenosylmethionine analogue on the structure and dynamics of the thiopurine methyltransferase protein backbone. Biochemistry 43, 12198–12209 (2004).

    Article  CAS  Google Scholar 

  28. Karas-Kuzelicki, N., Jazbec, J., Milek, M. & Mlinaric-Rascan, I. Heterozygosity at the TPMT gene locus, augmented by mutated MTHFR gene, predisposes to 6-MP related toxicities in childhood ALL patients. Leukemia 23, 971–974 (2009).

    Article  CAS  Google Scholar 

  29. Stocco, G. et al. Prevalence of methylenetetrahydrofolate reductase polymorphisms in young patients with inflammatory bowel disease. Dig. Dis. Sci. 51, 474–479 (2006).

    Article  CAS  Google Scholar 

  30. Breen, D. P., Marinaki, A. M., Arenas, M. & Hayes, P. C. Pharmacogenetic association with adverse drug reactions to azathioprine immunosuppressive therapy following liver transplantation. Liver Transpl. 11, 826–833 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P. Budhiraja and M. Popovtzer contributed equally to researching data for this article, discussion of content, writing, and reviewing and editing of the manuscript before submission.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budhiraja, P., Popovtzer, M. Azathioprine-related myelosuppression in a patient homozygous for TPMT*3A. Nat Rev Nephrol 7, 478–484 (2011). https://doi.org/10.1038/nrneph.2011.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing