Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal albumin filtration: alternative models to the standard physical barriers

Abstract

Human kidneys produce more than 4 million litres of virtually protein-free primary urine in a lifetime. In healthy individuals, the sieving process is accomplished by the glomerular filter without the smallest sign of clogging, even in old age. How nature accomplishes this extraordinary task is a mystery, but unravelling the functioning of the glomerular filter is important. The basic principles that govern glomerular filtration are probably also true for peripheral filtering by fenestrated capillaries. In addition, understanding the sieving process is a prerequisite to understanding the pathogenesis of proteinuria (that is, the leakage of plasma proteins into the urine). Proteinuria is the hallmark of glomerular disease and a major risk factor for systemic cardiovascular complications, a fact that emphasizes the relationship between the glomerular and peripheral filtering capillaries. In this Review, we briefly summarize the major models that have been proposed for the mechanisms of glomerular filtration and discuss their strengths and limitations. A special emphasis is placed on the 'electrokinetic model' that we have proposed, a model that could potentially resolve many of the seemingly strange characteristics of the glomerular filtration barrier.

Key Points

  • The functioning of the glomerular filter is still not completely understood

  • The glomerular filter is an excellent model system for filtering capillaries

  • Several models for glomerular filtration have been proposed and have made major contributions to our understanding of glomerular filtration

  • The electrokinetic model proposes that a local electrical field is established across the glomerular filter by filtration (that is, 'streaming potential'); this electrical field prevents plasma proteins from entering or crossing the glomerular filter

  • The electrokinetic model can potentially provide mechanistic explanations to several as yet unresolved characteristics of the glomerular filtration barrier (GFB)

  • A large body of experimental data has been published that is compatible with the notion of a notable streaming potential across the GFB, but more studies are needed

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The filtering glomerulus.
Figure 2: The electrokinetic model.
Figure 3: Charge selectivity.
Figure 4: Concentration polarization in multilayered filter systems.
Figure 5: Schematic of the pore model.
Figure 6: Schematic of the gel hypothesis.
Figure 7: The gel permeation hypothesis.

Similar content being viewed by others

References

  1. Shea, S. M. & Morrison, A. B. A stereological study of the glomerular filter in the rat. Morphometry of the slit diaphragm and basement membrane. J. Cell. Biol. 67, 436–443 (1975).

    Article  CAS  Google Scholar 

  2. Matsushita, K. et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375, 2073–2081 (2010).

    Article  Google Scholar 

  3. Blouch, K. et al. Molecular configuration and glomerular size selectivity in healthy and nephrotic humans. Am. J. Physiol. 273, F430–F437 (1997).

    CAS  PubMed  Google Scholar 

  4. Oliver, J. D. 3rd et al. Proteinuria and impaired glomerular permselectivity in uninephrectomized fawn-hooded rats. Am. J. Physiol. 267, F917–F925 (1994).

    CAS  PubMed  Google Scholar 

  5. Jeansson, M. & Haraldsson, B. Glomerular size and charge selectivity in the mouse after exposure to glucosaminoglycan-degrading enzymes. J. Am. Soc. Nephrol. 14, 1756–1765 (2003).

    Article  CAS  Google Scholar 

  6. Lund, U. et al. Glomerular filtration rate dependence of sieving of albumin and some neutral proteins in rat kidneys. Am. J. Physiol. Renal Physiol. 284, F1226–F1234 (2003).

    Article  CAS  Google Scholar 

  7. Haraldsson, B., Nystrom, J. & Deen, W. M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451–487 (2008).

    Article  CAS  Google Scholar 

  8. Eppel, G. A. et al. The return of glomerular-filtered albumin to the rat renal vein. Kidney Int. 55, 1861–1870 (1999).

    Article  CAS  Google Scholar 

  9. Russo, L. M. et al. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int. 71, 504–513 (2007).

    Article  CAS  Google Scholar 

  10. Comper, W. D., Hilliard, L. M., Nikolic-Paterson, D. J. & Russo, L. M. Disease-dependent mechanisms of albuminuria. Am. J. Physiol. Renal Physiol. 295, F1589–F1600 (2008).

    Article  CAS  Google Scholar 

  11. Comper, W. D. & Russo, L. M. The glomerular filter: an imperfect barrier is required for perfect renal function. Curr. Opin. Nephrol. Hypertens. 18, 336–342 (2009).

    Article  CAS  Google Scholar 

  12. Norden, A. G. et al. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int. 60, 1885–1892 (2001).

    Article  CAS  Google Scholar 

  13. Weyer, K. et al. Mouse model of proximal tubule endocytic dysfunction. Nephrol. Dial. Transplant. 26, 3446–3451 (2011).

    Article  Google Scholar 

  14. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 (2000).

    Article  CAS  Google Scholar 

  15. Hausmann, R., Grepl, M., Knecht, V. & Moeller, M. J. The glomerular filtration barrier function: new concepts. Curr. Opin. Nephrol. Hypertens. 21, 441–449 (2012).

    Article  CAS  Google Scholar 

  16. Hausmann, R. et al. Electrical forces determine glomerular permeability. J. Am. Soc. Nephrol. 21, 2053–2058 (2010).

    Article  CAS  Google Scholar 

  17. Delgado, A. V., Gonzalez-Caballero, F., Hunter, R. J., Koopal, L. K. & Lyklema, J. Measurement and interpretation of electrokinetic phenomena. Pure Appl. Chem. 77, 1753–1805 (2005).

    Article  CAS  Google Scholar 

  18. Reuss, F. in Selected Works on Electricity (ed. Gos) 159–168 (1808).

    Google Scholar 

  19. Seaman, G. V., Vassar, P. S. & Kendall, M. J. Calcium ion binding to blood cell surfaces. Experientia 25, 1259–1260 (1969).

    Article  CAS  Google Scholar 

  20. Gribbon, P. M., O'Hare, D., Parker, K. H. & Winlove, C. P. Investigation of the endothelial cell glycocalyx using electrophoresis. Electro-Magnetobiol. 13, 137–146 (1994).

    Article  CAS  Google Scholar 

  21. Ferrell, N. J. et al. Effects of pressure and electrical charge on macromolecular transport across bovine lens basement membrane. Biophys. J. (in press).

  22. Salmon, A. H., Neal, C. R. & Harper, S. J. New aspects of glomerular filtration barrier structure and function: five layers (at least) not three. Curr. Opin. Nephrol. Hypertens. 18, 197–205 (2009).

    CAS  PubMed  Google Scholar 

  23. Ryan, G. B. & Karnovsky, M. J. Distribution of endogenous albumin in the rat glomerulus: role of hemodynamic factors in glomerular barrier function. Kidney Int. 9, 36–45 (1976).

    Article  CAS  Google Scholar 

  24. Robinson, R. R., Lecocq, F. R., Phillippi, P. J. & Glenn, W. G. Fixed and reproducible orthostatic proteinuria. III. Effect of induced renal hemodynamic alterations upon urinary protein excretion. J. Clin. Invest. 42, 100–110 (1963).

    Article  CAS  Google Scholar 

  25. Rennke, H. G. & Venkatachalam, M. A. Glomerular permeability: in vivo tracer studies with polyanionic and polycationic ferritins. Kidney Int. 11, 44–53 (1977).

    Article  CAS  Google Scholar 

  26. Farquhar, M. G., Wissig, S. L. & Palade, G. E. Glomerular permeability. I. Ferritin transfer across the normal glomerular capillary wall. J. Exp. Med. 113, 47–66 (1961).

    Article  CAS  Google Scholar 

  27. Fujigaki, Y., Nagase, M., Kojima, K., Yamamoto, T. & Hishida, A. Glomerular handling of immune complex in the acute phase of active in situ immune complex glomerulonephritis employing cationized ferritin in rats. Ultrastructural localization of immune complex, complements and inflammatory cells. Virchows Arch. 431, 53–61 (1997).

    Article  CAS  Google Scholar 

  28. James, J. A. & Ashworth, C. T. Some features of glomerular filtration and permeability revealed by electron microscopy after intraperitoneal injection of dextran in rats. Am. J. Pathol. 38, 515–525 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lewis, E. J., Schwartz, M. M., Pauli, B. U. & Sharon, Z. Endocytosis: a property of the glomerular visceral epithelial cell. Nephron 22, 91–96 (1978).

    Article  CAS  Google Scholar 

  30. Bohrer, M. P. et al. Permselectivity of the glomerular capillary wall. Facilitated filtration of circulating polycations. J. Clin. Invest. 61, 72–78 (1978).

    Article  CAS  Google Scholar 

  31. Bolton, G. R., Deen, W. M. & Daniels, B. S. Assessment of the charge selectivity of glomerular basement membrane using Ficoll sulfate. Am. J. Physiol. 274, F889–F896 (1998).

    CAS  PubMed  Google Scholar 

  32. Daniels, B. S. Increased albumin permeability in vitro following alterations of glomerular charge is mediated by the cells of the filtration barrier. J. Lab. Clin. Med. 124, 224–230 (1994).

    CAS  PubMed  Google Scholar 

  33. Harvey, S. J. et al. Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am. J. Pathol. 171, 139–152 (2007).

    Article  CAS  Google Scholar 

  34. Miner, J. H. Glomerular basement membrane composition and the filtration barrier. Pediatr. Nephrol. 26, 1413–1417 (2011).

    Article  Google Scholar 

  35. Goldberg, S., Harvey, S. J., Cunningham, J., Tryggvason, K. & Miner, J. H. Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol. Dial. Transplant. 24, 2044–2051 (2009).

    Article  CAS  Google Scholar 

  36. Sorensson, J., Ohlson, M. & Haraldsson, B. A quantitative analysis of the glomerular charge barrier in the rat. Am. J. Physiol. Renal Physiol. 280, F646–F656 (2001).

    Article  CAS  Google Scholar 

  37. Farquhar, M. G. & Palade, G. E. Glomerular permeability. II. Ferritin transfer across the glomerular capillary wall in nephrotic rats. J. Exp. Med. 114, 699–716 (1961).

    Article  CAS  Google Scholar 

  38. Rennke, H. G., Cotran, R. S. & Venkatachalam, M. A. Role of molecular charge in glomerular permeability. Tracer studies with cationized ferritins. J. Cell. Biol. 67, 638–646 (1975).

    Article  CAS  Google Scholar 

  39. Brenner, B. M., Troy, J. L. & Daugharty, T. M. The dynamics of glomerular ultrafiltration in the rat. J. Clin. Invest. 50, 1776–1780 (1971).

    Article  CAS  Google Scholar 

  40. Farquhar, M. G. Editorial: The primary glomerular filtration barrier--basement membrane or epithelial slits? Kidney Int. 8, 197–211 (1975).

    Article  CAS  Google Scholar 

  41. Jarad, G. & Miner, J. H. Update on the glomerular filtration barrier. Curr. Opin. Nephrol. Hypertens. 18, 226–232 (2009).

    Article  Google Scholar 

  42. Tryggvason, K. & Wartiovaara, J. How does the kidney filter plasma? Physiology (Bethesda) 20, 96–101 (2005).

    Google Scholar 

  43. Rodewald, R. & Karnovsky, M. J. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J. Cell. Biol. 60, 423–433 (1974).

    Article  CAS  Google Scholar 

  44. Wartiovaara, J. et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J. Clin. Invest. 114, 1475–1483 (2004).

    Article  CAS  Google Scholar 

  45. Gagliardini, E., Conti, S., Benigni, A., Remuzzi, G. & Remuzzi, A. Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. J. Am. Soc. Nephrol. 21, 2081–2089 (2010).

    Article  Google Scholar 

  46. Karnovsky, M. J. & Ryan, G. B. Substructure of the glomerular slit diaphragm in freeze-fractured normal rat kidney. J. Cell. Biol. 65, 233–236 (1975).

    Article  CAS  Google Scholar 

  47. Ohno, S., Hora, K., Furukawa, T. & Oguchi, H. Ultrastructural study of the glomerular slit diaphragm in fresh unfixed kidneys by a quick-freezing method. Virchows Arch. B Cell. Pathol. Incl. Mol. Pathol. 61, 351–358 (1992).

    Article  CAS  Google Scholar 

  48. Akilesh, S. et al. Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc. Natl Acad. Sci. USA 105, 967–972 (2008).

    Article  CAS  Google Scholar 

  49. Chang, R. L. et al. Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran. Biophys. J. 15, 887–906 (1975).

    Article  CAS  Google Scholar 

  50. Rippe, C., Asgeirsson, D., Venturoli, D., Rippe, A. & Rippe, B. Effects of glomerular filtration rate on Ficoll sieving coefficients (theta) in rats. Kidney Int. 69, 1326–1332 (2006).

    Article  CAS  Google Scholar 

  51. Fujigaki, Y. et al. Intra-GBM site of the functional filtration barrier for endogenous proteins in rats. Kidney Int. 43, 567–574 (1993).

    Article  CAS  Google Scholar 

  52. Russo, P. A. & Bendayan, M. Distribution of endogenous albumin in the glomerular wall of proteinuric patients. Am. J. Pathol. 137, 1481–1490 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Menzel, S. & Moeller, M. J. Role of the podocyte in proteinuria. Pediatr. Nephrol. 26, 1775–1780 (2010).

    Article  Google Scholar 

  54. Daniels, B. S., Hauser, E. B., Deen, W. M. & Hostetter, T. H. Glomerular basement membrane: in vitro studies of water and protein permeability. Am. J. Physiol. 262, F919–F926 (1992).

    CAS  PubMed  Google Scholar 

  55. Deen, W. M., Lazzara, M. J. & Myers, B. D. Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol. 281, F579–F596 (2001).

    Article  CAS  Google Scholar 

  56. Fissell, W. H. et al. Solute partitioning and filtration by extracellular matrices. Am. J. Physiol. Renal Physiol. 297, F1092–F1100 (2009).

    Article  CAS  Google Scholar 

  57. Jeansson, M. & Haraldsson, B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am. J. Physiol. Renal Physiol. 290, F111–F116 (2006).

    Article  CAS  Google Scholar 

  58. Ballermann, B. J. & Stan, R. V. Resolved: capillary endothelium is a major contributor to the glomerular filtration barrier. J. Am. Soc. Nephrol. 18, 2432–2438 (2007).

    Article  Google Scholar 

  59. Sugimoto, H. et al. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J. Biol. Chem. 278, 12605–12608 (2003).

    Article  CAS  Google Scholar 

  60. van den Berg, J. G., van den Bergh Weerman, M. A., Assmann, K. J., Weening, J. J. & Florquin, S. Podocyte foot process effacement is not correlated with the level of proteinuria in human glomerulopathies. Kidney Int. 66, 1901–1906 (2004).

    Article  CAS  Google Scholar 

  61. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    Article  CAS  Google Scholar 

  62. Maynard, S., Epstein, F. H. & Karumanchi, S. A. Preeclampsia and angiogenic imbalance. Annu. Rev. Med. 59, 61–78 (2008).

    Article  CAS  Google Scholar 

  63. Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).

    Article  CAS  Google Scholar 

  64. Stillman, I. E. & Karumanchi, S. A. The glomerular injury of preeclampsia. J. Am. Soc. Nephrol. 18, 2281–2284 (2007).

    Article  Google Scholar 

  65. Venkatesha, S. et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 12, 642–649 (2006).

    Article  CAS  Google Scholar 

  66. Gelberg, H., Healy, L., Whiteley, H., Miller, L. A. & Vimr, E. In vivo enzymatic removal of alpha 2→6-linked sialic acid from the glomerular filtration barrier results in podocyte charge alteration and glomerular injury. Lab. Invest. 74, 907–920 (1996).

    CAS  PubMed  Google Scholar 

  67. Galeano, B. et al. Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J. Clin. Invest. 117, 1585–1594 (2007).

    Article  CAS  Google Scholar 

  68. Rostgaard, J. & Qvortrup, K. Sieve plugs in fenestrae of glomerular capillaries--site of the filtration barrier? Cells Tissues Organs 170, 132–138 (2002).

    Article  Google Scholar 

  69. Vink, H. & Duling, B. R. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79, 581–589 (1996).

    Article  CAS  Google Scholar 

  70. Lindahl, P. et al. Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development 125, 3313–3322 (1998).

    CAS  Google Scholar 

  71. Hakroush, S. et al. Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease. Am. J. Pathol. 175, 1883–1895 (2009).

    Article  CAS  Google Scholar 

  72. Pappenheimer, J. R., Renkin, E. M. & Borrero, L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am. J. Physiol. 167, 13–46 (1951).

    Article  CAS  Google Scholar 

  73. Rippe, B. & Haraldsson, B. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol. Rev. 74, 163–219 (1994).

    Article  CAS  Google Scholar 

  74. Dechadilok, P. & Deen, W. M. Hindrance factors for diffusion and convection in pores. Ind. Engin. Chem. Res. 45, 6953–6959 (2006).

    Article  CAS  Google Scholar 

  75. Booth, J. W. & Lumsden, C. J. Explaining glomerular pores with fiber matrices. A visualization study based on computer modeling. Biophys. J. 64, 1727–1734 (1993).

    Article  CAS  Google Scholar 

  76. Ohlson, M., Sorensson, J. & Haraldsson, B. A gel-membrane model of glomerular charge and size selectivity in series. Am. J. Physiol. Renal Physiol. 280, F396–F405 (2001).

    Article  CAS  Google Scholar 

  77. Smithies, O. Why the kidney glomerulus does not clog: a gel permeation/diffusion hypothesis of renal function. Proc. Natl Acad. Sci. USA 100, 4108–4113 (2003).

    Article  CAS  Google Scholar 

  78. Wolgast, M. & Persson, A. E. The gel hypothesis applied to the rat renal capillary membranes: a review. Acta Physiol. (Oxf.) 202, 617–628 (2011).

    Article  CAS  Google Scholar 

  79. Shikata, K., Makino, H., Ichiyasu, A. & Ota, Z. Three-dimensional meshwork structure of glomerular basement membrane revealed by chemical treatment. J. Electron Microsc. (Tokyo) 39, 182–185 (1990).

    CAS  Google Scholar 

  80. Yamasaki, Y. et al. Three-dimensional architecture of rat glomerular basement membrane by ultra-high resolution scanning electron microscopy. Acta Med. Okayama 44, 333–335 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

For reasons of clarity, many important details for all models had to be omitted from this Review. In addition, we have tried to phrase the major statements in such a way that makes them rather short and easily understandable, although again, this endeavour might have resulted in insufficient acknowledgement of the huge amount of intellectual and physical work that has been invested into the development of these models. The authors' work is supported by a Boost Fund OPBo45 of the Excellence Initiative by the German Federal and State Governments (DFG), the NephCure Foundation (F001), the German Ministry for Science and Education (BMBF, 01 GN 0804), TP17 SFB/Transregio 57 of the DFG and a START grant by the Medical Faculty of the RWTH Aachen. M. J. Moeller is a member of the SFB/Transregio 57 DFG consortium “Mechanisms of organ fibrosis”.

Author information

Authors and Affiliations

Authors

Contributions

M. J. Moeller and V. Tenten researched data for article, contributed to the discussion of content, and reviewed/edited the manuscript before submission. M. J. Moeller wrote the article.

Corresponding author

Correspondence to Marcus J. Moeller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeller, M., Tenten, V. Renal albumin filtration: alternative models to the standard physical barriers. Nat Rev Nephrol 9, 266–277 (2013). https://doi.org/10.1038/nrneph.2013.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing