Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD

Key Points

  • Acute injury to the kidney is often associated with maladaptive repair and incomplete resolution, leading to residual abnormalities in kidney structure and function

  • Increasing age, and chronic low-grade insults to the tubular epithelium increase epithelial cell sensitivity to episodes of acute kidney injury, leading to maladaptive repair and progression of chronic kidney disease

  • Maladaptive repair is characterized by fibrosis, vascular rarefaction, tubular loss, glomerulosclerosis and the presence of a chronic inflammatory infiltrate within the kidney

  • Injured renal tubular epithelial cells become arrested at G2/M and adopt a profibrotic phenotype, which affects other epithelial cells, pericytes and the immune system

  • Myofibroblasts that likely arise from renal pericytes proliferate and contribute to the deposition of extracellular matrix and resulting fibrosis within the injured kidney

  • Maladaptive repair after acute kidney insults shares many common features with kidney ageing and can be thought of as a state of accelerated kidney ageing

Abstract

Acute kidney injury is an increasingly common complication of hospital admission and is associated with high levels of morbidity and mortality. A hypotensive, septic, or toxic insult can initiate a cascade of events, resulting in impaired microcirculation, activation of inflammatory pathways and tubular cell injury or death. These processes ultimately result in acutely impaired kidney function and initiation of a repair response. This Review explores the various mechanisms responsible for the initiation and propagation of acute kidney injury, the prototypic mechanisms by which a substantially damaged kidney can regenerate its normal architecture, and how the adaptive processes of repair can become maladaptive. These mechanisms, which include G2/M cell-cycle arrest, cell senescence, profibrogenic cytokine production, and activation of pericytes and interstitial myofibroblasts, contribute to the development of progressive fibrotic kidney disease. The end result is a state that mimics accelerated kidney ageing. These mechanisms present important opportunities for the design of targeted therapeutic strategies to promote adaptive renal recovery and minimize progressive fibrosis and chronic kidney disease after acute insults.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A summary of some of the mechanisms involved in initial tissue injury and subsequent repair of the kidney after acute kidney injury.
Figure 2: The evolution of tissue injury, death and subsequent adaptive repair after AKI.
Figure 3: Maladaptive repair of AKI leads to CKD.
Figure 4: Common mechanisms in kidney ageing and progressive kidney injury.
Figure 5: Replicative and stress-induced premature senescence in kidney injury.
Figure 6: Eukaryotic cell-cycle checkpoints.

Similar content being viewed by others

References

  1. Metcalfe, W. et al. Acute renal failure requiring renal replacement therapy: incidence and outcome. QJM 95, 579–583 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Ali, T. et al. Incidence and outcomes in acute kidney injury: A comprehensive population-based study. J. Am. Soc. Nephrol. 18, 1292–1298 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Noble, J. S., Simpson, K. & Allison, M. E. Long-term quality of life and hospital mortality in patients treated with intermittent or continuous hemodialysis for acute renal and respiratory failure. Ren. Fail. 28, 323–330 (2006).

    Article  PubMed  Google Scholar 

  4. Xue, J. L. et al. Incidence and mortality of acute renal failure in medicare beneficiaries, 1992 to 2001. J. Am. Soc. Nephrol. 17, 1135–1142 (2006).

    Article  PubMed  Google Scholar 

  5. Wonnacott, A., Meran, S., Amphlett, B., Talabani, B. & Phillips, A. Epidemiology and outcomes in community-acquired versus hospital-acquired aki. Clin. J. Am. Soc. Nephrol. 9, 1007–1014 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thadhani, R., Pascual, M. & Bonventre, J. V. Acute renal failure. N. Engl. J. Med. 334, 1448–1460 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Brezis, M. & Rosen, S. Hypoxia of the renal medulla—its implications for disease. N. Engl. J. Med. 332, 647–655 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Friedrich, J. O., Adhikari, N., Herridge, M. S. & Beyene, J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann. Intern. Med. 142, 510–524 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Ho, K. M. & Sheridan, D. J. Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ 333, 420 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coca, S. G., Singanamala, S. & Parikh, C. R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81, 442–448 (2012).

    Article  PubMed  Google Scholar 

  11. Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shimoi, T. et al. The significant impact of acute kidney injury on CKD in patients who survived over 10 years after myeloablative allogeneic SCT. Bone Marrow Transplant. 48, 80–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Belayev, L. Y. & Palevsky, P. M. The link between acute kidney injury and chronic kidney disease. Curr. Opin. Nephrol. Hypertens. (2013).

  14. Chawla, L. S. & Kimmel, P. L. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int. 82, 516–524 (2012).

    Article  PubMed  Google Scholar 

  15. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grgic, I. et al. Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int. 82, 172–183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Basile, D. P., Donohoe, D., Roethe, K. & Osborn, J. L. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am. J. Physiol. Renal Physiol. 281, F887–F899 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Schmitt, R. & Cantley, L. G. The impact of aging on kidney repair. Am. J. Physiol. Renal Physiol. 294, F1265–F1272 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Bonventre, J. V. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J. Am. Soc. Nephrol. 14 (Suppl. 1), S55–S61 (2003).

    Article  PubMed  Google Scholar 

  20. Cantley, L. G. Adult stem cells in the repair of the injured renal tubule. Nat. Clin. Pract. Nephrol. 1, 22–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Oliver, J. A., Maarouf, O., Cheema, F. H., Martens, T. P. & Al-Awqati, Q. The renal papilla is a niche for adult kidney stem cells. J. Clin. Invest. 114, 795–804 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bussolati, B, et al. Isolation of renal progenitor cells from adult human kidney. Am. J. Pathol. 166, 545–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dekel, B. et al. Isolation and characterization of nontubular sca-1+lin multipotent stem/progenitor cells from adult mouse kidney. J. Am. Soc. Nephrol. 17, 3300–3314 (2006).

    Article  PubMed  Google Scholar 

  24. Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Humphreys, B. D. et al. Repair of injured proximal tubule does not involve specialized progenitors. Proc. Natl Acad. Sci. USA 108, 9226–9231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berger, K. & Moeller, M. J. Mechanisms of epithelial repair and regeneration after acute kidney injury. Semin. Nephrol. 34, 394–403 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Evans, R. G. et al. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology. Clin. Exp. Pharmacol. Physiol. 40, 106–122 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Pallone, T. L., Robertson, C. R. & Jamison, R. L. Renal medullary microcirculation. Physiol. Rev. 70, 885–920 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Basile, D. P. The endothelial cell in ischemic acute kidney injury: Implications for acute and chronic function. Kidney Int. 72, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, M. et al. The volatile anesthetic isoflurane induces ecto-5'-nucleotidase (cd73) to protect against renal ischemia and reperfusion injury. Kidney Int. 84, 90–103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Venkatachalam, M. A. & Weinberg, J. M. The conundrum of protection from AKI by adenosine in rodent clamp ischemia models. Kidney Int. 84, 16–19 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Conger, J. D., Robinette, J. B. & Hammond, W. S. Differences in vascular reactivity in models of ischemic acute renal failure. Kidney Int. 39, 1087–1097 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Noiri, E. et al. Oxidative and nitrosative stress in acute renal ischemia. Am. J. Physiol. Renal Physiol. 281, F948–F957 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. De Greef, K. E., Ysebaert, D. K., Persy, V., Vercauteren, S. R. & De Broe, M. E. ICAM-1 expression and leukocyte accumulation in inner stripe of outer medulla in early phase of ischemic compared to hgCl2-induced ARF. Kidney Int. 63, 1697–1707 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Kelly, K. J. et al. Minocycline inhibits apoptosis and inflammation in a rat model of ischemic renal injury. Am. J. Physiol. Renal Physiol. 287, F760–F766 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Brodsky, S. V. et al. Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am. J. Physiol. Renal Physiol. 282, F1140–F1149 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto, T. et al. Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am. J. Physiol. Renal Physiol. 282, F1150–F1155 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Schrimpf, C. & Duffield, J. S. Mechanisms of fibrosis: the role of the pericyte. Curr. Opin. Nephrol. Hypertens. 20, 297–305 (2011).

    Article  PubMed  Google Scholar 

  39. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schrimpf, C. et al. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. J. Am. Soc. Nephrol. 23, 868–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, S. et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol. 22, 317–326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dong, X. et al. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int. 71, 619–628 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Ysebaert, D. K. et al. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol. Dial. Transplant. 15, 1562–1574 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Kelly, K. J. et al. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J. Clin. Invest. 97, 1056–1063 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bolisetty, S. & Agarwal, A. Neutrophils in acute kidney injury: not neutral any more. Kidney Int. 75, 674–676 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Li, L. et al. IL-17 produced by neutrophils regulates IFN-γ-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest. 120, 331–342 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Chaturvedi, S. et al. Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 24, 1274–1287 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Awad, A. S. et al. Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury. Kidney Int. 75, 689–698 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burne-Taney, M. J., Yokota-Ikeda, N. & Rabb, H. Effects of combined T- and B-cell deficiency on murine ischemia reperfusion injury. Am. J. Transplant. 5, 1186–1193 (2005).

    Article  PubMed  Google Scholar 

  50. Melnikov, V. Y. et al. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J. Clin. Invest. 110, 1083–1091 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thornton, M. A., Winn, R., Alpers, C. E. & Zager, R. A. An evaluation of the neutrophil as a mediator of in vivo renal ischemic-reperfusion injury. Am. J. Pathol. 135, 509–515 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Savill, J., Smith, J., Sarraf, C., Ren, Y., Abbott, F. & Rees, A. Glomerular mesangial cells and inflammatory macrophages ingest neutrophils undergoing apoptosis. Kidney Int. 42, 924–936 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Ferenbach, D. A. et al. Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice. Kidney Int. 82, 928–933 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Jo, S. K., Sung, S. A., Cho, W. Y., Go, K. J. & Kim, H. K. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol. Dial. Transplant. 21, 1231–1239 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Day, Y. J., Huang, L., Ye, H., Linden, J. & Okusa, M. D. Renal ischemia-reperfusion injury and adenosine 2a receptor-mediated tissue protection: Role of macrophages. Am. J. Physiol. Renal Physiol. 288, F722–F731 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Rae, F. et al. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a csf1r-egfp transgene reporter. Dev. Biol. 308, 232–246 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Ricardo S. D., van Goor, H. & Eddy, A. A. Macrophage diversity in renal injury and repair. J. Clin. Invest. 118, 3522–3530 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin, S. L. et al. Macrophage wnt7b is critical for kidney repair and regeneration. Proc. Natl Acad. Sci. USA 107, 4194–4199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jang, H. S., Kim, J., Park, Y. K. & Park, K. M. Infiltrated macrophages contribute to recovery after ischemic injury but not to ischemic preconditioning in kidneys. Transplantation 85, 447–455 (2008).

    Article  PubMed  Google Scholar 

  60. Lech, M. et al. Macrophage phenotype controls long-term AKI outcomes—kidney regeneration versus atrophy. J. Am. Soc. Nephrol. 25, 292–304 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Linfert, D., Chowdhry, T. & Rabb, H. Lymphocytes and ischemia-reperfusion injury. Transplant. Rev. 23, 1–10 (2009).

    Article  Google Scholar 

  62. Burne-Taney, M. J. et al. B cell deficiency confers protection from renal ischemia reperfusion injury. J. Immunol. 171, 3210–3215 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Rabb, H. et al. Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am. J. Physiol. Renal Physiol. 27, F525–F531 (2000).

    Article  Google Scholar 

  64. Park, P. et al. Injury in renal ischemia–reperfusion is independent from immunoglobulins and T lymphocytes. Am. J. Physiol. Renal Physiol. 282, F352–F357 (2002).

    Article  PubMed  Google Scholar 

  65. Kinsey, G. R. et al. Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J. Am. Soc. Nephrol. 20, 1744–1753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jang, H. R. et al. B cells limit repair after ischemic acute kidney injury. J. Am. Soc. Nephrol. 21, 654–665 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Burne-Taney, M. J. et al. Transfer of lymphocytes from mice with renal ischemia can induce albuminuria in naive mice: A possible mechanism linking early injury and progressive renal disease? Am. J. Physiol. Renal Physiol. 291, F981–F986 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Day, Y. J. et al. Renal protection from ischemia mediated by a2a adenosine receptors on bone marrow-derived cells. J. Clin. Invest. 112, 883–891 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Basile, D. P. et al. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am. J. Physiol. Renal Physiol. 300, F721–F733 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Li, L. et al. Dendritic cells tolerized with adenosine A2 AR agonist attenuate acute kidney injury. J. Clin. Invest. 122, 3931–3942 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kinsey, G. R. et al. Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection. J. Am. Soc. Nephrol. 23, 1528–1537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferenbach, D. A. et al. The induction of macrophage hemeoxygenase-1 is protective during acute kidney injury in aging mice. Kidney Int. 79, 966–976 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Ferenbach, D. A. et al. Macrophages expressing heme oxygenase-1 improve renal function in ischemia/reperfusion injury. Mol. Ther. 18, 1706–1713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Duffield, J. S. et al. Resolvin D series and protectin D1 mitigate acute kidney injury. J. Immunol. 177, 5902–5911 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Leonard, M. O. et al. 15-epi-16-(para-fluorophenoxy)-lipoxin a(4)-methyl ester, a synthetic analogue of 15-epi-lipoxin A(4), is protective in experimental ischemic acute renal failure. J. Am. Soc. Nephrol. 13, 1657–1662 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Franquesa, M. et al. Tubular epithelial cells transfected with hHGF counteracts monocyte chemotactic protein-1 up-regulation after hypoxia/reoxygenation insult. Transplant. Proc. 41, 2069–2072 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Franquesa, M. et al. Direct electrotransfer of hHGF gene into kidney ameliorates ischemic acute renal failure. Gene Ther. 12, 1551–1558 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Thurman, J. M., Lucia, M. S., Ljubanovic, D. & Holers, V. M. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int. 67, 524–530 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Thurman, J. M. et al. Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion. J. Clin. Invest. 116, 357–368 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Peng, Q., Li, K., Patel, H., Sacks, S. H. & Zhou, W. Dendritic cell synthesis of C3 is required for full T cell activation and development of a th1 phenotype. J. Immunol. 176, 3330–3341 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Thurman, J. M. et al. Treatment with an inhibitory monoclonal antibody to mouse factor b protects mice from induction of apoptosis and renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 17, 707–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Renner, B. et al. The complement inhibitors Crry and factor H are critical for preventing autologous complement activation on renal tubular epithelial cells. J. Immunol. 185, 3086–3094 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 110, 12024–12029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Linkermann, A., De Zen, F., Weinberg, J., Kunzendorf, U. & Krautwald, S. Programmed necrosis in acute kidney injury. Nephrol. Dial. Transplant. 27, 3412–3419 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Ishibe, S. & Cantley, L. G. Epithelial–mesenchymal–epithelial cycling in kidney repair. Curr. Opin. Nephrol. Hypertens. 17, 379–385 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Villanueva, S., Cespedes, C. & Vio, C. P. Ischemic acute renal failure induces the expression of a wide range of nephrogenic proteins. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R861–R870 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Witzgall, R., Brown, D., Schwarz, C. & Bonventre, J. V. Localization of proliferating cell nuclear antigen, vimentin, c-fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J. Clin. Invest. 93, 2175–2188 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Witzgall, R., O'Leary, E., Gessner, R., Ouellette, A. J. & Bonventre, J. V. Kid-1, a putative renal transcription factor: Regulation during ontogeny and in response to ischemia and toxic injury. Mol. Cell. Biol. 13, 1933–1942 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Price, V. R., Reed, C. A., Lieberthal, W. & Schwartz, J. H. ATP depletion of tubular cells causes dissociation of the zonula adherens and nuclear translocation of β-catenin and LEF-1. J. Am. Soc. Nephrol. 13, 1152–1161 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Kuure, S., Popsueva, A., Jakobson, M., Sainio, K. & Sariola, H. Glycogen synthase kinase-3 inactivation and stabilization of β-catenin induce nephron differentiation in isolated mouse and rat kidney mesenchymes. J. Am. Soc. Nephrol. 18, 1130–1139 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Ishibe, S., Haydu, J. E., Togawa, A., Marlier, A. & Cantley, L. G. Cell confluence regulates hepatocyte growth factor-stimulated cell morphogenesis in a β-catenin-dependent manner. Mol. Cell. Biol. 26, 9232–9243 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. O'Brien, L. E. et al. ERK and MMPs sequentially regulate distinct stages of epithelial tubule development. Develop. Cell 7, 21–32 (2004).

    Article  CAS  Google Scholar 

  93. Kimura, M. et al. Role of atrophic changes in proximal tubular cells in the peritubular deposition of type IV collagen in a rat renal ablation model. Nephrol. Dial. Transplant. 20, 1559–1565 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Suzuki, T., Kimura, M., Asano, M., Fujigaki, Y. & Hishida, A. Role of atrophic tubules in development of interstitial fibrosis in microembolism-induced renal failure in rat. Am. J. Pathol. 158, 75–85 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. de Borst, M. H. et al. C-Jun NH2-terminal kinase is crucially involved in renal tubulo-interstitial inflammation. J. Pharmacol. Exp. Ther. 331, 896–905 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Venkatachalam, M. A. et al. Acute kidney injury: a springboard for progression in chronic kidney disease. Am. J. Physiol. Renal Physiol. 298, F1078–F1094 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bomsztyk, K. & Denisenko, O. Epigenetic alterations in acute kidney injury. Semin. Nephrol. 33, 327–340 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wing, M. R., Ramezani, A., Gill, H. S., Devaney, J. M. & Raj, D. S. Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin. Nephrol. 33, 363–374 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Naito, M., Zager, R. A. & Bomsztyk, K. BRG1 increases transcription of proinflammatory genes in renal ischemia. J. Am. Soc. Nephrol. 20, 1787–1796 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zager, R. A. & Johnson, A. C. Renal ischemia-reperfusion injury upregulates histone-modifying enzyme systems and alters histone expression at proinflammatory/profibrotic genes. Am. J. Physiol. Renal Physiol. 296, F1032–F1041 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yu, J., Feng, Q., Ruan, Y., Komers, R., Kiviat, N. & Bomsztyk, K. Microplate-based platform for combined chromatin and DNA methylation immunoprecipitation assays. BMC Mol. Biol. 12, 49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bonventre, J. V. Kidney injury molecule-1 (Kim-1): a urinary biomarker and much more. Nephrol. Dial. Transplant. 24, 3265–3268 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Ichimura, T. et al. Kidney injury molecule-1 (Kim-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem. 273, 4135–4142 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Ichimura, T. et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest. 118, 1657–1668 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Humphreys, B. D. et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J. Clin. Invest. 123, 4023–4035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang, L. et al. KIM-1/TIM-1 mediated-phagocytosis reduces acute injury to the kidney. J. Clin. Invest. (in press).

  107. Bonventre, J. V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 121, 4210–4221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nature Commun. 4, 2823 (2013).

    Article  CAS  Google Scholar 

  109. Williams, S. M. et al. Class I HDACs regulate angiotensin ii-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J. Mol. Cell. Cardiol. 67, 112–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Sahebally, S. M. et al. Circulating fibrocytes and Crohn's disease. Br. J. Surg. 100, 1549–1556 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Wada, T. et al. Involvement of bone-marrow-derived cells in kidney fibrosis. Clin. Exp. Nephrology. 15, 8–13 (2011).

    Article  Google Scholar 

  112. Ross, R., Everett, N. B. & Tyler, R. Wound healing and collagen formation. VI. The origin of the wound fibroblast studied in parabiosis. J. Cell Biol. 44, 645–654 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dulauroy, S., Di Carlo, S. E., Langa, F., Eberl, G. & Peduto, L. Lineage tracing and genetic ablation of adam12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat. Med. 18, 1262–1270 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zeisberg, M. & Duffield, J. S. Resolved: EMT produces fibroblasts in the kidney. J. Am. Soc. Nephrol. 21, 1247–1253 (2010).

    Article  PubMed  Google Scholar 

  116. Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lin, S. L. et al. Targeting endothelium–pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am. J. Pathol. 178, 911–923 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Smith, S. W., Chand, S. & Savage, C. O. Biology of the renal pericyte. Nephrol. Dial. Transplant. 27, 2149–2155 (2012).

    Article  PubMed  Google Scholar 

  119. Betsholtz, C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev. 15, 215–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Sundberg, C., Kowanetz, M., Brown, L. F., Detmar, M. & Dvorak, H. F. Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab. Invest. 82, 387–401 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Carvalho, R. L. et al. Defective paracrine signalling by TGFβ in yolk sac vasculature of endoglin mutant mice: A paradigm for hereditary haemorrhagic telangiectasia. Development 131, 6237–6247 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Benjamin, L. E., Hemo, I. & Keshet, E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-b and VEGF. Development 125, 1591–1598 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Chae, S. S., Paik, J. H., Allende, M. L., Proia, R. L. & Hla, T. Regulation of limb development by the sphingosine 1-phosphate receptor S1p1/EDG-1 occurs via the hypoxia/VEGF axis. Dev. Biol. 268, 441–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, Y. T. et al. Platelet-derived growth factor receptor signaling activates pericyte–myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 80, 1170–1181 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Kramann, R. et al. Perivascular gli1(+) progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16, 51–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Leung, K. C., Tonelli, M. & James, M. T. Chronic kidney disease following acute kidney injury-risk and outcomes. Nat. Rev. Nephrol. 9, 77–85 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Clements, M. E., Chaber, C. J., Ledbetter, S. R. & Zuk, A. Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury. PLoS ONE 8, e70464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tabibian, J. H., O'Hara, S. P., Splinter, P. L., Trussoni, C. E. & Larusso, N. F. Cholangiocyte senescence via N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology 59, 2263–2275 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Marongiu, F., Serra, M. P., Sini, M., Angius, F. & Laconi, E. Clearance of senescent hepatocytes in a neoplastic-prone microenvironment delays the emergence of hepatocellular carcinoma. Aging 6, 26–34 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Westhoff, J. H. et al. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16ink4a. Hypertension 52, 123–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Liu, J. et al. Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. Transl. Res. 159, 454–463 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Verzola, D. et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 295, F1563–F1573 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908, 244–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Oien, C. M. et al. Living donor kidney transplantation: the effects of donor age and gender on short- and long-term outcomes. Transplantation 83, 600–606 (2007).

    Article  PubMed  Google Scholar 

  136. Reutzel-Selke, A. et al. Donor age intensifies the early immune response after transplantation. Kidney Int. 71, 629–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Kelly, J., Ali Khan, A., Yin, J., Ferguson, T. A. & Apte, R. S. Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice. J. Clin. Invest. 117, 3421–3426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schmitt, R., Marlier, A. & Cantley, L. G. Zag expression during aging suppresses proliferation after kidney injury. J. Am. Soc. Nephrol. 19, 2375–2383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kwekel, J. C., Desai, V. G., Moland, C. L., Vijay, V. & Fuscoe, J. C. Life cycle analysis of kidney gene expression in male f344 rats. PLoS ONE 8, e75305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Itahana, K., Campisi, J. & Dimri, G. P. Methods to detect biomarkers of cellular senescence: the senescence-associated β-galactosidase assay. Methods Mol. Biol. 371, 21–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Yang, H. & Fogo, A. B. Cell senescence in the aging kidney. J. Am. Soc. Nephrol. 21, 1436–1439 (2010).

    Article  PubMed  Google Scholar 

  143. Megyesi, J., Andrade, L., Vieira, J. M. Jr, Safirstein, R. L. & Price, P. M. Positive effect of the induction of p21WAF1/CIP1 on the course of ischemic acute renal failure. Kidney Int. 60, 2164–2172 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Dirocco, D. et al. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am. J. Physiol. Renal Physiol. 306, F379–F388 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Baker, D. J. et al. Clearance of p16(Ink4a)-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yang, H. C. et al. Cells derived from young bone marrow alleviate renal aging. J. Am. Soc. Nephrol. 22, 2028–2036 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Devarajan, P. Update on mechanisms of ischemic acute kidney injury. J. Am. Soc. Nephrol. 17, 1503–1520 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Shurin, G. V. et al. Dynamic alteration of soluble serum biomarkers in healthy aging. Cytokine 39, 123–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Kang, D. H. et al. Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease. Am. J. Kidney Dis. 37, 601–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Ruiz-Torres, M. P. et al. Age-related increase in expression of TGF-β1 in the rat kidney: relationship to morphologic changes. J. Am. Soc. Nephrol. 9, 782–791 (1998).

    Article  CAS  PubMed  Google Scholar 

  154. Karam, Z. & Tuazon, J. Anatomic and physiologic changes of the aging kidney. Clin. Geriatr. Med. 29, 555–564 (2013).

    Article  PubMed  Google Scholar 

  155. Poulsom, R. et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J. Pathol. 195, 229–235 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Duffield, J. S. et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J. Clin. Invest. 115, 1743–1755 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Morigi, M. et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J. Am. Soc. Nephrol. 15, 1794–1804 (2004).

    Article  PubMed  Google Scholar 

  158. Semedo, P. et al. Early modulation of inflammation by mesenchymal stem cell after acute kidney injury. Int. Immunopharmacol. 9, 677–682 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Hagiwara, M., Shen, B., Chao, L. & Chao, J. Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Hum. Gene Ther. 19, 807–819 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Humphreys, B. D. & Bonventre, J. V. Mesenchymal stem cells in acute kidney injury. Annu. Rev. Med. 59, 311–325 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Thum, T. et al. Age-dependent impairment of endothelial progenitor cells is corrected by growth-hormone-mediated increase of insulin-like growth-factor-1. Circ. Res. 100, 434–443 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Behrens, A., van Deursen, J. M., Rudolph, K. L. & Schumacher, B. Impact of genomic damage and ageing on stem cell function. Nat. Cell Biol. 16, 201–207 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Stolzing, A. & Scutt, A. Age-related impairment of mesenchymal progenitor cell function. Aging Cell 5, 213–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Schatteman, G. C. & Ma, N. Old bone marrow cells inhibit skin wound vascularization. Stem Cells 24, 717–721 (2006).

    Article  PubMed  Google Scholar 

  165. Gewin, L. & Zent, R. How does TGF-β mediate tubulointerstitial fibrosis? Semin. Nephrol. 32, 228–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Qi, W., Chen, X., Poronnik, P. & Pollock, C. A. Transforming growth factor-beta/connective tissue growth factor axis in the kidney. Int. J. Biochem. Cell Biol. 40, 9–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Wu, C. F. et al. Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am. J. Pathol. 182, 118–131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tang, J. et al. Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury. Am. J. Pathol. 183, 160–172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cianciolo Cosentino, C. et al. Histone deacetylase inhibitor enhances recovery after AKI. J. Am. Soc. Nephrol. 24, 943–953 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Zhou, W. et al. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat. Genet. 44, 910–915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yang, H. C. et al. Cells derived from young bone marrow alleviate renal aging. J. Am. Soc. Nephrol. 22, 2028–2036 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kramann, R. & Humphreys, B. D. Kidney pericytes: roles in regeneration and repair. Semin. Nephrol. 34, 374–383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Duffield, J. S. & Lupher, M. L. Jr. PRM-151 (recombinant human serum amyloid p/pentraxin 2) for the treatment of fibrosis. Drug News Perspect. 23, 305–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. Zhou, L. et al. Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J. Am. Soc. Nephrol. 21, 31–41 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Crose, L. E. et al. Alveolar rhabdomyosarcoma-associated PAX3–FOXO1 promotes tumorigenesis via hippo pathway suppression. J. Clin. Invest. 124, 285–296 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to researching data for the article, discussion of its content, writing and reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Joseph V. Bonventre.

Ethics declarations

Competing interests

J.V.B is co-inventor on KIM-1 patents that are assigned to Partners HealthCare and licensed to Johnson & Johnson, Sekisui, Novartis, Biogen Idec., R & D, and Astute. He is a consultant for Astellas, Novartis, Roche and Sekisui regarding the safety and efficacy of therapeutics or diagnostics for acute kidney injury. He holds equity in MediBeacon, Sentien and Thrasos, and has grant support from Novo Nordisk and Roche. D.A.F declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferenbach, D., Bonventre, J. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11, 264–276 (2015). https://doi.org/10.1038/nrneph.2015.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing