Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The podocyte slit diaphragm—from a thin grey line to a complex signalling hub

This article has been updated

Abstract

The architectural design of our kidneys is amazingly complex, and culminates in the 3D structure of the glomerular filter. During filtration, plasma passes through a sieve consisting of a fenestrated endothelium and a broad basement membrane before it reaches the most unique part, the slit diaphragm, a specialized type of intercellular junction that connects neighbouring podocyte foot processes. When podocytes become stressed, irrespective of the causative stimulus, they undergo foot process effacement and loss of slit diaphragms—two key steps leading to proteinuria. Thus, proteinuria is the unifying denominator of a broad spectrum of podocytopathies. With the rising prevalence of chronic kidney disease and the fact that glomerular diseases account for the majority of patients with end-stage renal disease, further investigation and elucidation of this unique structure is of paramount importance. This Review recounts how perception of the slit diaphragm has changed over time as a result of intense research, from its first anatomical description as a thin intercellular connection, to an appreciation of its role as a dynamic signalling hub. These observations led to the introduction of novel concepts in podocyte biology, which could pave the way to development of highly desired, specific therapeutic strategies for glomerular diseases.

Key Points

  • The slit diaphragm is a unique intercellular contact point that integrates the structural components of various other cell junction types, including tight, adhesion, gap and neuronal junctions

  • We propose that the slit diaphragm should be classified as a unique category of intercellular junction

  • Slit diaphragm functioning is impaired in all monogenic inherited proteinuric diseases

  • The slit diaphragm executes several highly specialized functions: macromolecular filtering, connecting the slit diaphragm to the actin cytoskeleton and initiating signalling pathways that regulate the plasticity of foot processes

  • The slit diaphragm also mediates calcium signalling, mechanosensation, regulation of the cytoskeleton, cell polarity, cell survival, endocytosis and transcription

  • Further research into this delicate structure holds the potential to discover novel treatment options for proteinuria and chronic kidney diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of major discoveries relating to the slit diaphragm.
Figure 2: Electron micrographs of the slit diaphragm and surrounding structures.
Figure 3: Molecular components of the podocyte slit diaphragm.
Figure 4: A comprehensive overview of signalling pathways converging at the slit diaphragm.

Similar content being viewed by others

Change history

  • 25 November 2012

    In the original 'about the authors section', author affiliations for Christoph Schell and Tobias Huber were not complete. This has been corrected for the online version of the article.

References

  1. Pavenstädt, H., Kriz, W. & Kretzler, M. Cell biology of the glomerular podocyte. Physiol. Rev. 83, 253–307 (2003).

    Article  PubMed  Google Scholar 

  2. Potter, E. L. Development of the human glomerulus. Arch. Pathol. 80, 241–255 (1965).

    CAS  PubMed  Google Scholar 

  3. Pak Poy, R. K. & Robertson, J. S. Electron microscopy of the avian renal glomerulus. J. Biophys. Biochem. Cytol. 3, 183–192 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pak Poy, R. K. Electron microscopy of the marsupial renal glomerulus. Aust. J. Exp. Biol. Med. Sci. 35, 437–447 (1957).

    Article  CAS  PubMed  Google Scholar 

  5. Farquhar, M. G. & Palade, G. E. Glomerular permeability. II. Ferritin transfer across the glomerular capillary wall in nephrotic rats. J. Exp. Med. 114, 699–716 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vernier, R. L., Papermaster, B. W. & Good, R. A. Aminonucleoside nephrosis. I. Electron microscopic study of the renal lesion in rats. J. Exp. Med. 109, 115–126 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Caulfield, J. P. & Farquhar, M. G. The permeability of glomerular capillaries to graded dextrans. Identification of the basement membrane as the primary filtration barrier. J. Cell Biol. 63, 883–903 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Farquhar, M. G., Wissig, S. L. & Palade, G. E. Glomerular permeability. I. Ferritin transfer across the normal glomerular capillary wall. J. Exp. Med. 113, 47–66 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Venkatachalam, M. A., Cotran, R. S. & Karnovsky, M. J. An ultrastructural study of glomerular permeability in aminonucleoside nephrosis using catalase as a tracer protein. J. Exp. Med. 132, 1168–1180 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamada, E. The fine structure of the renal glomerulus of the mouse. J. Biophys. Biochem. Cytol. 1, 551–566 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Venkatachalam, M. A., Karnovsky, M. J., Fahimi, H. D. & Cotran, R. S. An ultrastructural study of glomerular permeability using catalase and peroxidase as tracer proteins. J. Exp. Med. 132, 1153–1167 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hall, B. V. A slit pore theory of capillary filtration based on electron micrographic data on the filtration pathway through the cellular layers of mammalian glomerular capillary walls. Trans. Am. Microsc. Soc. 96, 413–438 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. Rodewald, R. & Karnovsky, M. J. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J. Cell Biol. 60, 423–433 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karnovsky, M. J. & Ryan, G. B. Substructure of the glomerular slit diaphragm in freeze-fractured normal rat kidney. J. Cell Biol. 65, 233–236 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robson, A. M., Giangiacomo, J., Kienstra, R. A., Naqvi, S. T. & Ingelfinger, J. R. Normal glomerular permeability and its modification by minimal change nephrotic syndrome. J. Clin. Invest. 54, 1190–1199 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caulfield, J. P., Reid, J. J. & Farquhar, M. G. Alterations of the glomerular epithelium in acute aminonucleoside nephrosis. Evidence for formation of occluding junctions and epithelial cell detachment. Lab. Invest. 34, 43–59 (1976).

    CAS  PubMed  Google Scholar 

  17. Wiggins, R. C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kestila, M. et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Wartiovaara, J. et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J. Clin. Invest. 114, 1475–1483 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gagliardini, E., Conti, S., Benigni, A., Remuzzi, G. & Remuzzi, A. Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. J. Am. Soc. Nephrol. 21, 2081–2089 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ruotsalainen, V. et al. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc. Natl Acad. Sci. USA 96, 7962–7967 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Donoviel, D. B. et al. Proteinuria and perinatal lethality in mice lacking Neph1, a novel protein with homology to nephrin. Mol. Cell Biol. 21, 4829–4836 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ciani, L., Patel, A., Allen, N. D. & ffrench-Constant, C. Mice lacking the giant protocadherin mFAT1 exhibit renal slit junction abnormalities and a partially penetrant cyclopia and anophthalmia phenotype. Mol. Cell Biol. 23, 3575–3582 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reiser, J. et al. TrpC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Winn, M. P. et al. A mutation in the TrpC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Shih, N. Y. et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286, 312–315 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Hinkes, B. et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat. Genet. 38, 1397–1405 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaplan, J. M. et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Ozaltin, F. et al. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am. J. Hum. Genet. 89, 139–147 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diomedi-Camassei, F. et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J. Am. Soc. Nephrol. 18, 2773–2780 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Heeringa, S. F. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 121, 2013–2024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown, E. J. et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet. 42, 72–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Mele, C. et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 295–306.

  36. Akilesh, S. et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J. Clin. Invest. 121, 4127–4137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gupta, I. R. et al. ARHGDIA: a novel gene implicated in nephrotic syndrome. J. Med. Genet. 50, 330–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Pelletier, J. et al. Germline mutations in the Wilms' tumour suppressor gene are associated with abnormal urogenital development in Denys–Drash syndrome. Cell 67, 437–447 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Zenker, M. et al. Human laminin β2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum. Mol. Genet. 13, 2625–2632 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Vidal, F. et al. Integrin β 4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nat. Genet. 10, 229–234 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Berkovic, S. F. et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am. J. Hum. Genet. 82, 673–684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lopez, L. C. et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am. J. Hum. Genet. 79, 1125–1129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goto, Y., Nonaka, I. & Horai, S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651–653 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Pavlakis, S. G., Phillips, P. C., DiMauro, S., DeVivo, D. C. & Rowland, L. P. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann. Neurol. 16, 481–488 (1984).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, H. et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat. Genet. 19, 51–55 (1998).

    Article  PubMed  Google Scholar 

  46. Dreyer, S. D. et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat. Genet. 19, 47–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Boerkoel, C. F. et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat. Genet. 30, 215–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Bick, D. & Dimmock, D. Whole exome and whole genome sequencing. Curr. Opin. Paediatr. 23, 594–600 (2011).

    Article  Google Scholar 

  49. Mangos, S. & Reiser, J. Fishing for new glomerular disease-related genes. J. Am. Soc. Nephrol. 22, 1960–1962 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Greka, A. & Mundel, P. Cell biology and pathology of podocytes. Annu. Rev. Physiol. 74, 299–323 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Moeller, M. J., Sanden, S. K., Soofi, A., Wiggins, R. C. & Holzman, L. B. Podocyte-specific expression of Cre recombinase in transgenic mice. Genesis 35, 39–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Eremina, V., Wong, M. A., Cui, S., Schwartz, L. & Quaggin, S. E. Glomerular-specific gene excision in vivo. J. Am. Soc. Nephrol. 13, 788–793 (2002).

    CAS  PubMed  Google Scholar 

  53. Huber, T. B. & Benzing, T. The slit diaphragm: a signalling platform to regulate podocyte function. Curr. Opin. Nephrol. Hypertens. 14, 211–216 (2005).

    Article  PubMed  Google Scholar 

  54. Yaddanapudi, S. et al. CD2AP in mouse and human podocytes controls a proteolytic programme that regulates cytoskeletal structure and cellular survival. J. Clin. Invest. 121, 3965–3980 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schnabel, E., Anderson, J. M. & Farquhar, M. G. The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J. Cell Biol. 111, 1255–1263 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Reiser, J., Kriz, W., Kretzler, M. & Mundel, P. The glomerular slit diaphragm is a modified adherens junction. J. Am. Soc. Nephrol. 11, 1–8 (2000).

    CAS  PubMed  Google Scholar 

  57. Lehtonen, S., Lehtonen, E., Kudlicka, K., Holthofer, H. & Farquhar, M. G. Nephrin forms a complex with adherens junction proteins and CASK in podocytes and in Madin–Darby canine kidney cells expressing nephrin. Am. J. Pathol. 165, 923–936 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fukasawa, H., Bornheimer, S., Kudlicka, K. & Farquhar, M. G. Slit diaphragms contain tight junction proteins. J. Am. Soc. Nephrol. 20, 1491–1503 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sellin, L. et al. NEPH1 defines a novel family of podocin interacting proteins. FASEB J. 17, 115–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Yaoita, E. et al. Upregulation of connexin43 in glomerular podocytes in response to injury. Am. J. Pathol. 161, 1597–1606 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pierchala, B. A., Munoz, M. R. & Tsui, C. C. Proteomic analysis of the slit diaphragm complex: CLIC5 is a protein critical for podocyte morphology and function. Kidney Int. 78, 868–882 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reeves, W., Caulfield, J. P. & Farquhar, M. G. Differentiation of epithelial foot processes and filtration slits: sequential appearance of occluding junctions, epithelial polyanion, and slit membranes in developing glomeruli. Lab. Invest. 39, 90–100 (1978).

    CAS  PubMed  Google Scholar 

  63. Quaggin, S. E. & Kreidberg, J. A. Development of the renal glomerulus: good neighbors and good fences. Development 135, 609–620 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Ruotsalainen, V. et al. Role of nephrin in cell junction formation in human nephrogenesis. Am. J. Pathol. 157, 1905–1916 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Goto, S. et al. Involvement of R-cadherin in the early stage of glomerulogenesis. J. Am. Soc. Nephrol. 9, 1234–1241 (1998).

    CAS  PubMed  Google Scholar 

  66. Dahl, U. et al. Genetic dissection of cadherin function during nephrogenesis. Mol. Cell Biol. 22, 1474–1487 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shono, A. et al. Podocin participates in the assembly of tight junctions between foot processes in nephrotic podocytes. J. Am. Soc. Nephrol. 18, 2525–2533 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Kurihara, H., Anderson, J. M., Kerjaschki, D. & Farquhar, M. G. The altered glomerular filtration slits seen in puromycin aminonucleoside nephrosis and protamine sulphate-treated rats contain the tight junction protein ZO-1. Am. J. Pathol. 141, 805–816 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kramer-Zucker, A. G., Wiessner, S., Jensen, A. M. & Drummond, I. A. Organization of the pronephric filtration apparatus in zebrafish requires nephrin, podocin and the FERM domain protein mosaic eyes. Dev. Biol. 285, 316–329 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, F., Zhao, Y., Chao, Y., Muir, K. & Han, Z. Cubilin and amnionless mediate protein reabsorption in Drosophila nephrocytes. J. Am. Soc. Nephrol. 24, 209–216 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Weavers, H. et al. The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457, 322–326 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Zhuang, S. et al. Sns and Kirre, the Drosophila orthologues of nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes. Development 136, 2335–2344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Na, J. & Cagan, R. The Drosophila nephrocyte: back on stage. J. Am. Soc. Nephrol. 24, 161–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Helmstädter, M. et al. Functional study of mammalian Neph proteins in Drosophila melanogaster. PLoS ONE 7, e40300 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Simons, M. & Huber, T. B. Flying podocytes. Kidney Int. 75, 455–457 (2009).

    Article  PubMed  Google Scholar 

  76. Shen, K., Fetter, R. D. & Bargmann, C. I. Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 116, 869–881 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Neumann-Haefelin, E. et al. A model organism approach: defining the role of Neph proteins as regulators of neuron and kidney morphogenesis. Hum. Mol. Genet. 19, 2347–2359 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Wanner, N. et al. Functional and spatial analysis of C. elegans SYG-1 and SYG-2, orthologues of the Neph/nephrin cell adhesion module directing selective synaptogenesis. PLoS ONE 6, e23598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nagai, M. et al. Coxsackievirus and adenovirus receptor, a tight junction membrane protein, is expressed in glomerular podocytes in the kidney. Lab. Invest. 83, 901–911 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Lehtonen, S. et al. Cell junction-associated proteins IQGAP1, MAGI-2, CASK, spectrins, and α-actinin are components of the nephrin multiprotein complex. Proc. Natl Acad. Sci. USA 102, 9814–9819 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hirabayashi, S. et al. MAGI-1 is a component of the glomerular slit diaphragm that is tightly associated with nephrin. Lab. Invest. 85, 1528–1543 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Kato, H. et al. Wnt/β-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J. Biol. Chem. 286, 26003–26015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Moeller, M. J. et al. Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. EMBO J. 23, 3769–3779 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Inoue, T. et al. FAT is a component of glomerular slit diaphragms. Kidney Int. 59, 1003–1012 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Sawai, K. et al. Redistribution of connexin43 expression in glomerular podocytes predicts poor renal prognosis in patients with type 2 diabetes and overt nephropathy. Nephrol. Dial. Transplant. 21, 2472–2477 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Boerries, M. et al. Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks. Kidney Int. 83, 1052–1064 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Verma, R. et al. Fyn binds to and phosphorylates the kidney slit diaphragm component nephrin. J. Biol. Chem. 278, 20716–20723 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Huber, T. B. et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signalling. Mol. Cell Biol. 23, 4917–4928 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Khoshnoodi, J. et al. Nephrin promotes cell–cell adhesion through homophilic interactions. Am. J. Pathol. 163, 2337–2346 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gerke, P., Huber, T. B., Sellin, L., Benzing, T. & Walz, G. Homodimerization and heterodimerization of the glomerular podocyte proteins nephrin and Neph1. J. Am. Soc. Nephrol. 14, 918–926 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Barletta, G. M., Kovari, I. A., Verma, R. K., Kerjaschki, D. & Holzman, L. B. Nephrin and Neph1 co-localize at the podocyte foot process intercellular junction and form cis hetero-oligomers. J. Biol. Chem. 278, 19266–19271 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Hartleben, B. et al. Neph–nephrin proteins bind the Par3–Par6-atypical protein kinase C (aPKC) complex to regulate podocyte cell polarity. J. Biol. Chem. 283, 23033–23038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huber, T. B. et al. Molecular basis of the functional podocin–nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum. Mol. Genet. 12, 3397–3405 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Garg, P., Verma, R., Nihalani, D., Johnstone, D. B. & Holzman, L. B. Neph1 cooperates with nephrin to transduce a signal that induces actin polymerization. Mol. Cell Biol. 27, 8698–8712 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Huang, M., Gu, G., Ferguson, E. L. & Chalfie, M. A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378, 292–295 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Huber, T. B. et al. Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc. Natl Acad. Sci. USA 103, 17079–17086 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schwarz, K. et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J. Clin. Invest. 108, 1621–1629 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huber, T. B., Kottgen, M., Schilling, B., Walz, G. & Benzing, T. Interaction with podocin facilitates nephrin signalling. J. Biol. Chem. 276, 41543–41546 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Liu, G. et al. Neph1 and nephrin interaction in the slit diaphragm is an important determinant of glomerular permeability. J. Clin. Invest. 112, 209–221 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Palmen, T. et al. Interaction of endogenous nephrin and CD2-associated protein in mouse epithelial M-1 cell line. J. Am. Soc. Nephrol. 13, 1766–1772 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Rantanen, M. et al. Nephrin TRAP mice lack slit diaphragms and show fibrotic glomeruli and cystic tubular lesions. J. Am. Soc. Nephrol. 13, 1586–1594 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Miner, J. H. Life without nephrin: it's for the birds. J. Am. Soc. Nephrol. 23, 369–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Casotti, G. & Braun, E. J. Functional morphology of the glomerular filtration barrier of Gallus gallus. J. Morphol. 228, 327–334 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Dantzler, W. H. Significance of comparative studies for renal physiology. Am. J. Physiol. 238, F437–F444 (1980).

    CAS  PubMed  Google Scholar 

  105. Endlich, N. & Endlich, K. The challenge and response of podocytes to glomerular hypertension. Semin. Nephrol. 32, 327–341 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Sachs, N. et al. Blood pressure influences end-stage renal disease of Cd151 knockout mice. J. Clin. Invest. 122, 348–358 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Dworkin, L. D., Hostetter, T. H., Rennke, H. G. & Brenner, B. M. Haemodynamic basis for glomerular injury in rats with desoxycorticosterone–salt hypertension. J. Clin. Invest. 73, 1448–1461 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Anderson, S., Meyer, T. W., Rennke, H. G. & Brenner, B. M. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J. Clin. Invest. 76, 612–619 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moller, C. C., Flesche, J. & Reiser, J. Sensitizing the slit diaphragm with TrpC6 ion channels. J. Am. Soc. Nephrol. 20, 950–953 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Hartleben, B. et al. aPKCλ/ι and aPKCζ contribute to podocyte differentiation and glomerular maturation. J. Am. Soc. Nephrol. 24, 253–267 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Huber, T. B. et al. Loss of podocyte aPKCλ/ι causes polarity defects and nephrotic syndrome. J. Am. Soc. Nephrol. 20, 798–806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hartleben, B. et al. Role of the polarity protein Scribble for podocyte differentiation and maintenance. PLoS ONE 7, e36705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sugimoto, H. et al. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J. Biol. Chem. 278, 12605–12608 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest. 111, 707–716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mattot, V. et al. Loss of the VEGF164 and VEGF188 isoforms impairs postnatal glomerular angiogenesis and renal arteriogenesis in mice. J. Am. Soc. Nephrol. 13, 1548–1560 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Foster, R. R. et al. Functional evidence that vascular endothelial growth factor may act as an autocrine factor on human podocytes. Am. J. Physiol. Renal Physiol. 284, F1263–F1273 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Foster, R. R., Saleem, M. A., Mathieson, P. W., Bates, D. O. & Harper, S. J. Vascular endothelial growth factor and nephrin interact and reduce apoptosis in human podocytes. Am. J. Physiol. Renal Physiol. 288, F48–F57 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Sison, K. et al. Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 signalling. J. Am. Soc. Nephrol. 21, 1691–1701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jin, J. et al. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell 151, 384–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Quack, I. et al. PKC α mediates β-arrestin2-dependent nephrin endocytosis in hyperglycaemia. J. Biol. Chem. 286, 12959–12970 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Verma, R. et al. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J. Clin. Invest. 116, 1346–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lahdenpera, J. et al. Clustering-induced tyrosine phosphorylation of nephrin by Src family kinases. Kidney Int. 64, 404–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Kurihara, H., Anderson, J. M. & Farquhar, M. G. Increased Tyr phosphorylation of ZO-1 during modification of tight junctions between glomerular foot processes. Am. J. Physiol. 268, F514–F524 (1995).

    CAS  PubMed  Google Scholar 

  124. Li, H., Lemay, S., Aoudjit, L., Kawachi, H. & Takano, T. SRC-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin. J. Am. Soc. Nephrol. 15, 3006–3015 (2004).

    Article  PubMed  Google Scholar 

  125. Zhu, J. et al. Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes. Kidney Int. 73, 556–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, S. Y. et al. c-mip impairs podocyte proximal signalling and induces heavy proteinuria. Sci. Signal. 3, ra39 (2010).

    PubMed  PubMed Central  Google Scholar 

  127. Audard, V. et al. Occurrence of minimal change nephrotic syndrome in classical Hodgkin lymphoma is closely related to the induction of c-mip in Hodgkin–Reed Sternberg cells and podocytes. Blood 115, 3756–3762 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Aoudjit, L. et al. Podocyte protein, nephrin, is a substrate of protein tyrosine phosphatase 1B. J. Signal Transduct. 2011, 376543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wharram, B. L. et al. Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate. J. Clin. Invest. 106, 1281–1290 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K. & Mundel, P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17, 428–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jones, N. et al. Nck proteins maintain the adult glomerular filtration barrier. J. Am. Soc. Nephrol. 20, 1533–1543 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jones, N. et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature 440, 818–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Schell, C. et al. N-WASP Is required for stabilization of podocyte foot processes. J. Am. Soc. Nephrol. 24, 713–721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Harita, Y. et al. Phosphorylation of nephrin triggers Ca2+ signalling by recruitment and activation of phospholipase C-γ1. J. Biol. Chem. 284, 8951–8962 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kanda, S. et al. Tyrosine phosphorylation-dependent activation of TrpC6 regulated by PLC-γ1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis. Mol. Biol. Cell 22, 1824–1835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Vanhaesebroeck, B., Stephens, L. & Hawkins, P. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 13, 195–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Hara, K. et al. 1-Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells. Proc. Natl Acad. Sci. USA 91, 7415–7419 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Zhou, B. P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat. Cell Biol. 3, 245–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Viglietto, G. et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nat. Med. 8, 1136–1144 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Haemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12, 2488–2498 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Takano, Y. et al. Transcriptional suppression of nephrin in podocytes by macrophages: roles of inflammatory cytokines and involvement of the PI3K/Akt pathway. FEBS Lett. 581, 421–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Qin, X. S. et al. Phosphorylation of nephrin triggers its internalization by raft-mediated endocytosis. J. Am. Soc. Nephrol. 20, 2534–2545 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Quack, I. et al. β-Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity. Proc. Natl Acad. Sci. USA 103, 14110–14115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Waters, A. M. et al. Notch promotes dynamin-dependent endocytosis of nephrin. J. Am. Soc. Nephrol. 23, 27–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Bechtel, W. et al. Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis. J. Am. Soc. Nephrol. 24, 727–743 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Soda, K. et al. Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J. Clin. Invest. 122, 4401–4411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Volker, L. A. et al. Comparative analysis of Neph gene expression in mouse and chicken development. Histochem. Cell Biol. 137, 355–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Russo, L. M. et al. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int. 71, 504–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Arif, E. et al. Motor protein Myo1c is a podocyte protein that facilitates the transport of slit diaphragm protein Neph1 to the podocyte membrane. Mol. Cell Biol. 31, 2134–2150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mallik, L. et al. Solution structure analysis of cytoplasmic domain of podocyte protein Neph1 using small/wide angle x-ray scattering (SWAXS). J. Biol. Chem. 287, 9441–9453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Greka, A. & Mundel, P. Cell biology and pathology of podocytes. Annu. Rev. Physiol. 74, 299–323 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. George, B. & Holzman, L. B. Signalling from the podocyte intercellular junction to the actin cytoskeleton. Semin. Nephrol. 32, 307–318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kim, J. M. et al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300, 1298–1300 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all podocyte researchers whose interesting work and ideas could not be described in more detail owing to space limitations. The work in T. B. Huber's laboratory has been generously supported by grant number KFO208 from the DFG (German Research Foundation) to F. Grahammer and T. B. Huber, the Excellence Initiative of the German Federal and State Governments (grant numbers EXC 294 to T. B. Huber and GSC-4 (Spemann Graduate School of Biology and Medicine) to C. Schell and T. B. Huber), the Else Kröner Fresenius Stiftung (F. Grahammer, T. B. Huber), the Fritz Thyssen Stiftung (F. Grahammer, T. B. Huber) and the BMBF (Federal Ministry of Education and Research) Gerontosys II—NephAge (T. B. Huber).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching the data for the article, discussions of its content, writing the article and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Tobias B. Huber.

Ethics declarations

Competing interests

T. B. Huber declares that he receives project-specific grant funding from Pfizer Pharma and has acted as a consultant for Abbott Pharma and Pfizer Pharma. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grahammer, F., Schell, C. & Huber, T. The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. Nat Rev Nephrol 9, 587–598 (2013). https://doi.org/10.1038/nrneph.2013.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing