Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Henoch–Schönlein purpura nephritis in children

Key Points

  • Henoch–Schönlein purpura (HSP)—the most common vasculitis in children—is complicated by nephritis in about 30% of patients

  • Long-term prognosis of HSP nephritis depends mainly on the development of chronic kidney disease (CKD); often CKD risk cannot be predicted from the initial clinical and histological presentation

  • CKD can be observed at long-term follow-up even after apparent complete recovery from HSP nephritis

  • HSP nephritis and IgA nephropathy both result from glomerular deposition of aberrantly glycosylated IgA1 but have different histological features and clinical courses

  • Typically IgA nephropathy presents as slowly progressive mesangial lesions, whereas HSP nephritis presents as acute episodes characterized by inflammatory glomerular lesions that require prompt resolution to avoid chronic progression

  • Use of guidelines based on evidence obtained in adults with IgA nephropathy to select treatment for children with HSP nephritis risks delaying the provision of adequate therapies

Abstract

Henoch–Schönlein purpura (HSP) is the most common vasculitis in children, in whom prognosis is mostly dependent upon the severity of renal involvement. Nephritis is observed in about 30% of children with HSP. Renal damage eventually leads to chronic kidney disease in up to 20% of children with HSP nephritis in tertiary care centres, but in less than 5% of unselected patients with HSP, by 20 years after diagnosis. HSP nephritis and IgA nephropathy are related diseases resulting from glomerular deposition of aberrantly glycosylated IgA1. Although both nephritides present with similar histological findings and IgA abnormalities, they display pathophysiological differences with important therapeutic implications. HSP nephritis is mainly characterized by acute episodes of glomerular inflammation with endocapillary and mesangial proliferation, fibrin deposits and epithelial crescents that can heal spontaneously or lead to chronic lesions. By contrast, IgA nephropathy normally presents with slowly progressive mesangial lesions resulting from continuous low-grade deposition of macromolecular IgA1. This Review highlights the variable evolution of similar clinical and histological presentations among paediatric patients with HSP nephritis, which constitutes a challenge for their management, and discusses the treatment of these patients in light of current guidelines based on clinical evidence from adults with IgA nephropathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenesis of Henoch–Schönlein purpura nephritis.
Figure 2: Human IgA1 O-glycosylation sites and galactosylation patterns.

Similar content being viewed by others

Eleni Stamellou, Claudia Seikrit, … Rafael Kramann

References

  1. Haycock, G. B. In Oxford Textbook of Clinical Nephrology 1st edn, Ch. 4 (eds Cameron, S. et al.) 595–612 (Oxford University Press, 1992).

    Google Scholar 

  2. Eleftheriou, D. & Brogan, P. A. Vasculitis in children. Best Pract. Res. Clin. Rheumatol. 23, 309–323 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aalberse, J., Dolman, K., Ramnath, G., Pereira, R. R. & Davin, J. C. Henoch Schönlein purpura in children: an epidemiological study among Dutch paediatricians on incidence and diagnostic criteria. Ann. Rheum. Dis. 66, 1648–1650 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dolezalova, P., Telekesova, P., Nemcova, D. & Hoza, J. Incidence of vasculitis in children in the Czech Republic: 2-year prospective epidemiology survey. J. Rheumatol. 31, 2295–2299 (2004).

    PubMed  Google Scholar 

  5. Gardner-Medwin, J. M., Dolezalova, P., Cummins, C. & Southwood, T. R. Incidence of Henoch–Schönlein purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet 360, 1197–1202 (2002).

    Article  PubMed  Google Scholar 

  6. Yang, Y. H. et al. A nationwide survey on epidemiological characteristics of childhood Henoch–Schönlein purpura in Taiwan. Rheumatology 44, 618–622 (2005).

    Article  PubMed  Google Scholar 

  7. Mills, J. A. et al. The American College of Rheumatology 1990 criteria for the classification of Henoch–Schönlein purpura. Arthritis Rheum. 33, 1114–1121 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Jennette, J. C. et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum. 37, 187–192 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Ozen, S. et al. EULAR/PRES endorsed consensus criteria for the classification of childhood vasculitides. Ann. Rheum. Dis. 65, 936–941 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Ozen, S. et al. EULAR/PRINTO/PRES criteria for Henoch–Schönlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: Final classification criteria. Ann. Rheum. Dis. 69, 798–806 (2010).

    Article  PubMed  Google Scholar 

  11. Lau, K. K. et al. Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch–Schönlein purpura. Pediatr. Nephrol. 22, 2067–2072 (2007).

    Article  PubMed  Google Scholar 

  12. Davin, J. C., Ten Berge, I. J. & Weening, J. J. What is the difference between IgA nephropathy and Henoch–Schönlein purpura nephritis? Kidney Int. 59, 823–834 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Meadow, S. R. & Scott, D. G. Berger disease: Henoch–Schönlein without the rash. J. Pediatr. 106, 27–32 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. White, R. H. R., Yoshikawa, N. & Feehally, J. In Pediatric Nephrology 4th edn, Ch. 41 (eds Barratt, T. M., Avner, E. D. & Harmon, W. E.) 691–706 (Williams & Wilkins, 1999).

    Google Scholar 

  15. Goldstein, A. R., White, R. H. R., Akuse, R. & Chantler, C. Long-term follow-up of childhood Henoch–Schönlein nephritis. Lancet 339, 280–282 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Koskimies, O., Mir, S., Rapola, J. & Vilska, J. Henoch–Schönlein nephritis: long-term prognosis of unselected patients. Arch. Intern. Med. 56, 482–484 (1981).

    CAS  Google Scholar 

  17. Bogdanovic, R. Henoch–Schönlein purpura nephritis in children: risk factors, prevention and treatment. Acta Paediatr. 98, 1882–1889 (2009).

    Article  PubMed  Google Scholar 

  18. Broyer, M. In Néphrologie Pédiatrique [French] 3rd edn, Ch. 2 (eds Royer, P. et al.) 75–98 (Flammarion Médecine-Sciences, 1983).

    Google Scholar 

  19. Jauhola, O. et al. Renal manifestations of Henoch–Schönlein purpura in a 6-month prospective study of 223 children. Arch. Dis. Child. 95, 877–882 (2010).

    Article  PubMed  Google Scholar 

  20. Narchi, H. Risk of long term renal impairment and duration of follow up recommended for Henoch–Schönlein purpura with normal or minimal urinary findings: a systematic review. Arch. Dis. Child. 90, 916–920 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaku, Y., Nohara, K. & Honda, S. Renal involvement in Henoch–Schönlein purpura: a multivariate analysis of prognostic factors. Kidney Int. 53, 1755–1759 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Coppo, R., Mazzucco, G., Cagnoli, L., Lupo, A. & Schena, F. P. Long-term prognosis of Henoch–Schönlein nephritis in adults and children. Italian Group of Renal Immunopathology Collaborative Study on Henoch–Schönlein purpura. Nephrol. Dial. Transplant. 12, 2277–2283 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Ronkainen, J., Nuutinen, M. & Koskimies, O. The adult kidney 24 years after childhood Henoch–Schönlein purpura: a retrospective cohort study. Lancet 360, 666–670 (2002).

    Article  PubMed  Google Scholar 

  24. Scharer, K. et al. Clinical outcome of Schönlein–Henoch purpura nephritis in children. Pediatr. Nephrol. 13, 816–823 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Counahan, R. et al. Prognosis of Henoch–Schönlein nephritis in children. Br. Med. J. 2, 11–14 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bunchman, T. E., Mauer, S. M., Sibley, R. K. & Vernier, R. L. Anaphylactoid purpura: Characteristics of 16 patients who progressed to renal failure. Pediatr. Nephrol. 2, 393–397 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Niaudet, P., Murcia, I., Beaufils, H., Broyer, M. & Habib, R. Primary IgA nephropathies in children: prognosis and Treatment. Adv. Nephrol. Necker Hospital 22, 121–140 (1993).

    CAS  Google Scholar 

  28. Nussinovitch, N., Elishkevitz, K., Volovitz, B. & Nussinovitch, M. Hypertension as a late sequela of Henoch–Schönlein purpura. Clin. Pediatr. 44, 543–547 (2005).

    Article  Google Scholar 

  29. Emancipator, S. N. In Pathology of the Kidney 4th edn, Ch. 6 (ed. Heptinstall, R. H.) 389–476 (Little Brown, 1993).

    Google Scholar 

  30. Haas, M. In Pathology of the Kidney 6th edn, Ch. 10 (eds Jennette, J. C. et al.) 423–486 (Lippincott, Williams & Wilkins, 2007).

    Google Scholar 

  31. Coppo, R. et al. Predictors of outcome in Henoch–Schönlein nephritis in children and adults. Am. J. Kidney Dis. 47, 993–1003 (2006).

    Article  PubMed  Google Scholar 

  32. Wakaki, H. et al. Henoch–Schönlein purpura nephritis with nephrotic state in children: predictors of poor outcomes. Pediatr. Nephrol. 26, 921–925 (2011).

    Article  PubMed  Google Scholar 

  33. Yoshikawa, N., White, R. H. & Cameron, A. H. Prognostic significance of the glomerular changes in Henoch–Schönlein nephritis. Clin. Nephrol. 16, 223–229 (1981).

    CAS  PubMed  Google Scholar 

  34. Pillebout, E. et al. Henoch–Schönlein purpura in adults: outcome and prognostic factors. J. Am. Soc. Nephrol. 13, 1271–1278 (2002).

    Article  PubMed  Google Scholar 

  35. Fogazzi, G. B. et al. Long-term outcome of Schönlein–Henoch nephritis in the adult. Clin. Nephrol. 31, 60–66 (1989).

    CAS  PubMed  Google Scholar 

  36. Meadow, S. R. et al. Schönlein–Henoch nephritis. Q. J. Med. 41, 241–258 (1972).

    CAS  PubMed  Google Scholar 

  37. Heaton, J. M., Turner, D. R. & Cameron, J. S. Localization of glomerular “deposits” in Henoch–Schönlein nephritis. Histopathology 1, 93–104 (1977).

    Article  CAS  PubMed  Google Scholar 

  38. Schillinger, F. et al. Severe Schönlein–Henoch nephritis in adults: a report of twenty cases [French]. Nephrologie 21, 247–252 (2000).

    CAS  PubMed  Google Scholar 

  39. Shenoy, M., Bradbury, M. G., Lewis, M. A. & Webb, N. J. Outcome of Henoch–Schönlein purpura nephritis treated with long-term immunosuppression. Pediatr. Nephrol. 22, 1717–1722 (2007).

    Article  PubMed  Google Scholar 

  40. Soylemezoglu, O. et al. Henoch–Schönlein nephritis: a nationwide study. Nephron Clin. Pract. 112, 199–204 (2009).

    Article  CAS  Google Scholar 

  41. Shrestha, S. et al. Henoch Schönlein purpura with nephritis in adults: adverse prognostic indicators in a UK population. Q. J. Med. 99, 253–265 (2006).

    Article  CAS  Google Scholar 

  42. Habib, R. In Néphrologie Pédiatrique 3rd edn, Ch. 11 (eds. Royer, P. et al.) 342–350 (Flammarion Médecine-Sciences, 1983).

    Google Scholar 

  43. Working Group of the International IgA Nephropathy Network and the Renal Pathology Society et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 76, 534–545 (2009).

  44. Bennett, W. M. & Kincaid-Smith, P. Macroscopic hematuria in mesangial nephropathy: correlation with glomerular crescents and renal dysfunction. Kidney Int. 23, 392–400 (1983).

    Article  Google Scholar 

  45. Foster, B. J., Bernard, C., Drummond, K. N. & Sharma, A. K. Effective therapy for severe Henoch–Schönlein purpura nephritis with prednisone and azathioprine: a clinical and histopathologic study. J. Pediatr. 136, 370–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Kanaan, N. et al. Recurrence and graft loss after kidney transplantation for Henoch–Schönlein purpura nephritis: a multicenter analysis. Clin. J. Am. Soc. Nephrol. 6, 1768–1772 (2011).

    Article  PubMed  Google Scholar 

  47. Thervet, E. et al. Histologic recurrence of Henoch–Schönlein purpura nephropathy after renal transplantation on routine allograft biopsy. Transplantation 92, 907–912 (2011).

    Article  PubMed  Google Scholar 

  48. Ponticelli, C. et al. Kidney transplantation in patients with IgA mesangial glomerulonephritis. Kidney Int. 60, 1948–1954 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Briganti, E. M., Russ, G. R., McNeil, J. J., Atkins, R. C. & Chadban, S. J. Risk of renal allograft loss from recurrent glomerulonephritis. N. Engl. J. Med. 347, 103–109 (2002).

    Article  PubMed  Google Scholar 

  50. Kincaid-Smith, P., Nicholls, K. & Birchall, I. Polymorphs infiltrate glomeruli in mesangial IgA glomerulonephritis. Kidney Int. 36, 1108–1111 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Cunningham, M. A., Kitching, A. R., Tipping, P. G. & Holdsworth, S. R. Fibrin independent proinflammatory effects of tissue factor in experimental crescentic glomerulonephritis. Kidney Int. 66, 647–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Kamitsuji, H. et al. Urinary cross-linked fibrin degradation products in glomerular disease with crescents. Clin. Nephrol. 29, 124–128 (1988).

    CAS  PubMed  Google Scholar 

  53. Szeto, C. C. et al. Grading of acute and chronic renal lesions in Henoch–Schönlein purpura. Mol. Pathol. 14, 635–640 (2001).

    Article  CAS  Google Scholar 

  54. Vassalli, P. & McCluskey, R. T. The pathogenetic role of the coagulation process in rabbit Masugi nephritis. Am. J. Pathol. 45, 653–677 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hisano, S., Matsushita, M., Fujita, T. & Iwasaki, H. Activation of the lectin complement pathway in Henoch–Schönlein purpura nephritis. Am. J. Kidney. Dis. 45, 295–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Novak, J., Julian, B. A., Mestecky, J. & Renfrow, M. B. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin. Immunopathol. 34, 365–382 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Allen, A. C., Willis, F. R., Beattie, T. J. & Feehally, J. Abnormal IgA glycosylation in Henoch–Schönlein purpura restricted to patients with clinical nephritis. Nephrol. Dial. Transplant. 13, 930–934 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Serino, G., Sallustio, F., Cox, S. N., Pesce, F. & Schena, F. P. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J. Am. Soc. Nephrol. 23, 814–824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chintalacharuvu, S. R. et al. T cell cytokines determine the severity of experimental IgA nephropathy by regulating IgA glycosylation. Clin. Exp. Immunol. 126, 326–333 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chintalacharuvu, S. R. et al. T cell cytokine polarity as a determinant of immunoglobulin A (IgA) glycosylation and the severity of experimental IgA nephropathy. Clin. Exp. Immunol. 153, 456–462 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Inoshita, H. et al. Disruption of SMAD4 expression in T cells leads to IgA nephropathy-like manifestations. PLoS ONE 8, e78736 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yamada, K. et al. Down-regulation of core 1 β1, 3-galactosyltransferase and Cosmc by TH2 cytokine alters O-glycosylation of IgA1 . Nephrol. Dial. Transplant. 25, 3890–3897 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Suzuki, H. et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest. 119, 1668–1677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wyatt, R. J. & Julian, B. A. IgA nephropathy. N. Engl. J. Med. 368, 2402–2414 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Smith, A. C., Molyneux, K., Feehally, J. & Barratt, J. O-glycosylation of serum IgA1 antibodies against mucosal and systemic antigens in IgA nephropathy. J. Am. Soc. Nephrol. 17, 3520–3528 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Davin, J. C., Forget, P. & Mahieu, P. R. Increased intestinal permeability to 51Cr EDTA is correlated with IgA immune complex-plasma levels in children with IgA-associated nephropathies. Acta Paediatr. Scand. 77, 118–124 (1988).

    Article  CAS  PubMed  Google Scholar 

  67. de Fijter, J. W. et al. Deficient IgA1 immune response to nasal cholera toxin subunit B in primary IgA nephropathy. Kidney Int. 50, 952–961 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Monteiro, R. C. The role of IgA and IgA Fc receptors in inflammation. J. Clin. Immunol. 30, 1–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Vuong, M. T. et al. Association of soluble CD89 levels with disease progression but not susceptibility in IgA nephropathy. Kidney Int. 78, 1281–1287 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Davin, J. C. et al. Possible pathogenic role of IgE in Henoch–Schönlein purpura. Pediatr. Nephrol. 8, 169–171 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Kawasaki, Y., Hosoya, M. & Suzuki, H. Possible pathologenic role of interleukin-5 and eosino cationic protein in Henoch–Schönlein purpura nephritis. Pediatr. Int. 47, 512–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Namgoong, M. K., Lim, B. K. & Kim, J. S. Eosinophil cationic protein in Henoch–Schönlein purpura and in IgA nephropathy. Pediatr. Nephrol. 11, 703–706 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, A., Chen, W. P., Sheu, L. F. & Lin, C. Y. Pathogenesis of IgA nephropathy: in vitro activation of human mesangial cells by IgA. J. Pathol. 173, 119–126 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Gomez-Guerrero, C., Lopez-Armada, M. J., Gonzalez, E. & Egido, J. Soluble IgA and IgG aggregates are catabolized by cultured rat mesangial cells and induce production of TNF-α and IL-6, and proliferation. J. Immunol. 153, 5247–5255 (1994).

    CAS  PubMed  Google Scholar 

  75. Oortwijn, B. D. et al. Differential glycosylation of polymeric and monomeric IgA: a possible role in glomerular inflammation in IgA nephropathy. J. Am. Soc. Nephrol. 17, 3529–3539 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Suzuki, H. et al. The pathophysiology of IgA nephropathy. J. Am. Soc. Nephrol. 22, 1795–1803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yan, Y., Xu, L. X., Zhang, J. J., Zhang, Y. & Zhao, M. H. Self-aggregated deglycosylated IgA1 with or without IgG were associated with the development of IgA nephropathy. Clin. Exp. Immunol. 144, 17–24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schlöndorff, D. & Banas, B. The mesangial cell revisited: no cell is an island. J. Am. Soc. Nephrol. 20, 1179–1187 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Wan, J. X. et al. Complement 3 is involved in changing the phenotype of human glomerular mesangial cells. J. Cell Physiol. 213, 495–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Camilla, R. et al. Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 6, 1903–1911 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, C. et al. Mesangial cells stimulated by immunoglobin A1 from IgA nephropathy upregulate transforming growth factor β1 synthesis in podocytes via renin–angiotensin system activation. Arch. Med. Res. 41, 255–260 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Coppo, R. et al. Aberrantly glycosylated IgA1 induces mesangial cells to produce platelet-activating factor that mediates nephrin loss in cultured podocytes. Kidney Int. 77, 417–427 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Horii, Y. et al. Involvement of IL-6 in mesangial proliferative glomerulonephritis. J. Immunol. 143, 3949–3955 (1989).

    CAS  PubMed  Google Scholar 

  84. Kashem, A. et al. Glomerular FcαR expression and disease activity in IgA nephropathy. Am. J. Kidney Dis. 30, 389–396 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Niemir, Z. I. et al. PDGF and TGF-β contribute to the natural course of human IgA glomerulonephritis. Kidney Int. 48, 1530–1541 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Lopez-Armada, M. J., Gomez-Guerrero, C. & Egido, J. Receptors for immune complexes activate gene expression and synthesis of matrix proteins in cultured rat and human mesangial cells: role of TGF-β. J. Immunol. 157, 2136–2142 (1996).

    CAS  PubMed  Google Scholar 

  87. Terada, Y. et al. Expression of PDGF and PDGF receptor mRNA in IgA nephropathy. J. Am. Soc. Nephrol. 8, 817–819 (1997).

    CAS  PubMed  Google Scholar 

  88. Yokoyama, H. et al. Urinary levels of chemokines (MCAF/MCP-1, IL-8) reflect distinct disease activities and phases of human IgA nephropathy. J. Leukocyte Biol. 63, 493–499 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Camussi, G. et al. Tumor necrosis factor induces contraction of mesangial cells and alters their cytoskeletons. Kidney Int. 38, 795–802 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Ha, T. S. The role of tumor necrosis factor-α in Henoch–Schönlein purpura. Pediatr. Nephrol. 20, 149–153 (2005).

    Article  PubMed  Google Scholar 

  91. Couser, W. G. Glomerulonephritis. Lancet 353, 1509–1515 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Jennette, J. C. Rapidly progressive crescentic glomerulonephritis. Kidney Int. 63, 1164–1177 (2003).

    Article  PubMed  Google Scholar 

  93. Bonsib, S. Glomerular basement membrane discontinuities: scanning electron microscopic study of acellular glomeruli. Am. J. Pathol. 119, 357–360 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Atkins, R. C., Nikolic-Paterson, D. J., Song, Q. & Lan, H. Y. Modulators of crescentic glomerulonephritis. J. Am. Soc. Nephrol. 7, 2271–2278 (1996).

    CAS  PubMed  Google Scholar 

  95. Lan, H. Y., Nikolic-Paterson, D. J. & Atkins, R. C. Involvement of activated periglomerular leukocytes in the rupture of Bowman's capsule and crescent progression in experimental glomerulonephritis. Lab. Invest. 67, 743–751 (1992).

    CAS  PubMed  Google Scholar 

  96. Lan, H. Y., Nikolic-Paterson, D. J., Mu, W., Vannice, J. L. & Atkins, R. C. Interleukin-1 receptor antagonist halts the progression of established crescentic glomerulonephritis in the rat. Kidney Int. 47, 1303–1309 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Isaka, Y. et al. Gene therapy by transforming growth factor-β receptor–IgG Fc chimera suppressed extracellular matrix accumulation in experimental glomerulonephritis. Kidney Int. 55, 465–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Adler, S. & Brady, H. R. Cell adhesion molecules and the glomerulopathies. Am. J. Med. 107, 371–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Morel-Maroger Striker, L., Killen, P. D., Chi, E. & Striker, G. E. The composition of glomerulosclerosis. I. Studies in focal sclerosis, crescentic glomerulonephritis, and membranoproliferative glomerulonephritis. Lab. Invest. 51, 181–192 (1984).

    CAS  PubMed  Google Scholar 

  100. Mathieson, P. W. The ins and outs of glomerular crescent formation. Clin. Exp. Immunol. 110, 155–157 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Emancipator, S. N. IgA nephropathy: morphologic expression and pathogenesis. Am. J. Kidney. Dis. 23, 451–462 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Border, W. A. & Noble, N. A. Transforming growth factor in tissue fibrosis. N. Engl. J. Med. 331, 1286–1292 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Lin, Q. et al. Henoch–Schönlein purpura with hypocomplementemia. Pediatr. Nephrol. 27, 801–806 (2012).

    Article  PubMed  Google Scholar 

  104. Roos, A. et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J. Am. Soc. Nephrol. 17, 1724–1734 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Espinosa, M. et al. Mesangial C4d deposition: a new prognostic factor in IgA nephropathy. Nephrol. Dial. Transplant. 24, 886–891 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. McLean, R. H., Michael, A. F., Fish, A. J. & Vernier, R. L. In Pediatric Nephrology 1st edn, Ch. 25 (eds Rubin, M. I. & Barratt, T. M.) 584–588 (Williams & Wilkins, 1975).

    Google Scholar 

  107. Coppo, R. & Amore, A. In Pediatric Nephrology 5th edn, Ch. 25 (eds Avner, E. D. et al.) 851–864 (Lippincott Williams & Wilkins, 2004).

    Google Scholar 

  108. Rees, L., Webb, N. J. A. & Brogan, P. A. In Paediatric Nephrology 2nd edn, Ch. 20 (eds Rees, L. et al.) 312–313 (Oxford University Press, 2007).

    Google Scholar 

  109. Tarshish, P., Bernstein, J. & Edelmann, C. M. Jr. Henoch–Schönlein purpura nephritis: course of disease and efficacy of cyclophosphamide. Pediatr. Nephrol. 19, 51–56 (2004).

    Article  PubMed  Google Scholar 

  110. Jauhola, O. et al. Cyclosporine A vs. methylprednisolone for Henoch–Schönlein nephritis: a randomized trial. Pediatr. Nephrol. 26, 2159–2166 (2011).

    Article  PubMed  Google Scholar 

  111. Pillebout, E. et al. Addition of cyclophosphamide to steroids provides no benefit compared with steroids alone in treating adult patients with severe Henoch Schönlein purpura. Kidney Int. 78, 495–502 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Kidney Disease: Improving Global Outcomes. Chapter 11: Henoch–Schönlein purpura nephritis. Kidney Int. Suppl. 2, 218–220 (2012).

  113. Davin, J. C. Henoch–Schönlein purpura nephritis: pathophysiology, treatment, and future strategy. Clin. J. Am. Soc. Nephrol. 6, 679–689 (2011).

    Article  PubMed  Google Scholar 

  114. Hattori, M. et al. Plasmapheresis as the sole therapy for rapidly progressive Henoch–Schönlein purpura nephritis in children. Am. J. Kidney Dis. 33, 427–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Shenoy, M., Ognjanovic, M. V. & Coulthard, M. G. Treating severe Henoch–Schönlein and IgA nephritis with plasmapheresis alone. Pediatr. Nephrol. 22, 1167–1171 (2007).

    Article  PubMed  Google Scholar 

  116. Niaudet, P. & Habib, R. Methylprednisolone pulse therapy in the treatment of severe forms of Schönlein–Henoch purpura nephritis. Pediatr. Nephrol. 12, 238–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Andersen, R. F., Rubak, S., Jespersen, B. & Rittig, S. Early high dose immunosuppression in Henoch–Schönlein nephrotic syndrome may improve outcome. Scand. J. Urol. Nephrol. 43, 409–415 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Flynn, J. T., Smoyer, W. E., Bunchman, T. E., Kershaw, D. B. & Sedman, A. B. Treatment of Henoch–Schönlein purpura glomerulonephritis in children with high-dose corticosteroids plus oral cyclophosphamide. Am. J. Nephrol. 21, 128–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Kawasaki, Y., Suyama, K., Hashimoto, K. & Hosoya, M. Methylprednisolone pulse plus mizoribine in children with Henoch–Schönlein purpura nephritis. Clin. Rheumatol. 30, 529–535 (2011).

    Article  PubMed  Google Scholar 

  120. Kawasaki, Y., Suzuki, J. & Suzuki, H. Efficacy of methylprednisolone and urokinase pulse therapy combined with or without cyclophosphamide in severe Henoch–Schönlein nephritis: a clinical and histopathological study. Nephrol. Dial. Transplant. 19, 858–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Kawasaki, Y., Suzuki, J., Nozawa, R., Suzuki, S. & Suzuki, H. Efficacy of methylprednisolone and urokinase pulse therapy for severe Henoch–Schönlein nephritis. Pediatrics 111, 785–789 (2003).

    Article  PubMed  Google Scholar 

  122. Ashton, H., Frenk, E. & Stevenson, C. J. Therapeutics. XV. The management of Henoch–Schönlein purpura. Br. J. Dermatol. 85, 199–203 (1971).

    Article  CAS  PubMed  Google Scholar 

  123. Borges, W. H. Anaphylactoid purpura. Med. Clin. North Am. 56, 201–206 (1972).

    Article  CAS  PubMed  Google Scholar 

  124. Ou, Z. L. et al. Effective methylprednisolone dose in experimental crescentic glomerulonephritis. Am. J. Kidney Dis. 37, 411–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Lameire, N. H. et al. Acute kidney injury: an increasing global concern. Lancet 382, 170–179 (2013).

    Article  PubMed  Google Scholar 

  126. Branten, A. J., Kock-Jansen, M., Klasen, I. S. & Wetzels, J. F. Urinary excretion of complement C3d in patients with renal diseases. Eur. J. Clin. Invest. 33, 449–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Wickman, L. et al. Urine podocyte mRNAs, proteinuria, and progression in human glomerular diseases. J. Am. Soc. Nephrol. 24, 2081–2095 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Delanghe, S. E. et al. Soluble transferrin receptor in urine, a new biomarker for IgA nephropathy and Henoch–Schönlein purpura nephritis. Clin. Biochem. 46, 591–597 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Moura, I. C. et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J. Exp. Med. 194, 417–425 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Park, S. J. et al. Advances in our understanding of the pathogenesis of Henoch–Schönlein purpura and the implications for improving its diagnosis. Expert Rev. Clin. Immunol. 9, 1223–1238 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Ninchoji, T. et al. Treatment strategies for Henoch–Schönlein purpura nephritis by histological and clinical severity. Pediatr. Nephrol. 26, 563–569 (2011).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to researching the data for the article, discussions of its content, writing the article and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Jean-Claude Davin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davin, JC., Coppo, R. Henoch–Schönlein purpura nephritis in children. Nat Rev Nephrol 10, 563–573 (2014). https://doi.org/10.1038/nrneph.2014.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing