Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus

Key Points

  • Nephrogenic diabetes insipidus (NDI) is caused by inability of the kidneys to concentrate urine by reabsorbing water in the collecting duct

  • NDI can be inherited (X-linked or autosomal) or acquired, most commonly as a result of lithium treatment

  • Management of primary forms of NDI focuses on dietary modification to reduce osmotic load and pharmacological treatment with inhibitors of prostaglandin synthesis and thiazide diuretics

  • With appropriate treatment, complications of NDI—such as failure to thrive and mental retardation resulting from repeated hypernatraemic dehydration—can be avoided

  • New treatment approaches for congenital NDI have been tested in animal models, but efficacy in patients has not yet been confirmed

Abstract

Healthy kidneys maintain fluid and electrolyte homoeostasis by adjusting urine volume and composition according to physiological needs. The final urine composition is determined in the last tubular segment: the collecting duct. Water permeability in the collecting duct is regulated by arginine vasopressin (AVP). Secretion of AVP from the neurohypophysis is regulated by a complex signalling network that involves osmosensors, barosensors and volume sensors. AVP facilitates aquaporin (AQP)-mediated water reabsorption via activation of the vasopressin V2 receptor (AVPR2) in the collecting duct, thus enabling concentration of urine. In nephrogenic diabetes insipidus (NDI), inability of the kidneys to respond to AVP results in functional AQP deficiency. Consequently, affected patients have constant diuresis, resulting in large volumes of dilute urine. Primary forms of NDI result from mutations in the genes that encode the key proteins AVPR2 and AQP2, whereas secondary forms are associated with biochemical abnormalities, obstructive uropathy or the use of certain medications, particularly lithium. Treatment of the disease is informed by identification of the underlying cause. Here we review the clinical aspects and diagnosis of NDI, the various aetiologies, current treatment options and potential future developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The renal concentration and dilution mechanism.
Figure 2: Regulation of vasopressin secretion.
Figure 3: Water transport in the principal cell.
Figure 4: Timeline of key advances in the understanding of nephrogenic diabetes insipidus.

Similar content being viewed by others

Mirjam Christ-Crain, Daniel G. Bichet, … Alan S. Verkman

References

  1. Stevens, L. A., Coresh, J., Greene, T. & Levey, A. S. Assessing kidney function—measured and estimated glomerular filtration rate. N. Engl. J. Med. 354, 2473–2483 (2006).

    CAS  PubMed  Google Scholar 

  2. Nielsen, S., Marples, D., Frokiaer, J., Knepper, M. & Agre, P. The aquaporin family of water channels in kidney: an update on physiology and pathophysiology of aquaporin-2. Kidney Int. 49, 1718–1723 (1996).

    CAS  PubMed  Google Scholar 

  3. Nielsen, S. et al. Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am. J. Physiol. 268, F1023–F1037 (1995).

    CAS  PubMed  Google Scholar 

  4. Dantzler, W. H., Layton, A. T., Layton, H. E. & Pannabecker, T. L. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle. Clin. J. Am. Soc. Nephrol. 9, 1781–1789 (2014).

    CAS  PubMed  Google Scholar 

  5. Halperin, M. L., Kamel, K. S. & Oh, M. S. Mechanisms to concentrate the urine: an opinion. Curr. Opin. Nephrol. Hypertens. 17, 416–422 (2008).

    CAS  PubMed  Google Scholar 

  6. Pannabecker, T. L. Structure and function of the thin limbs of the loop of Henle. Compr. Physiol. 2, 2063–2086 (2012).

    PubMed  Google Scholar 

  7. Obermuller, N., Kunchaparty, S., Ellison, D. H. & Bachmann, S. Expression of the Na-K-2Cl cotransporter by macula densa and thick ascending limb cells of rat and rabbit nephron. J. Clin. Invest. 98, 635–640 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bichet, D. G., Oksche, A. & Rosenthal, W. Congenital nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 8, 1951–1958 (1997).

    CAS  PubMed  Google Scholar 

  9. Nielsen, S. et al. Aquaporins in the kidney: from molecules to medicine. Physiol. Rev. 82, 205–244 (2002).

    CAS  PubMed  Google Scholar 

  10. Kortenoeven, M. L. & Fenton, R. A. Renal aquaporins and water balance disorders. Biochim. Biophys. Acta 1840, 1533–1549 (2014).

    CAS  PubMed  Google Scholar 

  11. Fushimi, K., Sasaki, S. & Marumo, F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J. Biol. Chem. 272, 14800–14804 (1997).

    CAS  PubMed  Google Scholar 

  12. Kamsteeg, E. J., Heijnen, I., van Os, C. H. & Deen, P. M. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J. Cell Biol. 151, 919–930 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mulders, S. M. et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J. Clin. Invest. 102, 57–66 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Savelkoul, P. J. et al. p.R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation. Hum. Mutat. 30, E891–E903 (2009).

    PubMed  Google Scholar 

  15. Hoffert, J. D. et al. Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J. Biol. Chem. 283, 24617–24627 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Moeller, H. B., Praetorius, J., Rutzler, M. R. & Fenton, R. A. Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proc. Natl Acad. Sci USA 107, 424–429 (2010).

    CAS  PubMed  Google Scholar 

  17. Tamma, G., Robben, J. H., Trimpert, C., Boone, M. & Deen, P. M. Regulation of AQP2 localization by S256 and S261 phosphorylation and ubiquitination. Am. J. Physiol. Cell Physiol. 300, C636–C646 (2011).

    CAS  PubMed  Google Scholar 

  18. Kamsteeg, E. J. et al. Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc. Natl Acad. Sci. USA 103, 18344–18349 (2006).

    CAS  PubMed  Google Scholar 

  19. Rehmann, H., Wittinghofer, A. & Bos, J. L. Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat. Rev. Mol. Cell Biol. 8, 63–73 (2007).

    CAS  PubMed  Google Scholar 

  20. Holz, G. G., Kang, G., Harbeck, M., Roe, M. W. & Chepurny, O. G. Cell physiology of cAMP sensor Epac. J. Physiol. 577, 5–15 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kortenoeven, M. L. et al. In mpkCCD cells, long-term regulation of aquaporin-2 by vasopressin occurs independent of protein kinase A and CREB but may involve Epac. Am. J. Physiol. Renal Physiol. 302, F1395–F1401 (2012).

    CAS  PubMed  Google Scholar 

  22. Hozawa, S., Holtzman, E. J. & Ausiello, D. A. cAMP motifs regulating transcription in the aquaporin 2 gene. Am. J. Physiol. 270, C1695–C1702 (1996).

    CAS  PubMed  Google Scholar 

  23. Matsumura, Y., Uchida, S., Rai, T., Sasaki, S. & Marumo, F. Transcriptional regulation of aquaporin-2 water channel gene by cAMP. J. Am. Soc. Nephrol. 8, 861–867 (1997).

    CAS  PubMed  Google Scholar 

  24. Yasui, M., Zelenin, S. M., Celsi, G. & Aperia, A. Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. Am. J. Physiol. 272, F443–F450 (1997).

    CAS  PubMed  Google Scholar 

  25. Hasler, U. et al. Long term regulation of aquaporin-2 expression in vasopressin-responsive renal collecting duct principal cells. J. Biol. Chem. 277, 10379–10386 (2002).

    CAS  PubMed  Google Scholar 

  26. Terris, J., Ecelbarger, C. A., Nielsen, S. & Knepper, M. A. Long-term regulation of four renal aquaporins in rats. Am. J. Physiol. 271, F414–F422 (1996).

    CAS  PubMed  Google Scholar 

  27. Lolait, S. J. et al. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357, 336–339 (1992).

    CAS  PubMed  Google Scholar 

  28. Rosenthal, W. et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359, 233–235 (1992).

    CAS  PubMed  Google Scholar 

  29. van den Ouweland, A. M. et al. Mutations in the vasopressin type 2 receptor gene (AVPR2) associated with nephrogenic diabetes insipidus. Nat. Genet. 2, 99–102 (1992).

    CAS  PubMed  Google Scholar 

  30. Pan, Y., Metzenberg, A., Das, S., Jing, B. & Gitschier, J. Mutations in the V2 vasopressin receptor gene are associated with X-linked nephrogenic diabetes insipidus. Nat. Genet. 2, 103–106 (1992).

    CAS  PubMed  Google Scholar 

  31. Fushimi, K. et al. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361, 549–552 (1993).

    CAS  PubMed  Google Scholar 

  32. Sasaki, S. et al. Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct. J. Clin. Invest. 93, 1250–1256 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Deen, P. M. et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264, 92–95 (1994).

    CAS  PubMed  Google Scholar 

  34. Sasaki, S., Chiga, M., Kikuchi, E., Rai, T. & Uchida, S. Hereditary nephrogenic diabetes insipidus in Japanese patients: analysis of 78 families and report of 22 new mutations in AVPR2 and AQP2. Clin. Exp. Nephrol. 17, 338–344 (2013).

    CAS  PubMed  Google Scholar 

  35. Arthus, M. F. et al. Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 11, 1044–1054 (2000).

    CAS  PubMed  Google Scholar 

  36. Sands, J. M. & Bichet, D. G. Nephrogenic diabetes insipidus. Ann. Intern. Med. 144, 186–194 (2006).

    CAS  PubMed  Google Scholar 

  37. Wesche, D., Deen, P. M. & Knoers, N. V. Congenital nephrogenic diabetes insipidus: the current state of affairs. Pediatr. Nephrol. 27, 2183–2204 (2012).

    PubMed  Google Scholar 

  38. Bichet, D. G. Nephrogenic diabetes insipidus. Adv. Chronic Kidney Dis. 13, 96–104 (2006).

    PubMed  Google Scholar 

  39. van Lieburg, A. F., Knoers, N. V. & Monnens, L. A. Clinical presentation and follow-up of 30 patients with congenital nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 10, 1958–1964 (1999).

    CAS  PubMed  Google Scholar 

  40. Sato, K. et al. A novel mutation in the vasopressin V2 receptor gene in a woman with congenital nephrogenic diabetes insipidus. Intern. Med. 38, 808–812 (1999).

    CAS  PubMed  Google Scholar 

  41. Kinoshita, K. et al. A novel deletion mutation in the arginine vasopressin receptor 2 gene and skewed X chromosome inactivation in a female patient with congenital nephrogenic diabetes insipidus. J. Endocrinol. Invest. 27, 167–170 (2004).

    CAS  PubMed  Google Scholar 

  42. Satoh, M., Ogikubo, S. & Yoshizawa-Ogasawara, A. Correlation between clinical phenotypes and X-inactivation patterns in six female carriers with heterozygote vasopressin type 2 receptor gene mutations. Endocr. J. 55, 277–284 (2008).

    CAS  PubMed  Google Scholar 

  43. Bockenhauer, D. et al. Vasopressin type 2 receptor V88M mutation: molecular basis of partial and complete nephrogenic diabetes insipidus. Nephron Physiol. 114, 1–10 (2010).

    Google Scholar 

  44. Bichet, D. G. et al. X-linked nephrogenic diabetes insipidus mutations in North America and the Hopewell hypothesis. J. Clin. Invest. 92, 1262–1268 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fujiwara, T. M. & Bichet, D. G. Molecular biology of hereditary diabetes insipidus. J. Am. Soc. Nephrol. 16, 2836–2846 (2005).

    CAS  PubMed  Google Scholar 

  46. Spanakis, E., Milord, E. & Gragnoli, C. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance. J. Cell Physiol. 217, 605–617 (2008).

    CAS  PubMed  Google Scholar 

  47. Morello, J. P. et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest. 105, 887–895 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Duzenli, D. et al. Mutations in the AVPR2, AVP-NPII, and AQP2 genes in Turkish patients with diabetes insipidus. Endocrine 42, 664–669 (2012).

    CAS  PubMed  Google Scholar 

  49. Marr, N. et al. Heteroligomerization of an aquaporin-2 mutant with wild-type aquaporin-2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum. Mol. Genet. 11, 779–789 (2002).

    CAS  PubMed  Google Scholar 

  50. Kuwahara, M. et al. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am. J. Hum. Genet. 69, 738–748 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kamsteeg, E. J. et al. Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J. Cell Biol. 163, 1099–1109 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Frick, A. et al. X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proc. Natl Acad. Sci USA 111, 6305–6310 (2014).

    CAS  PubMed  Google Scholar 

  53. Bichet, D. G. et al. Aquaporin-2: new mutations responsible for autosomal-recessive nephrogenic diabetes insipidus—update and epidemiology. Clin. Kidney J. 5, 195–202 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bockenhauer, D. et al. Secondary nephrogenic diabetes insipidus as a complication of inherited renal diseases. Nephron Physiol. 116, 23–29 (2010).

    Google Scholar 

  55. Bockenhauer, D. & Bichet, D. G. Inherited secondary nephrogenic diabetes insipidus: concentrating on humans. Am. J. Physiol. Renal Physiol. 304, F1037–F1042 (2013).

    CAS  PubMed  Google Scholar 

  56. Bettinelli, A. et al. Phenotypic variability in Bartter syndrome type I. Pediatr. Nephrol. 14, 940–945 (2000).

    CAS  PubMed  Google Scholar 

  57. Hebert, S. C., Brown, E. M. & Harris, H. W. Role of the Ca2+-sensing receptor in divalent mineral ion homeostasis. J. Exp. Biol. 200, 295–302 (1997).

    CAS  PubMed  Google Scholar 

  58. Marples, D., Frokiaer, J., Dorup, J., Knepper, M. A. & Nielsen, S. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J. Clin. Invest. 97, 1960–1968 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sands, J. M. et al. Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J. Clin. Invest. 99, 1399–1405 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Earm, J. H. et al. Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats. J. Am. Soc. Nephrol. 9, 2181–2193 (1998).

    CAS  PubMed  Google Scholar 

  61. Trepiccione, F. & Christensen, B. M. Lithium-induced nephrogenic diabetes insipidus: new clinical and experimental findings. J. Nephrol. 23 (Suppl. 16), S43–S48 (2010).

    PubMed  Google Scholar 

  62. Rej, S., Herrmann, N. & Shulman, K. The effects of lithium on renal function in older adults—a systematic review. J. Geriatr. Psychiatry Neurol. 25, 51–61 (2012).

    PubMed  Google Scholar 

  63. Timmer, R. T. & Sands, J. M. Lithium intoxication. J. Am. Soc. Nephrol. 10, 666–674 (1999).

    CAS  PubMed  Google Scholar 

  64. Hetmar, O. et al. Lithium: long-term effects on the kidney. I. Renal function in retrospect. Acta Psychiatr. Scand. 73, 574–581 (1986).

    CAS  PubMed  Google Scholar 

  65. Juurlink, D. N. et al. Drug-induced lithium toxicity in the elderly: a population-based study. J. Am. Geriatr. Soc. 52, 794–798 (2004).

    PubMed  Google Scholar 

  66. Head, L. & Dening, T. Lithium in the over-65s: who is taking it and who is monitoring it? A survey of older adults on lithium in the Cambridge Mental Health Services catchment area. Int. J. Geriatr. Psychiatry 13, 164–171 (1998).

    CAS  PubMed  Google Scholar 

  67. Christensen, B. M. et al. Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am. J. Physiol. Cell Physiol. 286, C952–C964 (2004).

    CAS  PubMed  Google Scholar 

  68. Li, Y., Shaw, S., Kamsteeg, E. J., Vandewalle, A. & Deen, P. M. Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J. Am. Soc. Nephrol. 17, 1063–1072 (2006).

    CAS  PubMed  Google Scholar 

  69. Walker, R. J. et al. Lithium-induced reduction in urinary concentrating ability and urinary aquaporin 2 (AQP2) excretion in healthy volunteers. Kidney Int. 67, 291–294 (2005).

    CAS  PubMed  Google Scholar 

  70. Kortenoeven, M. L. et al. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int. 76, 44–53 (2009).

    CAS  PubMed  Google Scholar 

  71. Bedford, J. J. et al. Lithium-induced nephrogenic diabetes insipidus: renal effects of amiloride. Clin. J. Am. Soc. Nephrol. 3, 1324–1331 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Batlle, D. C., von Riotte, A. B., Gaviria, M. & Grupp, M. Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy. N. Engl. J. Med. 312, 408–414 (1985).

    CAS  PubMed  Google Scholar 

  73. Frokiaer, J., Marples, D., Knepper, M. A. & Nielsen, S. Bilateral ureteral obstruction downregulates expression of vasopressin-sensitive AQP-2 water channel in rat kidney. Am. J. Physiol. 270, F657–F668 (1996).

    CAS  PubMed  Google Scholar 

  74. Frokiaer, J. et al. Downregulation of aquaporin-2 parallels changes in renal water excretion in unilateral ureteral obstruction. Am. J. Physiol. 273, F213–F223 (1997).

    CAS  PubMed  Google Scholar 

  75. Winberg, J. Determination of renal concentration capacity in infants and children without renal disease. Acta Paediatrica 48, 318–328 (1958).

    Google Scholar 

  76. Bichet, D. G. et al. Hemodynamic and coagulation responses to 1-desamino[8-D-arginine] vasopressin in patients with congenital nephrogenic diabetes insipidus. N. Engl. J. Med. 318, 881–887 (1988).

    CAS  PubMed  Google Scholar 

  77. Mannucci, P. M. Treatment of von Willebrand's Disease. N. Engl. J. Med. 351, 683–694 (2004).

    CAS  PubMed  Google Scholar 

  78. Kaufmann, J. E. & Vischer, U. M. Cellular mechanisms of the hemostatic effects of desmopressin (DDAVP). J. Thromb. Haemost. 1, 682–689 (2003).

    CAS  PubMed  Google Scholar 

  79. Hillman, D. A., Neyzi, O., Porter, P., Cushman, A. & Talbot, N. B. Renal (vasopressin-resistant) diabetes insipidus; definition of the effects of a homeostatic limitation in capacity to conserve water on the physical, intellectual and emotional development of a child. Pediatrics 21, 430–435 (1958).

    CAS  PubMed  Google Scholar 

  80. Vest, M., Talbot. N. B. & Crawford, J. D. Hypocaloric dwarfism and hydronephrosis in diabetes insipidus. Am. J. Dis. Child 105, 175–181 (1963).

    CAS  PubMed  Google Scholar 

  81. Schofer, O. et al. Nephrogenic diabetes insipidus and intracerebral calcification. Arch. Dis. Child 65, 885–887 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hoekstra, J. A., van Lieburg, A. F., Monnens, L. A., Hulstijn-Dirkmaat, G. M. & Knoers, V. V. Cognitive and psychosocial functioning of patients with congenital nephrogenic diabetes insipidus. Am. J. Med. Genet. 61, 81–88 (1996).

    CAS  PubMed  Google Scholar 

  83. Huber, D., Veinante, P. & Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308, 245–248 (2005).

    CAS  PubMed  Google Scholar 

  84. Griebel, G. et al. Anxiolytic and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc. Natl Acad. Sci USA 99, 6370–6375 (2002).

    CAS  PubMed  Google Scholar 

  85. Yoo, T. H. et al. Congenital nephrogenic diabetes insipidus presented with bilateral hydronephrosis: genetic analysis of V2R gene mutations. Yonsei Med. J. 47, 126–130 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Stevens, S., Brown, B. D. & McGahan, J. P. Nephrogenic diabetes insipidus: a cause of severe nonobstructive urinary tract dilatation. J. Ultrasound Med. 14, 543–545 (1995).

    CAS  PubMed  Google Scholar 

  87. Jaureguiberry, G. et al. A patient with polyuria and hydronephrosis: question. Pediatr. Nephrol. 26, 1977–1978 (2011).

    PubMed  Google Scholar 

  88. Sadeghi, H., Robertson, G. L., Bichet, D. G., Innamorati, G. & Birnbaumer, M. Biochemical basis of partial nephrogenic diabetes insipidus phenotypes. Mol. Endocrinol. 11, 1806–1813 (1997).

    CAS  PubMed  Google Scholar 

  89. Canfield, M. C., Tamarappoo, B. K., Moses, A. M., Verkman, A. S. & Holtzman, E. J. Identification and characterization of aquaporin-2 water channel mutations causing nephrogenic diabetes insipidus with partial vasopressin response. Hum. Mol. Genet. 6, 1865–1871 (1997).

    CAS  PubMed  Google Scholar 

  90. Guyon, C. et al. Characterization of D150E and G196D aquaporin-2 mutations responsible for nephrogenic diabetes insipidus: importance of a mild phenotype. Am. J. Physiol. Renal Physiol. 297, F489–F498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bichet, D. G. et al. Nature and recurrence of AVPR2 mutations in X-linked nephrogenic diabetes insipidus. Am. J. Hum. Genet. 55, 278–286 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ala, Y. et al. Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild clinical phenotype. J. Am. Soc. Nephrol. 9, 1861–1872 (1998).

    CAS  PubMed  Google Scholar 

  93. Kahn, A., Brachet, E. & Blum, D. Controlled fall in natremia and risk of seizures in hypertonic dehydration. Intensive Care Med. 5, 27–31 (1979).

    CAS  PubMed  Google Scholar 

  94. Cansick, J., Rees, L., Koffman, G., Van' t Hoff, W. & Bockenhauer, D. A fatal case of cerebral oedema with hyponatraemia and massive polyuria after renal transplantation. Pediatr. Nephrol. 24, 1231–1234 (2009).

    PubMed  Google Scholar 

  95. Sterns, R. H. Disorders of plasma sodium—causes, consequences, and correction. N. Engl. J. Med. 372, 55–65 (2015).

    PubMed  Google Scholar 

  96. Fang, C. et al. Fluid management of hypernatraemic dehydration to prevent cerebral oedema: a retrospective case control study of 97 children in China. J. Paediatr. Child Health 46, 301–303 (2010).

    PubMed  Google Scholar 

  97. Meyer, E. Über diabetes insipidus und andere polyurien [German]. Arch. Klin. Med. 83, 1 (1905).

    Google Scholar 

  98. Crawford, J. D. & Kennedy, G. C. Chlorothiazid in diabetes insipidus. Nature 183, 891–892 (1959).

    CAS  PubMed  Google Scholar 

  99. Havard, C. W. Thiazide-induced antidiuresis in diabetes insipidus. Proc. R. Soc. Med. 58, 1005–1007 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sinke, A. P. et al. Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter. Am. J. Physiol. Renal Physiol. 306, F525–F533 (2014).

    CAS  PubMed  Google Scholar 

  101. Orloff, J., Handler, J. S. & Bergstrom, S. Effect of [prostaglandin (Pge-1) on the permeability response of toad bladder to vasopressin, theophylline and adenosine 3′,5′-monophosphate. Nature 205, 397–398 (1965).

    CAS  PubMed  Google Scholar 

  102. Anderson, R. J., Berl, T., McDonald, K. D. & Schrier, R. W. Evidence for an in vivo antagonism between vasopressin and prostaglandin in the mammalian kidney. J. Clin. Invest. 56, 420–426 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Stoff, J. S., Rosa, R. M., Silva, P. & Epstein, F. H. Indomethacin impairs water diuresis in the DI rat: role of prostaglandins independent of ADH. Am. J. Physiol. 241, F231–F237 (1981).

    CAS  PubMed  Google Scholar 

  104. Libber, S., Harrison, H. & Spector, D. Treatment of nephrogenic diabetes insipidus with prostaglandin synthesis inhibitors. J. Pediatr. 108, 305–311 (1986).

    CAS  PubMed  Google Scholar 

  105. Monnens, L., Jonkman, A. & Thomas, C. Response to indomethacin and hydrochlorothiazide in nephrogenic diabetes insipidus. Clin. Sci. (Lond.) 66, 709–715 (1984).

    CAS  Google Scholar 

  106. Monn, E. Prostaglandin synthetase inhibitors in the treatment of nephrogenic diabetes insipidus. Acta Paediatr. Scand. 70, 39–42 (1981).

    CAS  PubMed  Google Scholar 

  107. Usberti, M. et al. Renal prostaglandin E2 in nephrogenic diabetes insipidus: effects of inhibition of prostaglandin synthesis by indomethacin. J. Pediatr. 97, 476–478 (1980).

    CAS  PubMed  Google Scholar 

  108. Boussemart, T., Nsota, J., Martin-Coignard, D. & Champion, G. Nephrogenic diabetes insipidus: treat with caution. Pediatr. Nephrol. 24, 1761–1763 (2009).

    PubMed  Google Scholar 

  109. Bockenhauer, D. et al. Antenatal Bartter's syndrome: why is this not a lethal condition? QJM 101, 927–942 (2008).

    CAS  PubMed  Google Scholar 

  110. Bockenhauer, D., Medlar, A. J., Ashton, E., Kleta, R. & Lench, N. Genetic testing in renal disease. Pediatr. Nephrol. 27, 873–883 (2012).

    PubMed  Google Scholar 

  111. Bernier, V. et al. Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 17, 232–243 (2006).

    CAS  PubMed  Google Scholar 

  112. Erdelyi, L. S. et al. Altered agonist sensitivity of a mutant v2 receptor suggests a novel therapeutic strategy for nephrogenic diabetes insipidus. Mol. Endocrinol. 28, 634–643 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Li, J. H. et al. A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. J. Clin. Invest. 119, 3115–3126 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Olesen, E. T., Rutzler, M. R., Moeller, H. B., Praetorius, H. A. & Fenton, R. A. Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc. Natl Acad. Sci. USA 108, 12949–12954 (2011).

    CAS  PubMed  Google Scholar 

  115. Bockenhauer, D. & Bichet, D. G. Urinary concentration: different ways to open and close the tap. Pediatr. Nephrol. 29, 1297–1303 (2014).

    PubMed  Google Scholar 

  116. Chu, J. Y. et al. Phenotypes developed in secretin receptor-null mice indicated a role for secretin in regulating renal water reabsorption. Mol. Cell Biol. 27, 2499–2511 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Procino, G. et al. Combination of secretin and fluvastatin ameliorates the polyuria associated with X-linked nephrogenic diabetes insipidus in mice. Kidney Int. 86, 127–138 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bouley, R. et al. Stimulation of AQP2 membrane insertion in renal epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (Viagra). Am. J. Physiol. Renal Physiol. 288, F1103–F1112 (2005).

    CAS  PubMed  Google Scholar 

  119. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Cyranoski, D. Ethics of embryo editing divides scientists. Nature 519, 272 (2015).

    CAS  PubMed  Google Scholar 

  121. Oka, Y., Ye, M. & Zuker, C. S. Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature 520, 349–352 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Cannon, J. F. Diabetes insipidus; clinical and experimental studies with consideration of genetic relationships. AMA Arch. Intern. Med. 96, 215–272 (1955).

    CAS  PubMed  Google Scholar 

  123. Lacombe, L. De la polydipsie [French]. J. Med. Chir. 7, 323–329 (1841).

    Google Scholar 

  124. McIlraith, C. H. Notes on some cases of diabetes insipidus with marked family and hereditary tendencies. Lancet 2, 767 (1892).

    Google Scholar 

  125. Magnus, R. & Schafer, E. A. Effects of post-pituitary extracts. J. Physiol. 12, 32–38 (1901).

    Google Scholar 

  126. Farini, F. Ueber diabetes insipidus and hypophysis therapie. Wien Klin. Wochenschr. 26, 1867 (1913).

    Google Scholar 

  127. Velden, V. D. Die nierenwirkung von hypophysenextracte beim menschen [German]. Berl. Klin. Wochenschr. 50, 2083 (1913).

    Google Scholar 

  128. de Lange, C. Ueber erblichen diabetes insipidus [German]. Jahrbuch fuer Kinderheilkunde 145, 135 (1935).

    Google Scholar 

  129. Forssman, H. H. On hereditary diabetes insipidus. Acta Medica Scandinavica 121, 9 (1945).

    Google Scholar 

  130. Waring, A. J., Kadji, L. & Tappan, V. A congenital defect of water metabolism. Am. J. Dis. Child. 69, 323–324 (1945).

    Google Scholar 

  131. Williams, R. H. & Henry, C. Nephrogenic diabetes insipidus: transmitted by females and appearing during infancy in males. Ann. Intern. Med. 27, 84–95 (1947).

    CAS  PubMed  Google Scholar 

  132. Coleman, J. in Clinical Paediatric Dietetics 2nd edn (eds Shaw, V. & Lawson, M.) 158–182 (Blackwell Science, 2001).

    Google Scholar 

Download references

Acknowledgements

D.B.'s work is supported by the Higher Education Funding Council for England and the European Consortium for High-Throughput Research in Rare Kidney Diseases (grant 2012-305608).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data, wrote the article and edited and/or reviewed the manuscript before publication.

Corresponding author

Correspondence to Daniel G. Bichet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bockenhauer, D., Bichet, D. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol 11, 576–588 (2015). https://doi.org/10.1038/nrneph.2015.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing