Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The role of FGF23 in CKD—with or without Klotho

Abstract

During the past few years, fibroblast growth factor 23 (FGF23) has emerged as a central player of disordered mineral metabolism in patients with chronic kidney disease (CKD). The physiological actions of FGF23 are to promote phosphaturia, decrease production of 1,25-dihydroxyvitamin D and suppress secretion of parathyroid hormone mediated through FGF receptors and the co-receptor Klotho. Recent epidemiological studies demonstrate strong associations between elevated FGF23 levels in patients with CKD and poor clinical outcomes. In patients with end-stage renal disease, markedly increased levels of FGF23 fail to exert Klotho-dependent effects owing to the absence of a functioning kidney and downregulation of the parathyroid complex of Klotho and FGF receptor 1. In this setting, FGF23 may exert a toxic effect on the cardiovascular system in a Klotho-independent manner. Future research should examine whether treatment to attenuate the pathogenic action of FGF23 provides survival benefits in patients with CKD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis, secretion, and structure of FGF23.
Figure 2: Klotho-dependent and Klotho-independent effects of FGF23 in ESRD.

Similar content being viewed by others

References

  1. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  Google Scholar 

  2. Imai, E. et al. Prevalence of chronic kidney disease in the Japanese general population. Clin. Exp. Nephrol. 13, 621–630 (2009).

    Article  Google Scholar 

  3. Block, G. A. et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol. 15, 2208–2218 (2004).

    Article  CAS  Google Scholar 

  4. Slatopolsky, E. & Delmez, J. A. Pathogenesis of secondary hyperparathyroidism. Nephrol. Dial. Transplant. 11 (Suppl. 3), 130–135 (1996).

    Article  CAS  Google Scholar 

  5. Komaba, H. & Fukagawa, M. FGF23-parathyroid interaction: implications in chronic kidney disease. Kidney Int. 77, 292–298 (2010).

    Article  CAS  Google Scholar 

  6. Gutiérrez, O. M. Fibroblast growth factor 23 and disordered vitamin D metabolism in chronic kidney disease: updating the “trade-off” hypothesis. Clin. J. Am. Soc. Nephrol. 5, 1710–1716 (2010).

    Article  Google Scholar 

  7. Parker, B. D. et al. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann. Intern. Med. 152, 640–648 (2010).

    Article  Google Scholar 

  8. Seiler, S. et al. FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol. Dial. Transplant. 25, 3983–3989 (2010).

    Article  CAS  Google Scholar 

  9. Isakova, T. et al. for the Chronic Renal Insufficiency Cohort (CRIC) Study Group. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305, 2432–2439 (2011).

    Article  CAS  Google Scholar 

  10. Kendrick, J. et al. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J. Am. Soc. Nephrol. 22, 1913–1922 (2011).

    Article  CAS  Google Scholar 

  11. Fliser, D. et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J. Am. Soc. Nephrol. 18, 2600–2608 (2007).

    Article  CAS  Google Scholar 

  12. Semba, R. D. et al. Serum fibroblast growth factor-23 and risk of incident chronic kidney disease in older community-dwelling women. Clin. J. Am. Soc. Nephrol. 7, 85–91 (2012).

    Article  CAS  Google Scholar 

  13. Nakano, C. et al. Combined use of vitamin D status and FGF23 for risk stratification of renal outcome. Clin. J. Am. Soc. Nephrol. 7, 810–819 (2012).

    Article  CAS  Google Scholar 

  14. Gutiérrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    Article  Google Scholar 

  15. Jean, G. et al. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol. Dial. Transplant. 24, 2792–2796 (2009).

    Article  CAS  Google Scholar 

  16. Olauson, H. et al. Relation between serum fibroblast growth factor-23 level and mortality in incident dialysis patients: are gender and cardiovascular disease confounding the relationship? Nephrol. Dial. Transplant. 25, 3033–3038 (2010).

    Article  CAS  Google Scholar 

  17. Faul, C. et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121, 4393–4408 (2011).

    Article  CAS  Google Scholar 

  18. Yamashita, T., Yoshioka, M. & Itoh, N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem. Biophys. Res. Commun. 277, 494–498 (2000).

    Article  CAS  Google Scholar 

  19. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000).

  20. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    Article  CAS  Google Scholar 

  21. Benet-Pagès, A. et al. FGF23 is processed by proprotein convertases but not by PHEX. Bone 35, 455–462 (2004).

    Article  Google Scholar 

  22. Takeuchi, Y. et al. Venous sampling for fibroblast growth factor-23 confirms preoperative diagnosis of tumor-induced osteomalacia. J. Clin. Endocrinol. Metab. 89, 3979–3982 (2004).

    Article  CAS  Google Scholar 

  23. Khosravi, A. et al. Determination of the elimination half-life of fibroblast growth factor-23. J. Clin. Endocrinol. Metab. 92, 2374–2377 (2007).

    Article  CAS  Google Scholar 

  24. Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19, 429–435 (2004).

    Article  CAS  Google Scholar 

  25. Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurosu, H. et al. Regulation of fibroblast growth factor-23 signaling by Klotho. J. Biol. Chem. 281, 6120–6123 (2006).

    Article  CAS  Google Scholar 

  27. Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).

    Article  CAS  Google Scholar 

  28. Bai, X., Dinghong, Q., Miao, D., Goltzman, D. & Karaplis, A. C. Klotho ablation converts the biochemical and skeletal alterations in FGF23 (R176Q) transgenic mice to a Klotho-deficient phenotype. Am. J. Physiol. Endocrinol. Metab. 296, E79–E88 (2009).

    Article  CAS  Google Scholar 

  29. Nakatani, T. et al. In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23) -mediated regulation of systemic phosphate homeostasis. FASEB J. 23, 433–441 (2009).

    Article  CAS  Google Scholar 

  30. Weber, T. J., Liu, S., Indridason, O. S. & Quarles, L. D. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J. Bone Miner. Res. 18, 1227–1234 (2003).

    Article  CAS  Google Scholar 

  31. Shimada, T. et al. Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active. J. Clin. Endocrinol. Metab. 95, 578–585 (2010).

    Article  CAS  Google Scholar 

  32. Levin, A. et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 71, 31–38 (2007).

    Article  CAS  Google Scholar 

  33. Shigematsu, T. et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am. J. Kidney Dis. 44, 250–256 (2004).

    Article  CAS  Google Scholar 

  34. Gutierrez, O. et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J. Am. Soc. Nephrol. 16, 2205–2215 (2005).

    Article  CAS  Google Scholar 

  35. Pereira, R. C. et al. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone 45, 1161–1168 (2009).

    Article  CAS  Google Scholar 

  36. Hasegawa, H. et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 78, 975–980 (2010).

    Article  CAS  Google Scholar 

  37. Isakova, T. et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79, 1370–1378 (2011).

    Article  CAS  Google Scholar 

  38. Ferrari, S. L., Bonjour, J. P. & Rizzoli, R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab. 90, 1519–1524 (2005).

    Article  CAS  Google Scholar 

  39. Burnett, S. M. et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J. Bone Miner. Res. 21, 1187–1196 (2006).

    Article  CAS  Google Scholar 

  40. Antoniucci, D. M., Yamashita, T. & Portale, A. A. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J. Clin. Endocrinol. Metab. 91, 3144–3149 (2006).

    Article  CAS  Google Scholar 

  41. Nishida, Y. et al. Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int. 70, 2141–2147 (2006).

    Article  CAS  Google Scholar 

  42. Ito, N. et al. Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J. Bone Miner. Metab. 25, 419–422 (2007).

    Article  CAS  Google Scholar 

  43. Oliveira, R. B. et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin. J. Am. Soc. Nephrol. 5, 286–291 (2010).

    Article  CAS  Google Scholar 

  44. Gonzalez-Parra, E. et al. Lanthanum carbonate reduces FGF23 in chronic kidney disease stage 3 patients. Nephrol. Dial. Transplant. 26, 2567–2571 (2011).

    Article  CAS  Google Scholar 

  45. Yilmaz, M. I. et al. Comparison of calcium acetate and sevelamer on vascular function and fibroblast growth factor 23 in CKD patients: a randomized clinical trial. Am. J. Kidney Dis. 59, 177–185 (2012).

    Article  CAS  Google Scholar 

  46. Isakova, T. et al. Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol. Dial. Transplant. 26, 584–591 (2011).

    Article  CAS  Google Scholar 

  47. Urena Torres, P., Friedlander, G., de Vernejoul, M. C., Silve, C. & Prié, D. Bone mass does not correlate with the serum fibroblast growth factor 23 in hemodialysis patients. Kidney Int. 73, 102–107 (2008).

    Article  CAS  Google Scholar 

  48. Bhan, I. et al. Post-transplant hypophosphatemia: tertiary 'hyper-phosphatoninism'? Kidney Int. 70, 1486–1494 (2006).

    Article  CAS  Google Scholar 

  49. Evenepoel, P., Naesens, M., Claes, K., Kuypers, D. & Vanrenterghem, Y. Tertiary 'hyperphosphatoninism' accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am. J. Transplant. 7, 1193–1200 (2007).

    Article  CAS  Google Scholar 

  50. Kestenbaum, B. et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J. Am. Soc. Nephrol. 16, 520–528 (2005).

    Article  CAS  Google Scholar 

  51. Menon, V. et al. Relationship of phosphorus and calcium-phosphorus product with mortality in CKD. Am. J. Kidney Dis. 46, 455–463 (2005).

    Article  CAS  Google Scholar 

  52. Tonelli, M. et al. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112, 2627–2633 (2005).

    Article  CAS  Google Scholar 

  53. Koh, N. et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem. Biophys. Res. Commun. 280, 1015–1020 (2001).

    Article  CAS  Google Scholar 

  54. Fukagawa, M. & Kazama, J. J. With or without the kidney: the role of FGF23 in CKD. Nephrol. Dial. Transplant. 20, 1295–1298 (2005).

    Article  CAS  Google Scholar 

  55. Kazama, J. J. et al. Pretreatment serum FGF-23 levels predict the efficacy of calcitriol therapy in dialysis patients. Kidney Int. 67, 1120–1125 (2005).

    Article  CAS  Google Scholar 

  56. Nakanishi, S. et al. Serum fibroblast growth factor-23 levels predict the future refractory hyperparathyroidism in dialysis patients. Kidney Int. 67, 1171–1178 (2005).

    Article  CAS  Google Scholar 

  57. Nishi, H. et al. Intravenous calcitriol therapy increases serum concentration of fibroblast growth factor-23 in dialysis patients with secondary hyperparathyroidism. Nephron Clin. Pract. 101, c94–c99 (2005).

    Article  CAS  Google Scholar 

  58. Wesseling-Perry, K. et al. Calcitriol and doxercalciferol are equivalent in controlling bone turnover, suppressing parathyroid hormone, and increasing fibroblast growth factor-23 in secondary hyperparathyroidism. Kidney Int. 79, 112–119 (2011).

    Article  CAS  Google Scholar 

  59. Hansen, D., Rasmussen, K., Pedersen, S. M., Rasmussen, L. M. & Brandi, L. Changes in fibroblast growth factor 23 during treatment of secondary hyperparathyroidism with alfacalcidol or paricalcitol. Nephrol. Dial. Transplant. 27, 2263–2269 (2012).

    Article  CAS  Google Scholar 

  60. Wetmore, J. B., Liu, S., Krebill, R., Menard, R. & Quarles, L. D. Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD. Clin. J. Am. Soc. Nephrol. 5, 110–116 (2010).

    Article  CAS  Google Scholar 

  61. Koizumi, M., Komaba, H., Nakanishi, S., Fujimori, A. & Fukagawa, M. Cinacalcet treatment and serum FGF23 levels in haemodialysis patients with secondary hyperparathyroidism. Nephrol. Dial. Transplant. 27, 784–790 (2012).

    Article  CAS  Google Scholar 

  62. Sato, T. et al. Total parathyroidectomy reduces elevated circulating fibroblast growth factor 23 in advanced secondary hyperparathyroidism. Am. J. Kidney Dis. 44, 481–487 (2004).

    Article  CAS  Google Scholar 

  63. Koiwa, F. et al. Sevelamer hydrochloride and calcium bicarbonate reduce serum fibroblast growth factor 23 levels in dialysis patients. Ther. Apher. Dial. 9, 336–339 (2005).

    Article  CAS  Google Scholar 

  64. Shigematsu, T. & Negi, S. Combined therapy with lanthanum carbonate and calcium carbonate for hyperphosphatemia decreases serum FGF-23 level independently of calcium and PTH (COLC Study). Nephrol. Dial. Transplant. 27, 1050–1054 (2012).

    Article  CAS  Google Scholar 

  65. Takeda, Y. et al. Effect of intravenous saccharated ferric oxide on serum FGF23 and mineral metabolism in hemodialysis patients. Am. J. Nephrol. 33, 421–426 (2011).

    Article  CAS  Google Scholar 

  66. Lavi-Moshayoff, V., Wasserman, G., Meir, T., Silver, J. & Naveh-Many, T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Renal Physiol. 299, F882–F889 (2010).

    Article  CAS  Google Scholar 

  67. López, I. et al. Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int. 80, 475–482 (2011).

    Article  Google Scholar 

  68. Liu, S. et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J. Am. Soc. Nephrol. 17, 1305–1315 (2006).

    Article  CAS  Google Scholar 

  69. Komaba, H. et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 77, 232–238 (2010).

    Article  CAS  Google Scholar 

  70. Kumata, C. et al. Involvement of alpha-klotho and fibroblast growth factor receptor in the development of secondary hyperparathyroidism. Am. J. Nephrol. 31, 230–238 (2010).

    Article  CAS  Google Scholar 

  71. Galitzer, H., Ben-Dov, I. Z., Silver, J. & Naveh-Many, T. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int. 77, 211–218 (2010).

    Article  CAS  Google Scholar 

  72. Canalejo, R. et al. FGF23 fails to inhibit uremic parathyroid glands. J. Am. Soc. Nephrol. 21, 1125–1135 (2010).

    Article  CAS  Google Scholar 

  73. Hofman-Bang, J., Martuseviciene, G., Santini, M. A., Olgaard, K. & Lewin, E. Increased parathyroid expression of klotho in uremic rats. Kidney Int. 78, 1119–1127 (2010).

    Article  CAS  Google Scholar 

  74. Martuseviciene, G., Hofman-Bang, J., Clausen, T., Olgaard, K. & Lewin, E. The secretory response of parathyroid hormone to acute hypocalcemia in vivo is independent of parathyroid glandular sodium/potassium-ATPase activity. Kidney Int. 79, 742–748 (2011).

    Article  CAS  Google Scholar 

  75. Goetz, R. et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc. Natl Acad. Sci. USA 107, 407–412 (2010).

    Article  CAS  Google Scholar 

  76. Isakova, T. et al. Phosphorus binders and survival on hemodialysis. J. Am. Soc. Nephrol. 20, 388–396 (2009).

    Article  CAS  Google Scholar 

  77. Wetmore, J. B. et al. Elevated FGF23 levels are associated with impaired calcium-mediated suppression of PTH in ESRD. J. Clin. Endocrinol. Metab. 96, E57–E64 (2011).

    Article  CAS  Google Scholar 

  78. Okuno, S. et al. Relationship between parathyroid gland size and responsiveness to maxacalcitol therapy in patients with secondary hyperparathyroidism. Nephrol. Dial. Transplant. 18, 2613–2621 (2003).

    Article  CAS  Google Scholar 

  79. Komaba, H. et al. Cinacalcet effectively reduces parathyroid hormone secretion and gland volume regardless of pretreatment gland size in patients with secondary hyperparathyroidism. Clin. J. Am. Soc. Nephrol. 5, 2305–2314 (2010).

    Article  CAS  Google Scholar 

  80. Teng, M. et al. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J. Am. Soc. Nephrol. 16, 1115–1125 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to discussion of content for the article, researching data to include in the manuscript and reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Masafumi Fukagawa.

Ethics declarations

Competing interests

H. Komaba has received speakers bureau honoraria from Bayer Yakuhin, Chugai Pharmaceutical and Kyowa Hakko Kirin. M. Fukagawa has received speakers bureau honoraria and grant/research support from Bayer Yakuhin, Chugai Pharmaceutical and Kyowa Hakko Kirin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komaba, H., Fukagawa, M. The role of FGF23 in CKD—with or without Klotho. Nat Rev Nephrol 8, 484–490 (2012). https://doi.org/10.1038/nrneph.2012.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.116

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research