Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasma cells as an innovative target in autoimmune disease with renal manifestations

Key Points

  • Two independent plasma-cell compartments can secrete pathogenic autoantibodies: short-lived proliferating plasmablasts that reflect B-cell hyperactivity and non-dividing long-lived memory plasma cells

  • Long-lived memory plasma cells reside in survival niches in the bone marrow and inflamed tissues where they secrete autoantibodies independently of antigen-contact, B cells and T-cell help

  • Expansions of short-lived plasmablasts are associated with increasing autoantibody levels and disease flares, whereas long-lived memory plasma cells are responsible for maintenance of humoral autoimmunity and refractory disease activity

  • Long-lived plasma cells are refractory to conventional immunosuppression and to therapies that target B cells or T cells; an urgent need to identify therapeutic targets on these plasma cells exists

  • A challenging strategy is to selectively deplete pathogenic long-lived plasma cells in an autoantigen-specific manner without removing long-lived plasma cells that provide protective humoral memory

  • Antithymocyte globulin and proteasome inhibitors can deplete short-lived plasmablasts and long-lived plasma cells; replenishment of autoreactive long-lived plasma cells can be avoided by targeting their precursor cells

Abstract

Autoantibodies are secreted by plasma cells and have an essential role in driving the renal manifestations of autoimmune diseases such as systemic lupus erythematosus and antineutrophil cytoplasmic autoantibody-associated vasculitis. Effective depletion of autoreactive plasma cells might be the key to curative treatment of these diseases. Two major plasma-cell compartments exist: short-lived plasmablasts or plasma cells, which result from differentiation of activated B cells, and long-lived plasma cells, which result from secondary immune responses. Long-lived plasma cells reside in survival niches in bone marrow and inflamed tissue and provide the basis of humoral memory and refractory autoimmune disease activity. Unlike short-lived plasmablasts, long-lived plasma cells do not respond to conventional immunosuppression or to therapies that target B cells. Existing therapies that target long-lived plasma cells, such as proteasome inhibitors and antithymocyte globulin, as well as promising approaches that target survival factors, cell homing or surface molecules, deplete the whole memory plasma cell pool, including cells that secrete protective antibodies. By contrast, we have developed a novel strategy that uses an affinity matrix to deplete pathogenic long-lived plasma cells in an autoantigen-specific manner without removing protective plasma cells. Targeting B-cell precursors to prevent replenishment of autoreactive long-lived plasma cells should also be considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two independent plasma cell compartments contribute to autoantibody secretion.
Figure 2: Potential therapeutic targets against plasma cells in the bone marrow niche.
Figure 3: Autoantigen-specific plasma cell depletion using an affinity matrix.

Similar content being viewed by others

References

  1. Fagraeus, A. Plasma cellular reaction and its relation to the formation of antibodies in vitro. Nature 159, 499 (1947).

    CAS  PubMed  Google Scholar 

  2. Szakal, A. K., Kosco, M. H. & Tew, J. G. Microanatomy of lymphoid tissue during humoral immune responses: structure function relationships. Annu. Rev. Immunol. 7, 91–109 (1989).

    CAS  PubMed  Google Scholar 

  3. Zinkernagel, R. M. et al. On immunological memory. Annu. Rev. Immunol. 14, 333–367 (1996).

    CAS  PubMed  Google Scholar 

  4. Miller, J. J., 3rd & Cole, L. J. Resistance of long-lived lymphocytes and plasma cells in rat lymph nodes to treatment with prednisone, cyclophosphamide, 6-mercaptopurine, and actinomycin D. J. Exp. Med. 126, 109–125 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Okudaira, H. & Ishizaka, K. Reaginic antibody formation in the mouse. XI. Participation of long-lived antibody-forming cells in persistent antibody formation. Cell. Immunol. 58, 188–201 (1981).

    CAS  PubMed  Google Scholar 

  6. Ho, F., Lortan, J. E., MacLennan, I. C. & Khan, M. Distinct short-lived and long-lived antibody-producing cell populations. Eur. J. Immunol. 16, 1297–1301 (1986).

    CAS  PubMed  Google Scholar 

  7. Manz, R. A., Thiel, A. & Radbruch, A. Lifetime of plasma cells in the bone marrow. Nature 388, 133–134 (1997).

    CAS  PubMed  Google Scholar 

  8. Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998).

    CAS  PubMed  Google Scholar 

  9. Hoyer, B. F. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J. Exp. Med. 199, 1577–1584 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Manz, R., Hauser, A., Hiepe, F. & Radbruch, A. Maintenance of serum antibody levels. Annu. Rev. Immunol. 23, 367–386 (2005).

    CAS  PubMed  Google Scholar 

  11. Baumgarth, N. Innate-like B cells and their rules of engagement. Adv. Exp. Med. Biol. 785, 57–66 (2013).

    CAS  PubMed  Google Scholar 

  12. Garraud, O. et al. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond. BMC Immunol. 13, 63 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171 (2015).

    CAS  PubMed  Google Scholar 

  14. Radbruch, A. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 6, 741–750 (2006).

    CAS  PubMed  Google Scholar 

  15. Weisel, F. J., Zuccarino-Catania, G. V., Chikina, M. & Shlomchik, M. J. A. Temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity 44, 116–130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tarlinton, D., Radbruch, A., Hiepe, F. & Dörner, T. Plasma cell differentiation and survival. Curr. Opin. Immunol. 20, 162–169 (2008).

    CAS  PubMed  Google Scholar 

  17. Porstner, M. et al. miR-148a promotes plasma cell differentiation and targets the germinal center transcription factors Mitf and Bach2. Eur. J. Immunol. 45, 1206–1215 (2015).

    CAS  PubMed  Google Scholar 

  18. Mei, H. E. et al. A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 125, 1739–1748 (2015).

    CAS  PubMed  Google Scholar 

  19. Halliley, J. L. et al. Long-lived plasma cells are contained within the CD19CD38hiCD138+ subset in human bone marrow. Immunity 43, 132–145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen, P. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507, 366–370 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dang, V. D., Hilgenberg, E., Ries, S., Shen, P. & Fillatreau, S. From the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsets. Curr. Opin. Immunol. 28, 77–83 (2014).

    CAS  PubMed  Google Scholar 

  22. Tokoyoda, K., Hauser, A. E., Nakayama, T. & Radbruch, A. Organization of immunological memory by bone marrow stroma. Nat. Rev. Immunol. 10, 193–200 (2010).

    CAS  PubMed  Google Scholar 

  23. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B. I. & Nagasawa, T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20, 707–718 (2004).

    CAS  PubMed  Google Scholar 

  24. Pengo, N. et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat. Immunol. 14, 298–305 (2013).

    CAS  PubMed  Google Scholar 

  25. Cassese, G. et al. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J. Immunol. 171, 1684–1690 (2003).

    CAS  PubMed  Google Scholar 

  26. Minges Wols, H. A., Underhill, G. H., Kansas, G. S. & Witte, P. L. The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity. J. Immunol. 169, 4213–4221 (2002).

    CAS  PubMed  Google Scholar 

  27. Hargreaves, D. C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med. 194, 45–56 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Winter, O., Dame, C., Jundt, F. & Hiepe, F. Pathogenic long-lived plasma cells and their survival niches in autoimmunity, malignancy, and allergy. J. Immunol. 189, 5105–5111 (2012).

    CAS  PubMed  Google Scholar 

  29. Rozanski, C. H. et al. Sustained antibody responses depend on CD28 function in bone marrow-resident plasma cells. J. Exp. Med. 208, 1435–1446 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chevrier, S. et al. CD93 is required for maintenance of antibody secretion and persistence of plasma cells in the bone marrow niche. Proc. Natl Acad. Sci. USA 106, 3895–3900 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Winter, O. et al. Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood 116, 1867–1875 (2010).

    CAS  PubMed  Google Scholar 

  32. Chu, V. T. et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. 12, 151–159 (2011).

    CAS  PubMed  Google Scholar 

  33. Peperzak, V. et al. Mcl-1 is essential for the survival of plasma cells. Nat. Immunol. 14, 290–297 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Balabanian, K. et al. Role of the chemokine stromal cell-derived factor 1 in autoantibody production and nephritis in murine lupus. J. Immunol. 170, 3392–3400 (2003).

    CAS  PubMed  Google Scholar 

  35. Szyszko, E. A. et al. Salivary glands of primary Sjogren's syndrome patients express factors vital for plasma cell survival. Arthritis Res. Ther. 13, R2 (2011).

    PubMed  PubMed Central  Google Scholar 

  36. Lacotte, S. et al. Early sifferentiated CD138highMHCII+IgG+ plasma cells express CXCR3 and localize into inflamed kidneys of lupus mice. PLoS ONE 8, e58140 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Belnoue, E. et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 111, 2755–2764 (2008).

    CAS  PubMed  Google Scholar 

  38. Benson, M. J. et al. Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J. Immunol. 180, 3655–3659 (2008).

    CAS  PubMed  Google Scholar 

  39. Shah, H. B. et al. BAFF- and APRIL-dependent maintenance of antibody titers after immunization with t-dependent antigen and CD1d-binding ligand. J. Immunol. 191, 1154–1163 (2013).

    CAS  PubMed  Google Scholar 

  40. Manz, R. A., Löhning, M., Cassese, G., Thiel, A. & Radbruch, A. Survival of long-lived plasma cells is independent of antigen. Int. Immunol. 10, 1703–1711 (1998).

    CAS  PubMed  Google Scholar 

  41. Ahuja, A., Anderson, S. M., Khalil, A. & Shlomchik, M. J. Maintenance of the plasma cell pool is independent of memory B cells. Proc. Natl Acad. Sci. USA 105, 4802–4807 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. DiLillo, D. J. et al. Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J. Immunol. 180, 361–371 (2008).

    CAS  PubMed  Google Scholar 

  43. Couser, W. G. & Johnson, R. J. The etiology of glomerulonephritis: roles of infection and autoimmunity. Kidney Int. 86, 905–914 (2014).

    CAS  PubMed  Google Scholar 

  44. Kurts, C., Panzer, U., Anders, H. J. & Rees, A. J. The immune system and kidney disease: basic concepts and clinical implications. Nat. Rev. Immunol. 13, 738–753 (2013).

    CAS  PubMed  Google Scholar 

  45. Martin, F. & Chan, A. C. B cell immunobiology in disease: evolving concepts from the clinic. Annu. Rev. Immunol. 24, 467–496 (2006).

    CAS  PubMed  Google Scholar 

  46. Hiepe, F. et al. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat. Rev. Rheumatol. 7, 170–178 (2011).

    CAS  PubMed  Google Scholar 

  47. Cheng, Q. et al. Autoantibodies from long-lived 'memory' plasma cells of NZB/W mice drive immune complex nephritis. Ann. Rheum. Dis. 72, 2011–2017 (2013).

    CAS  PubMed  Google Scholar 

  48. Manz, R. A., Hauser, A. E., Hiepe, F. & Radbruch, A. Maintenance of serum antibody levels. Annu. Rev. Immunol. 23, 367–386 (2005).

    CAS  PubMed  Google Scholar 

  49. Odendahl, M. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 165, 5970–5979 (2000).

    CAS  PubMed  Google Scholar 

  50. Jacobi, A. M. et al. HLA-DRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 69, 305–308 (2010).

    CAS  PubMed  Google Scholar 

  51. Hoyer, B. F. et al. Role of plasma cell analysis as a biomarker for disease activity in patients with granulomatosis with polyangiitis. Ann. Rheum. Dis. 72, 924–924 (2013).

    Google Scholar 

  52. Odendahl, M. et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 105, 1614–1621 (2005).

    CAS  PubMed  Google Scholar 

  53. Wrammert, J. et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453, 667–671 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mumtaz, I. M. et al. Bone marrow of NZB/W mice is the major site for plasma cells resistant to dexamethasone and cyclophosphamide: implications for the treatment of autoimmunity. J. Autoimmun 39, 180–188 (2012).

    CAS  PubMed  Google Scholar 

  56. Espeli, M. et al. Local renal autoantibody production in lupus nephritis. J. Am. Soc. Nephrol. 22, 296–305 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. Cassese, G. et al. Inflamed kidneys of NZB/W mice are a major site for the homeostasis of plasma cells. Eur. J. Immunol. 31, 2726–2732 (2001).

    CAS  PubMed  Google Scholar 

  58. Starke, C. et al. High frequency of autoantibody-secreting cells and long-lived plasma cells within inflamed kidneys of NZB/W F1 lupus mice. Eur. J. Immunol. 41, 2107–2112 (2011).

    CAS  PubMed  Google Scholar 

  59. Lacotte, S., Dumortier, H., Decossas, M., Briand, J. P. & Muller, S. Identification of new pathogenic players in lupus: autoantibody-secreting cells are present in nephritic kidneys of (NZBxNZW)F1 mice. J. Immunol. 184, 3937–3945 (2010).

    CAS  PubMed  Google Scholar 

  60. Chu, V. T. et al. Systemic activation of the immune system induces aberrant BAFF and APRIL expression in B cells in patients with systemic lupus erythematosus. Arthritis Rheum. 60, 2083–2093 (2009).

    CAS  PubMed  Google Scholar 

  61. Zand, M. S. et al. Apoptosis and complement-mediated lysis of myeloma cells by polyclonal rabbit antithymocyte globulin. Blood 107, 2895–2903 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Popow, I. et al. A comprehensive and quantitative analysis of the major specificities in rabbit antithymocyte globulin preparations. Am. J. Transplant. 13, 3103–3113 (2013).

    CAS  PubMed  Google Scholar 

  63. Alexander, T. et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 113, 214–223 (2009).

    CAS  PubMed  Google Scholar 

  64. Muraro, P. A. et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J. Exp. Med. 201, 805–816 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Delemarre, E. M. et al. Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells. Blood 127, 91–101 (2016).

    CAS  PubMed  Google Scholar 

  66. Meister, S. et al. Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res. 67, 1783–1792 (2007).

    CAS  PubMed  Google Scholar 

  67. Neubert, K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat. Med. 14, 748–755 (2008).

    CAS  PubMed  Google Scholar 

  68. Alexander, T. et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann. Rheum. Dis. 74, 1474–1478 (2015).

    CAS  PubMed  Google Scholar 

  69. Ichikawa, H. T. et al. Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum. 64, 493–503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Blanco, B. et al. Bortezomib induces selective depletion of alloreactive T lymphocytes and decreases the production of Th1 cytokines. Blood 107, 3575–3583 (2006).

    CAS  PubMed  Google Scholar 

  71. Maseda, D., Meister, S., Neubert, K., Herrmann, M. & Voll, R. E. Proteasome inhibition drastically but reversibly impairs murine lymphocyte development. Cell Death Differ. 15, 600–612 (2008).

    CAS  PubMed  Google Scholar 

  72. Bontscho, J. et al. Myeloperoxidase-specific plasma cell depletion by bortezomib protects from anti-neutrophil cytoplasmic autoantibodies-induced glomerulonephritis. J. Am. Soc. Nephrol. 22, 336–348 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Novikov, P., Moiseev, S., Bulanov, N. & Shchegoleva, E. Bortezomib in refractory ANCA-associated vasculitis: a new option? Ann. Rheum. Dis. 75, e9 (2015).

    PubMed  Google Scholar 

  74. Hartono, C., Chung, M., Kuo, S. F., Seshan, S. V. & Muthukumar, T. Bortezomib therapy for nephrotic syndrome due to idiopathic membranous nephropathy. J. Nephrol. 27, 103–106 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ejaz, N. S. et al. Review of bortezomib treatment of antibody-mediated rejection in renal transplantation. Antioxid. Redox Signal. 21, 2401–2418 (2014).

    CAS  PubMed  Google Scholar 

  76. Seavey, M. M., Lu, L. D., Stump, K. L., Wallace, N. H. & Ruggeri, B. A. Novel, orally active, proteasome inhibitor, delanzomib (CEP-18770), ameliorates disease symptoms and glomerulonephritis in two preclinical mouse models of SLE. Int. Immunopharmacol. 12, 257–270 (2012).

    CAS  PubMed  Google Scholar 

  77. van Vollenhoven, R. F., Wax, S., Li, Y. & Tak, P. P. Safety and efficacy of atacicept in combination with rituximab for reducing the signs and symptoms of rheumatoid arthritis: a Phase II, randomized, double-blind, placebo-controlled pilot trial. Arthritis Rheum. 67, 2828–2836 (2015).

    CAS  Google Scholar 

  78. Isenberg, D. et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann. Rheum. Dis. 74, 2006–2015 (2015).

    CAS  PubMed  Google Scholar 

  79. Kappos, L. et al. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, Phase 2 trial. Lancet Neurol. 13, 353–363 (2014).

    CAS  PubMed  Google Scholar 

  80. Sergott, R. C. et al. ATON: results from a Phase II randomized trial of the B-cell-targeting agent atacicept in patients with optic neuritis. J. Neurol. Sci. 351, 174–178 (2015).

    CAS  PubMed  Google Scholar 

  81. Genovese, M. C., Kinnman, N., de La Bourdonnaye, G., Pena Rossi, C. & Tak, P. P. Atacicept in patients with rheumatoid arthritis and an inadequate response to tumor necrosis factor antagonist therapy: results of a Phase II, randomized, placebo-controlled, dose-finding trial. Arthritis Rheum. 63, 1793–1803 (2011).

    CAS  PubMed  Google Scholar 

  82. van Vollenhoven, R. F., Kinnman, N., Vincent, E., Wax, S. & Bathon, J. Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a Phase II, randomized, placebo-controlled trial. Arthritis Rheum. 63, 1782–1792 (2011).

    CAS  PubMed  Google Scholar 

  83. Khodadadi, L. et al. Bortezomib plus continuous B cell depletion results in sustained plasma cell depletion and amelioration of lupus nephritis in NZB/W F1 mice. PLoS ONE 10, e0135081 (2015).

    PubMed  PubMed Central  Google Scholar 

  84. Wang, A. et al. CXCR4/CXCL12 hyperexpression plays a pivotal role in the pathogenesis of lupus. J. Immunol. 182, 4448–4458 (2009).

    CAS  PubMed  Google Scholar 

  85. Meller, S. et al. Ultraviolet radiation-induced injury, chemokines, and leukocyte recruitment: An amplification cycle triggering cutaneous lupus erythematosus. Arthritis Rheum. 52, 1504–1516 (2005).

    CAS  PubMed  Google Scholar 

  86. De Klerck, B. et al. Pro-inflammatory properties of stromal cell-derived factor-1 (CXCL12) in collagen-induced arthritis. Arthritis Res. Ther. 7, R1208–R1220 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Buckley, C. D. et al. Persistent induction of the chemokine receptor CXCR4 by TGF-β 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J. Immunol. 165, 3423–3429 (2000).

    CAS  PubMed  Google Scholar 

  88. Liu, C. L., Lyle, M. J., Shin, S. C. & Miao, C. H. Strategies to target long-lived plasma cells for treating hemophilia A inhibitors. Cell. Immunol. http://dx.doi.org/10.1016/j.cellimm.2016.01.005 (2016).

  89. Arce, S. et al. CD38 low IgG-secreting cells are precursors of various CD38 high-expressing plasma cell populations. J. Leukocyte Biol. 75, 1022–1028 (2004).

    CAS  PubMed  Google Scholar 

  90. Lin, P., Owens, R., Tricot, G. & Wilson, C. S. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am. J. Clin. Pathol. 121, 482–488 (2004).

    PubMed  Google Scholar 

  91. Santonocito, A. M. et al. Flow cytometric detection of aneuploid CD38++ plasmacells and CD19+ B-lymphocytes in bone marrow, peripheral blood and PBSC harvest in multiple myeloma patients. Leuk. Res. 28, 469–477 (2004).

    PubMed  Google Scholar 

  92. Lokhorst, H. M. et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N. Engl. J. Med. 373, 1207–1219 (2015).

    CAS  PubMed  Google Scholar 

  93. Wong, S. W. & Comenzo, R. L. CD38 monoclonal antibody therapies for multiple myeloma. Clin. Lymphoma Myeloma Leuk. 15, 635–645 (2015).

    PubMed  Google Scholar 

  94. Ginzler, E. M. et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res. Ther. 14, R33 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ljungman, P. et al. Vaccination of stem cell transplant recipients: recommendations of the Infectious Diseases Working Party of the EBMT. Bone Marrow Transplant. 35, 737–746 (2005).

    CAS  PubMed  Google Scholar 

  96. Yoshida, T. et al. Gene expression profiles of plasmablasts and plasma cells differ in SLE versus protective immunity. Ann. Rheum. Dis. 66 (Suppl. 2), 307 (2007).

    Google Scholar 

  97. Lugar, P. L., Love, C., Grammer, A. C., Dave, S. S. & Lipsky, P. E. Molecular characterization of circulating plasma cells in patients with active systemic lupus erythematosus. PLoS ONE 7, e44362 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Köhler, G. & Shulman, M. J. Immunoglobulin M mutants. Eur. J. Immunol. 10, 467–476 (1980).

    Google Scholar 

  99. Köhler, G., Potash, M. J., Lehrach, H. & Shulman, M. J. Deletions in immunoglobulin mu chains. EMBO J. 1, 555–563 (1982).

    PubMed  PubMed Central  Google Scholar 

  100. Manz, R., Assenmacher, M., Pfluger, E., Miltenyi, S. & Radbruch, A. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc. Natl Acad. Sci. USA 92, 1921–1925 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Taddeo, A. et al. Selection and depletion of plasma cells hbased on the specificity of the secreted antibody. Eur. J. Immunol. 45, 317–319 (2015).

    CAS  PubMed  Google Scholar 

  102. Taddeo, A. et al. Long-lived plasma cells are early and constantly generated in New Zealand Black/New Zealand White F1 mice and their therapeutic depletion requires a combined targeting of autoreactive plasma cells and their precursors. Arthritis Res. Ther. 17, 39 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Hoyer, B. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. Arthritis Res. Ther. 6, S3–S4 (2004).

    Google Scholar 

  104. Cambridge, G. et al. Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis. Arthritis Rheum. 48, 2146–2154 (2003).

    PubMed  Google Scholar 

  105. Stohl, W. et al. Belimumab reduces autoantibodies, normalizes low complement, and reduces select B-cell populations in patients with systemic lupus erythematosus. Arthritis Rheum. 64, 2328–2337 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by the Deutsche Forschungsgemeinschaft (TRR130 project 15, SFB 650 projects 12 and 17).

Author information

Authors and Affiliations

Authors

Contributions

F.H. researched the data and wrote the article. Both authors made substantial contributions to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Falk Hiepe.

Ethics declarations

Competing interests

F.H. and A.R. are inventors of the international patent application PCT/EP2013/068503 dealing with the autoantigen-specific depletion of plasma cells in vivo. The applicant is the Deutsches RheumaForschungszentrum Berlin.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiepe, F., Radbruch, A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat Rev Nephrol 12, 232–240 (2016). https://doi.org/10.1038/nrneph.2016.20

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.20

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing