Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial dysfunction in inherited renal disease and acute kidney injury

Key Points

  • Healthy mitochondria are essential for normal kidney function; mitochondrial cytopathies can result in renal disease and mitochondrial damage has a role in the pathophysiology of acute kidney injury (AKI)

  • Although mitochondrial diseases are characterized by maternal inheritance, many mitochondrial disorders are caused by mutations in nuclear genes and are inherited according to classic Mendelian rules

  • Most mitochondrial diseases with kidney involvement cause tubular defects; however, mutations in the coenzyme Q10 biosynthesis pathway and the mtDNA 3243 A>G mutation primarily cause glomerular disease

  • Diagnosis of genetic mitochondrial disorders increasingly relies on new sequencing techniques, but thorough biochemical and clinical characterization of patients is essential to guide these analyses

  • In AKI, mitochondrial dysfunction precedes and participates in the physiopathology of tissue damage; mitochondrial biogenesis might represent a crucial step in the recovery phase

  • Potential therapies that target mitochondrial dynamics, mitophagy and/or mitochondrial biogenesis might limit renal damage during AKI and promote recovery of kidney function

Abstract

Mitochondria are increasingly recognized as key players in genetic and acquired renal diseases. Most mitochondrial cytopathies that cause renal symptoms are characterized by tubular defects, but glomerular, tubulointerstitial and cystic diseases have also been described. For example, defects in coenzyme Q10 (CoQ10) biosynthesis and the mitochondrial DNA 3243 A>G mutation are important causes of focal segmental glomerulosclerosis in children and in adults, respectively. Although they sometimes present with isolated renal findings, mitochondrial diseases are frequently associated with symptoms related to central nervous system and neuromuscular involvement. They can result from mutations in nuclear genes that are inherited according to classic Mendelian rules or from mutations in mitochondrial DNA, which are transmitted according to more complex rules of mitochondrial genetics. Diagnosis of mitochondrial disorders involves clinical characterization of patients in combination with biochemical and genetic analyses. In particular, prompt diagnosis of CoQ10 biosynthesis defects is imperative because of their potentially reversible nature. In acute kidney injury (AKI), mitochondrial dysfunction contributes to the physiopathology of tissue injury, whereas mitochondrial biogenesis has an important role in the recovery of renal function. Potential therapies that target mitochondrial dysfunction or promote mitochondrial regeneration are being developed to limit renal damage during AKI and promote repair of injured tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial energy metabolism and the respiratory chain.
Figure 2: Interplay of mitochondrial and nuclear genes in the biogenesis of the respiratory chain.
Figure 3: Electron microscopy images of a renal biopsy sample obtained from a patient with a COQ2 mutation.
Figure 4: Mitochondrial injury and recovery during acute kidney injury (AKI).

Similar content being viewed by others

References

  1. Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Frey, T. G. & Mannella, C. A. The internal structure of mitochondria. Trends Biochem. Sci. 25, 319–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Schon, E. A., DiMauro, S. & Hirano, M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 13, 878–890 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Opalinska, M. & Meisinger, C. Metabolic control via the mitochondrial protein import machinery. Curr. Opin. Cell Biol. 33, 42–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Dimmer, K. S. & Scorrano, L. (De)constructing mitochondria: what for? Physiology (Bethesda) 21, 233–241 (2006).

    CAS  Google Scholar 

  7. Scorrano, L. et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2, 55–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Acin-Perez, R., Fernandez-Silva, P., Peleato, M. L., Perez-Martos, A. & Enriquez, J. A. Respiratory active mitochondrial supercomplexes. Mol. Cell 32, 529–539 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Ghezzi, D. & Zeviani, M. Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv. Exp. Med. Biol. 748, 65–106 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. DiMauro, S., Schon, E. A., Carelli, V. & Hirano, M. The clinical maze of mitochondrial neurology. Nat. Rev. Neurol. 9, 429–444 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doimo, M. et al. Genetics of coenzyme q10 deficiency. Mol. Syndromol. 5, 156–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nguyen, T. P. et al. Molecular characterization of the human COQ5 C-methyltransferase in coenzyme Q10 biosynthesis. Biochim. Biophys. Acta 1841, 1628–1638 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Allen, J. W. Cytochrome c biogenesis in mitochondria — systems III and V. FEBS J. 278, 4198–4216 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. DiMauro, S. & Schon, E. A. Mitochondrial disorders in the nervous system. Annu. Rev. Neurosci. 31, 91–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Mayr, J. A. et al. Spectrum of combined respiratory chain defects. J. Inherit. Metab. Dis. 38, 4198–4216 (2015).

    Google Scholar 

  16. Gorman, G. S. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77, 753–759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petruzzella, V. et al. Deep sequencing unearths nuclear mitochondrial sequences under Leber's hereditary optic neuropathy-associated false heteroplasmic mitochondrial DNA variants. Hum. Mol. Genet. 21, 3753–3764 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Giordano, C. et al. Pathogenesis of the deafness-associated A1555G mitochondrial DNA mutation. Biochem. Biophys. Res. Commun. 293, 521–529 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Doimo, M. et al. Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency. Biochim. Biophys. Acta 1842, 1–6 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Emma, F., Bertini, E., Salviati, L. & Montini, G. Renal involvement in mitochondrial cytopathies. Pediatr. Nephrol. 27, 539–550 (2012).

    Article  PubMed  Google Scholar 

  21. Quinzii, C. M. et al. Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J. 24, 3733–3743 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morison, I. M. et al. A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat. Genet. 40, 387–389 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. De Rocco, D. et al. Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect both apoptosis and cellular bioenergetics. Biochim. Biophys. Acta 1842, 269–274 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Desbats, M. A. et al. Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure. Eur. J. Hum. Genet. 23, 1254–1258 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Emma, F., Montini, G., Salviati, L. & Dionisi-Vici, C. Renal mitochondrial cytopathies. Int. J. Nephrol. 2011, 609213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bodemer, C. et al. Hair and skin disorders as signs of mitochondrial disease. Pediatrics 103, 428–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Niaudet, P. & Rotig, A. The kidney in mitochondrial cytopathies. Kidney Int. 51, 1000–1007 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Deetjen, P. Measurement of metabolism during renal work. Int. J. Biochem. 12, 243–244 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. Thurau, K. Renal Na-reabsorption and O2-uptake in dogs during hypoxia and hydrochlorothiazide infusion. Proc. Soc. Exp. Biol. Med. 106, 714–717 (1961).

    Article  CAS  PubMed  Google Scholar 

  30. Ogier, H. et al. de Toni-Fanconi-Debré syndrome with Leigh syndrome revealing severe muscle cytochrome c oxidase deficiency. J. Pediatr. 112, 734–739 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Niaudet, P. et al. Deletion of the mitochondrial DNA in a case of de Toni-Debré-Fanconi syndrome and Pearson syndrome. Pediatr. Nephrol. 8, 164–168 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Rotig, A. Renal disease and mitochondrial genetics. J. Nephrol. 16, 286–292 (2003).

    CAS  PubMed  Google Scholar 

  33. Morris, A. A. et al. Neonatal Fanconi syndrome due to deficiency of complex III of the respiratory chain. Pediatr. Nephrol. 9, 407–411 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Au, K. M. et al. Mitochondrial DNA deletion in a girl with Fanconi's syndrome. Pediatr. Nephrol. 22, 136–140 (2007).

    Article  PubMed  Google Scholar 

  35. Kuwertz-Broking, E. et al. Renal Fanconi syndrome: first sign of partial respiratory chain complex IV deficiency. Pediatr. Nephrol. 14, 495–498 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Mochizuki, H. et al. Mitochondrial encephalomyopathies preceded by de-Toni-Debré-Fanconi syndrome or focal segmental glomerulosclerosis. Clin. Nephrol. 46, 347–352 (1996).

    CAS  PubMed  Google Scholar 

  37. De Meirleir, L. et al. Clinical and diagnostic characteristics of complex III deficiency due to mutations in the BCS1L gene. Am. J. Med. Genet. A 121A, 126–131 (2003).

    Article  PubMed  Google Scholar 

  38. Liu, H. M. et al. A novel 3670-base pair mitochondrial DNA deletion resulting in multi-systemic manifestations in a child. Pediatr. Neonatol. 53, 264–268 (2012).

    Article  PubMed  Google Scholar 

  39. Tzoufi, M. et al. A rare case report of simultaneous presentation of myopathy, Addison's disease, primary hypoparathyroidism, and Fanconi syndrome in a child diagnosed with Kearns–Sayre syndrome. Eur. J. Pediatr. 172, 557–561 (2013).

    Article  PubMed  Google Scholar 

  40. Pitchon, E. M. et al. Patient with Fanconi syndrome (FS) and retinitis pigmentosa (RP) caused by a deletion and duplication of mitochondrial DNA (mtDNA). Klin. Monbl Augenheilkd 224, 340–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Mori, K., Narahara, K., Ninomiya, S., Goto, Y. & Nonaka, I. Renal and skin involvement in a patient with complete Kearns–Sayre syndrome. Am. J. Med. Genet. 38, 583–587 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Topaloglu, R. et al. Two new cases with Pearson syndrome and review of Hacettepe experience. Turk. J. Pediatr. 50, 572–576 (2008).

    PubMed  Google Scholar 

  43. O'Toole, J. F. Renal manifestations of genetic mitochondrial disease. Int. J. Nephrol. Renovasc. Dis. 7, 57–67 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duncan, A. J. et al. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am. J. Hum. Genet. 84, 558–566 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, Y. S. et al. Mitochondrial tubulopathy: the many faces of mitochondrial disorders. Pediatr. Nephrol. 16, 710–712 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Gilbert, R. D. & Emms, M. Pearson's syndrome presenting with Fanconi syndrome. Ultrastruct. Pathol. 20, 473–475 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Ezgu, F. et al. Severe renal tubulopathy in a newborn due to BCS1L gene mutation: effects of different treatment modalities on the clinical course. Gene 528, 364–366 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Gai, X. et al. Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am. J. Hum. Genet. 93, 482–495 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tucker, E. J. et al. Next-generation sequencing in molecular diagnosis: NUBPL mutations highlight the challenges of variant detection and interpretation. Hum. Mutat. 33, 411–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Matsutani, H. et al. Partial deficiency of cytochrome c oxidase with isolated proximal renal tubular acidosis and hypercalciuria. Child Nephrol. Urol. 12, 221–224 (1992).

    CAS  PubMed  Google Scholar 

  51. Martin-Hernandez, E. et al. Renal pathology in children with mitochondrial diseases. Pediatr. Nephrol. 20, 1299–1305 (2005).

    Article  PubMed  Google Scholar 

  52. Emma, F. et al. 'Bartter-like' phenotype in Kearns–Sayre syndrome. Pediatr. Nephrol. 21, 355–360 (2006).

    Article  PubMed  Google Scholar 

  53. Goto, Y. et al. Renal tubular involvement mimicking Bartter syndrome in a patient with Kearns–Sayre syndrome. J. Pediatr. 116, 904–910 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Visapaa, I. et al. GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am. J. Hum. Genet. 71, 863–876 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wilson, F. H. et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science 306, 1190–1194 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reilly, R. F. & Ellison, D. H. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol. Rev. 80, 277–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. McCormick, J. A. & Ellison, D. H. Distal convoluted tubule. Compr. Physiol. 5, 45–98 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Simon, D. B. et al. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter. Nat. Genet. 12, 24–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Soltoff, S. P. ATP and the regulation of renal cell function. Annu. Rev. Physiol. 48, 9–31 (1986).

    Article  CAS  PubMed  Google Scholar 

  60. Klootwijk, E. D. et al. Mistargeting of peroxisomal EHHADH and inherited renal Fanconi's syndrome. N. Engl. J. Med. 370, 129–138 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Jefferson, J. A., Alpers, C. E. & Shankland, S. J. Podocyte biology for the bedside. Am. J. Kidney Dis. 58, 835–845 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Muller-Deile, J. & Schiffer, M. The podocyte power-plant disaster and its contribution to glomerulopathy. Front. Endocrinol. (Lausanne) 5, 209 (2014).

    Google Scholar 

  63. Saleem, M. A. 100 ways to kill a podocyte. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfu363 (2015).

  64. Higgins, G. C. & Coughlan, M. T. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br. J. Pharmacol. 171, 1917–1942 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Che, R., Yuan, Y., Huang, S. & Zhang, A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am. J. Physiol. Renal Physiol. 306, F367–F378 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Kawakami, T. et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J. Am. Soc. Nephrol. 26, 1040–1052 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Montini, G., Malaventura, C. & Salviati, L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N. Engl. J. Med. 358, 2849–2850 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Heeringa, S. F. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 121, 2013–2024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ashraf, S. et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J. Clin. Invest. 123, 5179–5189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gasser, D. L. et al. Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10 . Am. J. Physiol. Renal Physiol. 305, F1228–1238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Quinzii, C. et al. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am. J. Hum. Genet. 78, 345–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Lopez, L. C. et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am. J. Hum. Genet. 79, 1125–1129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vasta, V., Merritt, J. L. 2nd, Saneto, R. P. & Hahn, S. H. Next-generation sequencing for mitochondrial diseases: a wide diagnostic spectrum. Pediatr. Int. 54, 585–601 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Salviati, L. et al. Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology 65, 606–608 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Diomedi-Camassei, F. et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J. Am. Soc. Nephrol. 18, 2773–2780 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. McCarthy, H. J. et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 8, 637–648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dinwiddie, D. L. et al. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. Genomics 102, 148–156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scalais, E. et al. Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2). Eur. J. Paediatr. Neurol. 17, 625–630 (2013).

    Article  PubMed  Google Scholar 

  79. The Multiple-System Atrophy Research Collaboration. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N. Engl. J. Med. 369, 233–244 (2013).

  80. Rotig, A. et al. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 356, 391–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Rahman, S., Clarke, C. F. & Hirano, M. 176th ENMC International Workshop: diagnosis and treatment of coenzyme Q10 deficiency. Neuromuscul. Disord. 22, 76–86 (2012).

    Article  PubMed  Google Scholar 

  82. Mollet, J. et al. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J. Clin. Invest. 117, 765–772 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peng, M. et al. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genet. 4, e1000061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saiki, R. et al. Coenzyme Q10 supplementation rescues renal disease in Pdss2kd/kd mice with mutations in prenyl diphosphate synthase subunit 2. Am. J. Physiol. Renal Physiol. 295, F1535–F1544 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Falk, M. J. et al. Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice. EMBO Mol. Med. 3, 410–427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lopez, L. C. et al. Treatment of CoQ10 deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PLoS ONE 5, e11897 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Quinzii, C. M. et al. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice. FASEB J. 27, 612–621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Freyer, C. et al. Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid. J. Med. Genet. 52, 779–783 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Desbats, M. A., Lunardi, G., Doimo, M., Trevisson, E. & Salviati, L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ10) deficiency. J. Inherit. Metab. Dis. 38, 145–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Korkmaz, E. et al. ADCK4-associated glomerulopathy causes adolescence-onset FSGS. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014121240 (2015).

  91. Mollet, J. et al. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am. J. Hum. Genet. 82, 623–630 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lagier-Tourenne, C. et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am. J. Hum. Genet. 82, 661–672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luna-Sanchez, M. et al. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene. EMBO Mol. Med. 7, 670–687 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pavlakis, S. G., Phillips, P. C., DiMauro, S., De Vivo, D. C. & Rowland, L. P. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann. Neurol. 16, 481–488 (1984).

    Article  CAS  PubMed  Google Scholar 

  95. Mehrazin, M. et al. Longitudinal changes of mtDNA A3243G mutation load and level of functioning in MELAS. Am. J. Med. Genet. A 149A, 584–587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Seidowsky, A. et al. Renal involvement in MELAS syndrome — a series of 5 cases and review of the literature. Clin. Nephrol. 80, 456–463 (2013).

    Article  PubMed  Google Scholar 

  97. Hall, A. M. et al. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int. 87, 610–622 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Wilichowski, E., Pouwels, P. J., Frahm, J. & Hanefeld, F. Quantitative proton magnetic resonance spectroscopy of cerebral metabolic disturbances in patients with MELAS. Neuropediatrics 30, 256–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Salviati, L. et al. Novel SURF1 mutation in a child with subacute encephalopathy and without the radiological features of Leigh syndrome. Am. J. Med. Genet. A 128A, 195–198 (2004).

    Article  PubMed  Google Scholar 

  100. Suomalainen, A. et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 10, 806–818 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Gropman, A. L. Neuroimaging in mitochondrial disorders. Neurotherapeutics 10, 273–285 (2013).

    Article  PubMed  Google Scholar 

  102. Bricout, M. et al. Brain imaging in mitochondrial respiratory chain deficiency: combination of brain MRI features as a useful tool for genotype/phenotype correlations. J. Med. Genet. 51, 429–435 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Leigh, P. N., Al-Sarraj, S. & DiMauro, S. Subacute necrotising encephalomyelopathy (Leigh's disease; Leigh syndrome). J. Neurol. Neurosurg. Psychiatry 86, 363–365 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Sundaram, C. et al. Contribution of muscle biopsy and genetics to the diagnosis of chronic progressive external opthalmoplegia of mitochondrial origin. J. Clin. Neurosci. 18, 535–538 (2011).

    Article  PubMed  Google Scholar 

  105. Trevisson, E., DiMauro, S., Navas, P. & Salviati, L. Coenzyme Q deficiency in muscle. Curr. Opin. Neurol. 24, 449–456 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L. & Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7, 1235–1246 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Montero, R. et al. Analysis of coenzyme Q10 in muscle and fibroblasts for the diagnosis of CoQ10 deficiency syndromes. Clin. Biochem. 41, 697–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Payne, B. A., Gardner, K., Coxhead, J. & Chinnery, P. F. Deep resequencing of mitochondrial DNA. Methods Mol. Biol. 1264, 59–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Shanske, S. et al. Varying loads of the mitochondrial DNA A3243G mutation in different tissues: implications for diagnosis. Am. J. Med. Genet. A 130A, 134–137 (2004).

    Article  PubMed  Google Scholar 

  110. Yubero, D. et al. Molecular diagnosis of coenzyme Q10 deficiency. Expert Rev. Mol. Diagn. 15, 1049–1059 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Sadowski, C. E. et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1279–1289 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Tran, M. et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest. 121, 4003–4014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Brooks, C., Wei, Q., Cho, S. G. & Dong, Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275–1285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Manny, J. et al. Structural changes in the perfused canine kidney exposed to the direct action of endotoxin. Isr. J. Med. Sci. 16, 153–161 (1980).

    CAS  PubMed  Google Scholar 

  115. Trump, B. F. et al. The application of electron microscopy and cellular biochemistry to the autopsy. Hum. Pathol. 6, 499–516 (1975).

    Article  CAS  PubMed  Google Scholar 

  116. Takasu, O. et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am. J. Respir. Crit. Care Med. 187, 509–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Parekh, D. J. et al. Tolerance of the human kidney to isolated controlled ischemia. J. Am. Soc. Nephrol. 24, 506–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zsengeller, Z. K. et al. Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. J. Histochem. Cytochem. 60, 521–529 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Funk, J. A. & Schnellmann, R. G. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am. J. Physiol. Renal Physiol. 302, F853–F864 (2012).

    Article  PubMed  Google Scholar 

  120. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Feldkamp, T., Kribben, A., Roeser, N. F., Senter, R. A. & Weinberg, J. M. Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia-reoxygenation. Am. J. Physiol. Renal Physiol. 290, F465–F477 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Weinberg, J. M., Venkatachalam, M. A., Roeser, N. F. & Nissim, I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc. Natl Acad. Sci. USA 97, 2826–2831 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Bienholz, A. et al. Substrate modulation of fatty acid effects on energization and respiration of kidney proximal tubules during hypoxia/reoxygenation. PLoS ONE 9, e94584 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, S. et al. Transgenic expression of proximal tubule peroxisome proliferator-activated receptor-α in mice confers protection during acute kidney injury. Kidney Int. 76, 1049–1062 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tannenbaum, J., Purkerson, M. L. & Klahr, S. Effect of unilateral ureteral obstruction on metabolism of renal lipids in the rat. Am. J. Physiol. 245, F254–F262 (1983).

    CAS  PubMed  Google Scholar 

  126. Zager, R. A., Johnson, A. C. & Hanson, S. Y. Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury. Kidney Int. 67, 111–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Cocheme, H. M. et al. Mitochondrial targeting of quinones: therapeutic implications. Mitochondrion 7, S94–S102 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Kelso, G. F. et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem. 276, 4588–4596 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Zhao, K. et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J. Biol. Chem. 279, 34682–34690 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Szeto, H. H. et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol. 22, 1041–1052 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mukhopadhyay, P. et al. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic. Biol. Med. 52, 497–506 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Tang, W. X., Wu, W. H., Qiu, H. Y., Bo, H. & Huang, S. M. Amelioration of rhabdomyolysis-induced renal mitochondrial injury and apoptosis through suppression of Drp-1 translocation. J. Nephrol. 26, 1073–1082 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Morigi, M. et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Invest. 125, 715–726 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ishihara, M. et al. Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am. J. Physiol. Renal Physiol. 305, F495–F509 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Jiang, M. et al. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82, 1271–1283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Sweeney, T. E., Suliman, H. B., Hollingsworth, J. W. & Piantadosi, C. A. Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis. PLoS ONE 5, e11606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sweeney, T. E., Suliman, H. B., Hollingsworth, J. W., Welty-Wolf, K. E. & Piantadosi, C. A. A toll-like receptor 2 pathway regulates the Ppargc1a/b metabolic co-activators in mice with Staphylococcal aureus sepsis. PLoS ONE 6, e25249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rasbach, K. A. & Schnellmann, R. G. PGC-1α over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem. Biophys. Res. Commun. 355, 734–739 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Jesinkey, S. R. et al. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J. Am. Soc. Nephrol. 25, 1157–1162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wrigley, A., Wilkinson, S. & Appleby, J. B. Mitochondrial replacement: ethics and identity. Bioethics 29, 631–638 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Schon, E. A. et al. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 244, 346–349 (1989).

    Article  CAS  PubMed  Google Scholar 

  143. Glerum, D. M. & Tzagoloff, A. Isolation of a human cDNA for heme A:farnesyltransferase by functional complementation of a yeast cox10 mutant. Proc. Natl Acad. Sci. USA 91, 8452–8456 (1994).

    Article  CAS  PubMed  Google Scholar 

  144. Lim, S. C. et al. Mutations in LYRM4, encoding iron–sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes. Hum. Mol. Genet. 22, 4460–4473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cogliati, S. et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160–171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Hirano, M., Lagier-Tourenne, C., Valentino, M. L., Marti, R. & Nishigaki, Y. Thymidine phosphorylase mutations cause instability of mitochondrial DNA. Gene 354, 152–156 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Valnot, I. et al. A mutation in the human heme A:farnesyltransferase gene (COX10) causes cytochrome c oxidase deficiency. Hum. Mol. Genet. 9, 1245–1249 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Tay, S. K. et al. Unusual clinical presentations in four cases of Leigh disease, cytochrome C oxidase deficiency, and SURF1 gene mutations. J. Child Neurol. 20, 670–674 (2005).

    Article  PubMed  Google Scholar 

  150. de Lonlay, P. et al. A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat. Genet. 29, 57–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Tucker, E. J. et al. Mutations in the UQCC1-interacting protein, UQCC2, cause human complex III deficiency associated with perturbed cytochrome b protein expression. PLoS Genet. 9, e1004034 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Magner, M. et al. TMEM70 deficiency: long-term outcome of 48 patients. J. Inherit. Metab. Dis. 38, 417–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Saada, A. et al. Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. J. Med. Genet. 44, 784–786 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nakajima, J. et al. A novel homozygous YARS2 mutation causes severe myopathy, lactic acidosis, and sideroblastic anemia 2. J. Hum. Genet. 59, 229–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Belostotsky, R. et al. Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am. J. Hum. Genet. 88, 193–200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bourdon, A. et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet. 39, 776–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Prasad, C. et al. Exome sequencing reveals a homozygous mutation in TWINKLE as the cause of multisystemic failure including renal tubulopathy in three siblings. Mol. Genet. Metab. 108, 190–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. El-Hattab, A. W. & Scaglia, F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 10, 186–198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Carrozzo, R. et al. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain 130, 862–874 (2007).

    Article  PubMed  Google Scholar 

  160. Dimmock, D. P. et al. Clinical and molecular features of mitochondrial DNA depletion due to mutations in deoxyguanosine kinase. Hum. Mutat. 29, 330–331 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mitochondrial studies in S.M.P.'s laboratory are supported by R01-DK0950972. Studies in L.S.'s laboratory are supported by Telethon grants 14187 and 13222.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, made a substantial contribution to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Francesco Emma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emma, F., Montini, G., Parikh, S. et al. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol 12, 267–280 (2016). https://doi.org/10.1038/nrneph.2015.214

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing